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The improvement of selection accuracy of genomic prediction is a key factor in accelerating genetic gain for crop breeding. Traditionally, 
efforts have focused on developing superior individual genomic prediction models. However, this approach has limitations due to the 
absence of a consistently “best” individual genomic prediction model, as suggested by the No Free Lunch Theorem. The No Free Lunch 
Theorem states that the performance of an individual prediction model is expected to be equivalent to the others when averaged across 
all prediction scenarios. To address this, we explored an alternative method: combining multiple genomic prediction models into an 
ensemble. The investigation of ensembles of prediction models is motivated by the Diversity Prediction Theorem, which indicates 
the prediction error of the many-model ensemble should be less than the average error of the individual models due to the diversity 
of predictions among the individual models. To investigate the implications of the No Free Lunch and Diversity Prediction Theorems, 
we developed a naïve ensemble-average model, which equally weights the predicted phenotypes of individual models. We evaluated 
this model using 2 traits influencing crop yield—days to anthesis and tiller number per plant—in the teosinte nested association mapping 
dataset. The results show that the ensemble approach increased prediction accuracies and reduced prediction errors over individual 
genomic prediction models. The advantage of the ensemble was derived from the diverse predictions among the individual models, 
suggesting the ensemble captures a more comprehensive view of the genomic architecture of these complex traits. These results are 
in accordance with the expectations of the Diversity Prediction Theorem and suggest that ensemble approaches can enhance genomic 
prediction performance and accelerate genetic gain in crop breeding programs.
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Introduction
Genomic selection has accelerated the rates of genetic gain in 
plant breeding programs (Voss-Fels et al. 2019) by using prediction 
models to associate genetic markers with trait phenotypes 
(Meuwissen et al. 2001). The ability to predict and select plants 
based on genetic markers, instead of trait phenotypes, has en-
abled novel selection schemes and breeding program designs 
with the potential to accelerate rates of genetic gain (Heffner 
et al. 2009; Gaynor et al. 2017; Powell et al. 2020). As of today, gen-
omic selection has accelerated the rates of genetic gain for grain 
yield in commercial breeding programs (Cooper et al. 2014) and 
the integration of genomic selection in public breeding programs 
is underway (Dreisigacker et al. 2021; Prasanna et al. 2021).

The accuracy of genomic selection is dependent on the choice 
of a genomic prediction model. Therefore, research evaluating al-
ternative genomic prediction models has received considerable 
attention. The primary goal of these research investigations is to 
develop a genomic prediction model that can consistently reach 
higher prediction performance compared with others. A major 
challenge in enhancing these models is capturing complex genetic 
interactions, often resulting from gene regulatory networks 
(Mascher et al. 2024). Cooper et al. (2005) demonstrated that epi-
static (nonlinear) marker interactions can decrease the rate of 

genetic gain compared to the scenarios where only additive (lin-
ear) effects define the genetic architecture of complex traits. 
This finding emphasizes the necessity to capture complex genetic 
interactions to maximize rates of genetic gain. Mackay (2014) dis-
cussed the possibility of performance improvement in genomic 
prediction by including epistatic effects in prediction models. 
Previous research (Montesinos-López et al. 2018; Pérez-Enciso 
and Zingaretti 2019; Washburn et al. 2021) has highlighted the dif-
ficulty of finding an individual genomic prediction model that 
sufficiently captures complex interactions to consistently outper-
form other models.

Outside of plant breeding, the absence of a best prediction 
model has been explained by the No Free Lunch Theorem 
(Wolpert and Macready 1997). The No Free Lunch Theorem postu-
lates that the average prediction performance of individual mod-
els becomes equal over prediction problem scenarios. If we accept 
that this theorem applies generally, seeking superior individual 
genomic prediction models for the multiple prediction problems 
of plant breeding programs is unlikely to be successful. An alter-
native approach could be to generate ensemble combinations of 
multiple, different genomic prediction models.

Ensemble approaches combine predictions from multiple mod-
els (Page 2018; Farooq et al. 2022). Several ensemble approaches 
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have been proposed, such as bootstrap aggregating, which use 
multiple weak prediction models in parallel, such as bootstrap ag-
gregating (Breiman 1996), or sequentially, such as AdaBoost 
(Freund and Schapire 1995). These ideas informed the develop-
ment of methods such as random forest (RF) (Breiman 2001a) 
and ensemble neural networks (Zhou et al. 2002; Li et al. 2004; 
Liu and Li 2008). Combining multiple distinctive prediction mod-
els is expected to cancel out errors derived from the gap between 
observed and actual values, leading to performance improvement 
(Page 2018; Kick and Washburn 2023).

Page (2018) provides a theoretical framework, illustrated with 
examples, of the potential advantages of applying ensembles of 
multiple, diverse models to enhance the prediction of key proper-
ties for complex multidimensional systems. One aspect of the 
framework is the “Diversity Prediction Theorem” which states 
that the model-ensemble error is equivalent to the average model 
error of the individual models minus the diversity of the model 
predictions. This theorem indicates prediction errors can be re-
duced, and prediction performance improved, whenever a suit-
able ensemble of diverse models can be identified. We consider 
the implications of the Diversity Prediction Theorem for applica-
tions of model ensembles for genomic prediction in crop breeding.

In general, ensemble approaches have been successfully lever-
aged in agricultural science. For instance, Wallach et al. (2018) de-
monstrated higher prediction accuracies of ensemble approaches 
for forecasting climate change scenarios in crop yield prediction. 
Other studies have shown the superiority of ensemble approaches 
over individual genomic prediction models (Bian and Holland 
2015; McCormick et al. 2021; Huang and Wei 2022; Fradgley et al. 
2023; Heilmann et al. 2023; Kick and Washburn 2023; Washburn 
et al. 2024). However, key factors leading to the performance in-
creases of ensemble approaches for genomic selection have not 
been thoroughly investigated and discussed. Therefore, we inves-
tigate the performance of ensemble approaches for genomic se-
lection in comparison to that of the individual genomic 
prediction models and dissect the factors leading to performance 
increases.

Here, we (1) investigate the prediction performance of 6 individ-
ual genomic prediction models for 2 traits controlled by a genetic 
architecture involving both linear and nonlinear interactions, (2) 
consider the implications of the No Free Lunch Theorem and 
evaluate an ensemble approach to assess its effectiveness com-
pared to individual genomic prediction models, and (3) use the 
“Diversity Prediction Theorem” as a framework to investigate 
how the diversity of model predictions contributes to the predic-
tion performance of ensembles.

Materials and methods
Dataset
The TeoNAM dataset (Chen et al. 2019) consists of 5 recombinant 
inbred line (RIL) populations derived from 5 backcross hybrid 
crosses of the maize (Zea mays) line W22 and 5 teosinte inbred 
lines: wild teosinte types TIL01, TIL03, TIL11, and TIL14 from Z. 
mays ssp. parviglumis and TIL25 from Z. mays ssp. mexicana. The 
maize inbred line W22 was used as the female plant for crossing. 
Following the F1 cross, the F1 was backcrossed once to W22. 
Each cross generated 1 RIL population, and thus, 5 different RIL 
populations were generated: W22TIL01, W22TIL03, W22TIL11, 
W22TIL14, and W22TIL25. After the backcross, each RIL popula-
tion was advanced 4 times by controlled self-pollination to pro-
duce the RILs used for the analyses. Each RIL population was 
measured for 7 agronomic traits and 15 domestication traits. 

From the full trait list, days to anthesis (DTA) and tiller number 
per plant (TILN) were chosen as target traits for the ensemble in-
vestigations as both traits are expected to be a consequence of 
genetic interactions in a biologically complex network (Dong 
et al. 2012; DeWitt et al. 2021; Powell et al. 2022).

The traits were measured in 2 different environments. For 
W22TIL01, W22TIL03, and W22TIL11, the experiment was con-
ducted in 2015 and 2016 summer. W22TIL14 was grown in 2016 
and 2017 summer, and W22TIL25 was evaluated in 2 blocks in 
2017 summer. All the experiments were conducted at the 
University of Wisconsin West Madison Agricultural Research 
Station with a randomized complete block design.

The summary of genetic marker (SNP) and RIL numbers per 
cross is described in Table 1. Each RIL population contains at least 
200 RILs with more than 10,000 SNPs.

Data cleaning and preprocessing
Preliminary quality control on the TeoNAM dataset identified 3 
potential issues that required further investigation prior to the ap-
plication of prediction models: (1) missing genomic marker calls, 
(2) missing trait measurements/records, and (3) a larger number 
of genomic markers compared to the number of RILs.

Missing marker call was one noticeable problem affecting the 
quality of the TeoNAM dataset for evaluating ensemble prediction 
methodology. Imputation of missing marker calls was undertaken 
when possible using 2 different methods. Our objective was not to 
evaluate the merits of alternative imputation methods; rather, we 
were interested in assessing the implications of any imputation 
approach on the outcomes of the ensemble prediction method-
ology in relation to the expectations of the Diversity Prediction 
Theorem (Page 2018). Therefore, we examined the impact of alter-
native imputation methods on the prediction diversity among in-
dividual prediction models and the consequences of changes in 
the prediction diversity for the performance of the ensemble of 
models. Herein, we present the results based on one imputation 
method and present the comparable results for an alternative im-
putation method in the Supplementary materials for purposes of 
comparison (Supplementary Figs. 3–5 and Table 2). The imput-
ation of missing marker calls with the most frequent allele was 
the primary approach leveraged to output prediction results. For 
the alternative imputation approach (Supplementary material), 
missing marker calls were imputed with flanking markers. If 
flanking markers on both sides possessed the same parental al-
lele, markers with missing calls were imputed with the same par-
ental allele of their flanking markers. If flanking markers on both 
sides contained different parental alleles, the parental allele of 
the closest flanking marker was leveraged to impute the missing 
marker calls. If the alleles of markers in a chromosome were miss-
ing entirely, corresponding RILs were removed. For both imput-
ation approaches, SNPs with more than 10% missing marker 
calls were removed.

Table 1. The number of SNPs in each preprocessing phase and 
RILs in each population.

Population 
name

Original SNP 
imputation

LD 
filtering

RIL 
number

W22TIL01 13,089 13,042 274–322 222
W22TIL03 16,110 16,076 295–342 270
W22TIL11 13,188 13,153 268–314 219
W22TIL14 11,396 11,375 270–320 230
W22TIL25 14,885 14,857 294–341 308
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A missing target trait problem occurred when the phenotype of 
a target trait was missing. Imputation was an infeasible choice in 
this dataset due to a lack of external information enabling the rea-
sonable imputation of missing phenotypes. Hence, RILs without 
target trait phenotypes were excluded in this study.

The high proportion of markers relative to the number of RILs 
in each cross could negatively affect the performance of some of 
the genomic prediction models. The number of markers in all 
the crosses was considerably higher than the number of RILs 
(Table 1). The number of RILs may not have been sufficient to cap-
ture some of the complex patterns among markers and pheno-
types, resulting in the curse of dimensionality (Bellman 1957; 
Ramstein et al. 2019). This can have more influence on the predic-
tion performance of the machine learning models. Secondly, gen-
etic markers may not provide additional information to increase 
prediction performance if they are in strong linkage disequilib-
rium (LD) and are not independent of each other. Such genetic 
markers can be removed to exclude redundant information. 
Additionally, training machine learning models with data con-
taining many attributes can increase computational time, which 
can be prohibitive for complex machine learning models such as 
the graph neural network (GAT) used in this study. Therefore, to 
reduce the computation time for the machine learning models, 
we reduced marker dimensionality by eliminating less inform-
ative markers based on their LD relationships. PLINK (v1.9) 
(Chang et al. 2015) was used to remove SNPs with a squared correl-
ation of >0.8 using a window size of 30,000 bp and step size of 5. A 
higher correlation indicated that 2 genetic markers provided simi-
lar information for prediction. Thus, removing either of the genet-
ic markers could be beneficial by reducing the total number of 
genetic markers rather than losing critical information for better 
predictions.

Since each RIL population was grown and measured in 2 distinctive 
environments, the subdatasets were concatenated into a single data-
set with a factor with 2 levels representing the different environments. 
This concatenated single dataset was randomly split into training and 
test sets for training and evaluating genomic prediction models, re-
spectively. Genotype-by-environment (GxE) interactions were a 
source of uncertainty accounted for in the analyses. Investigations 
of the impact of GxE interactions in the genomic prediction models 
will be an area of focus for future research investigation.

The datasets after undertaking all the preprocessing steps were 
used as input for the 6 individual genomic prediction models. The 
final genetic marker (SNP) and RIL numbers used in this study are 
summarized in Table 1. The final number of SNPs varied depend-
ing on the combination of RILs in the training set for each sample.

Diversity Prediction Theorem framework
The effect of prediction model diversity on the prediction per-
formance of an ensemble can be formulated in terms of the 
Diversity Prediction Theorem, as given by Page (2018):

(M̅ − V)
2 =

N

i=1

(Mi − V)2

N
−
N

i=1

(Mi − M̅)
2

N
(1) 

where Mi is the set of predicted values from prediction model i, M̅ 
is the set of mean predicted values from the i individual prediction 
models, V is the set of true values, and N is the total number of pre-
diction models considered. The Diversity Prediction Theorem 
equation indicates that the many-model error (the first term) 
equals the average error (second term) minus the prediction diver-
sity (third term). Following Equation (1), the prediction diversity 

must be positive if the predictions differ. Hence, the many-model 
error must be smaller than the average error. Further, it is noted 
that as the prediction diversity decreases, the third term ap-
proaches 0 and the many-model error will become the average 
error.

In this study, we use the Diversity Prediction Theorem as a 
framework to investigate the potential of an ensemble of multiple 
genomic prediction models to enhance prediction performance in 
an empirical crop breeding dataset. Therefore, a few alterations in 
definitions were required to apply the Diversity Prediction 
Theorem to an empirical crop breeding dataset, such as the 
TeoNAM dataset. In our study, Mi was defined as predicted pheno-
types from individual genomic prediction models, while V was de-
fined as trait observations, instead of true values as per the 
original theorem. We refer to the many-model error as the ensem-
ble error throughout this manuscript. Six individual genomic pre-
diction models were applied in our analysis. Therefore, N = 6. We 
report the mean values, by trait, for the ensemble error (the first 
term), the average error (the second term), and the prediction di-
versity (the third term) across all prediction scenarios and by 
training-test set ratio.

Individual genomic prediction models
Six prediction models, 3 classical genomic prediction and 3 ma-
chine learning models, were applied to the TeoNAM dataset. 
The 3 classical genomic prediction models were ridge regression 
best linear unbiased prediction (rrBLUP) (Meuwissen et al. 2001), 
BayesB (Meuwissen et al. 2001), and reproducing kernel Hilbert 
space (RKHS) (Gianola and van Kaam 2008). The 3 machine learn-
ing models were RF (Breiman 2001a), support vector regression 
(SVR) (Drucker et al. 1996), and graph attention network (GAT) 
(Brody et al. 2021).

Classical genomic prediction models
Parametric models: Parametric models have been widely leveraged 
for genomic prediction (Meuwissen et al. 2001). One major charac-
teristic in parametric models is the requirement of assumptions in 
the input distribution. Such assumptions allow the model para-
meters to be determined within a finite value range.

The most well-known parametric models in genomic predic-
tion are linear mixed models. They have been leveraged since 
the initial developmental stage in genomic prediction (Ray et al. 
2022). A linear mixed model, in general, can be formulated as 
Equation (2) (Pérez and de Los Campos 2014):

η = 1μ +
J

j=1
Xjβj +

L

l=1
ul (2) 

where η = {η1, η1, . . . , ηn} is a set of the predicted phenotypes for 
true values y = {y1, y1, . . . , yn}, µ is the intercept, Xj is the design 

matrices representing marker values, βj is the coefficient matrices 

indicating each genomic marker effects, and ul = {ul1, ul2, uln} is 
the random effects in a vector format. The assumed value distri-
bution for βj differs among models. The linear mixed models 

aim to determine βj in a way that the gap between η and y is 

minimum.
rrBLUP is a commonly used mixed linear model in genomic pre-

diction, assuming that the effect of each marker is small and nor-
mally distributed with the same variance regardless of the effect 
size of each genetic marker (Meuwissen et al. 2001; Bernardo and 
Yu 2007). Hence, βj is distributed as βj ∼ N(0, I, σ2

βj
) where I is an 

identity matrix and σ2 is the variance of genomic marker effects 
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(Endelman 2011; Endelman and Jannink 2012). Genomic best 
linear unbiased prediction (GBLUP) (VanRaden 2008) is another 
linear mixed model emphasizing the relationship between indivi-
duals for predictions by developing the genomic relationship 
(kinship) matrix (Lipka et al. 2012; Wang et al. 2015). This method 
is demonstrated to be equivalent to rrBLUP, and both models 
share the same mechanisms and assumptions (Habier et al. 
2007). Hence, only the rrBLUP model implementation was chosen 
as one of the genomic prediction models for the ensemble investi-
gations in this study.

Another group of linear mixed models used for genomic predic-
tion analyses is the Bayesian methods often characterized by the 
Bayesian alphabet series (Gianola et al. 2009). In contrast to rrBLUP 
that assumes all the markers have normally distributed small ef-
fects, Bayesian methods allow each genomic marker effect βj to 
have different distributions (Wang et al. 2018). This variation in 
the distribution is expected to capture more realistic genomic 
marker effects whenever it is unrealistic for all the genomic mark-
er effects to have the same distribution with small effects, as is as-
sumed in rrBLUP. Another noticeable characteristic of the 
Bayesian models is the application of prior distributions, con-
structed from prior knowledge, assumptions, and statistics, itera-
tively updated by the accumulation of information from each 
sampling to capture the properties of the true distribution 
(Kruschke 2010). Among various Bayesian models, BayesB was se-
lected in this study because it has been widely used as one of the 
standard models in genomic prediction (Abdollahi-Arpanahi et al. 
2020; Farooq et al. 2022; John et al. 2022; Meher et al. 2022; Plavšin 
et al. 2022). For BayesB, some genomic marker effects are expected 
not to be influential on target phenotypes and their genomic 
marker effects are set as 0.

We developed rrBLUP and BayesB models using the library 
BGLR (Pérez and de Los Campos 2014) in R. For parameter setting, 
we set the number of iterations and burn-in as 12,000 and 2,000, 
respectively, for both models. Other parameters were set as de-
fault throughout this study.

Semiparametric models: Semiparametric models possess both 
parametric and nonparametric properties, indicating that the 
models can capture both linear and nonlinear relationships 
from 2 different approaches. One of the semiparametric models 
that have been widely leveraged for genomic prediction is a 
RKHS regression model introduced by Gianola and van Kaam 
(2008). The original idea of RKHS was proposed by Aronszajn 
(1950), which mapped given data into Hilbert space to capture 
complex nonlinear relationships among the data points. Any rela-
tionship that may not be captured in the original dimension can 
be observed on complex hyperplanes. Gianola and van Kaam 
(2008) leveraged RKHS to detect nonlinear effects represented as 
dominance and epistatic genetic effects, while maintaining the 
parametric components to capture the additive genetic effects. 
RKHS can be formulated as Howard et al. (2014) denoted with 
the base of Equation (2):

η = 1μ +
J

j=1
Xjβj +

J

j=1
g(Xj) +

L

l=1
ul (3) 

where g(Xj) represents the genetic effects from nonlinear genomic 

marker effects such as dominance and epistatic effects. g(Xj) is ex-

pressed as

g(.) = α0 +
N

n=1
αnK(., x jn) (4) 

where Xj = {x j1, x j2, . . . x jn}, α0 is a fixed term, αn is a coefficient ac-

companied to xn, and K is the reproducing kernel. These equations 
imply that the RKHS model consists of both additive and nonaddi-
tive components, aimed at capturing genomic marker effects in a 
more comprehensive way. Similarly, the BGLR library was lever-
aged for the RKHS model. A Gaussian kernel was used with a fixed 
bandwidth parameter. The number of iterations and burn-in are 
also set as 12,000 and 2,000 and the rest of the parameters re-
mained as default as well.

Machine learning models
Machine learning (nonparametric) models do not require any as-
sumptions about the underlying distributions of the model terms. 
Instead, the parameters of the models are determined by an itera-
tive training process. From the various machine learning meth-
ods, we selected RF (Breiman 2001a), SVR (Drucker et al. 1996), 
and GAT (Velickovic et al. 2017) for our investigation of ensemble 
prediction.

RF contains a collection of decision trees (Belson 1959) trained 
by subtrain sets sampled from the original training set (Liu et al. 
2012). Decision trees develop a tree-like decision mechanism 
flow, consisting of nodes and edges. After 2 edges are released 
from the top node called the root, each layer consists of nodes 
with 1 incoming and 2 outgoing edges except the end layer nodes 
called leaves which have no outgoing edges (Rokach and Maimon 
2005). Each node except the leaves holds a condition based on va-
lues in a specific feature from the given data. The algorithm starts 
traversing from the root, and if the target data point (a set of fea-
tures) satisfies the condition of the root, the algorithm traverses 
the tree to the left bottom adjacent node and the right bottom ad-
jacent node in vice versa. This process repeats until it reaches the 
leaves determining the class or value of the target data point (de 
Ville 2013). When a target data point is given, each decision tree 
returns a prediction value, and the final prediction value is deter-
mined by aggregating the prediction results from all the trees. 
Using different subtrain sets for training, respective decision trees 
can cancel out prediction noise from each tree, resulting in more 
stable prediction results (Qi 2012). RF was chosen as a model be-
cause it is one of the commonly used machine learning models 
in genomic prediction (González-Camacho et al. 2018; Sandhu 
et al. 2021a; Farooq et al. 2022; John et al. 2022).

SVR is another machine learning approach that draws a hyper-
plane between data points for continuous target values. A hyper-
plane is drawn in a way that the distance between the hyperplane 
and the closest data points (support vector) becomes maximum 
with minimum prediction errors that include the largest number 
of data points within the range of the decision boundary. This is 
formalized by minimizing the following objective function under 
several constraints (Drucker et al. 1996):

U
N

i=1

ξ∗i +
N

i=1

ξi

 

+
1
2

(wtw)

s.t. yi − (wtvi) − b ≤ ϵ + ξi

(wtvi) + b − yi ≤ ϵ + ξ∗i
ξ∗i ≤ 0

ξi ≤ 0

(5) 

where U is an objective function targeted for the constraints, b is 
an intercept, w is a coefficient vector for a feature vector, ϵ is the 
distance between a hyperplane and a decision boundary, v is a 
vector of data points, and ξ∗i and ξi are slack variables functioned 
to make the decision boundary “soft” by allowing some data points 
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to be outside the upper and lower boundary. SVR can be equipped 
with a kernel, mapping data points to another dimension for cap-
turing nonlinear interactions. SVR has also been leveraged for 
various experiments in genomic prediction as a standard method 
(An et al. 2021; Yu et al. 2021; John et al. 2022; Li et al. 2023) and is 
selected as one prediction model in this study.

GAT is a graph neural network that applies a self-attention 
mechanism for predictions. We apply GAT by converting the re-
lationship between markers and phenotypes into a graphical 
format. Genetic markers and phenotypes can be represented 
as nodes, and the connections between genetic marker nodes 
and phenotype nodes are represented as edges. The edges are 
directed from the genetic marker nodes to phenotype nodes, 
showing that genetic markers explicitly affect phenotypes. In 
this study, we do not add connections between marker nodes 
because allowing the edges between them did not improve the 
prediction performance and resulted in the exponential in-
crease of computational time. We leverage the GAT model pro-
posed by Brody et al. (2021). The attention mechanism can be 
written as below:

αij =
LeakyReLU (a⊤[Whi||Whj])


j′∈Ni

LeakyReLU(a⊤[Whi||Wh j′ ])
(6) 

where a⊤ ∈ R2d′ is a transposed weight vector, d′ is the number of 
features in each node, W is a weight matrix, hj = {h1, h2, . . . , hN} is 

a set of node features of node i, || concatenates vectors, and j ∈ 
Ni is a partial neighbor of nodes i sampled from the entire neigh-
bors. A Leaky Rectified Linear Unit (LeakyReLU) activation func-
tion was applied to convert calculated attention values 
nonlinearly. Unlike Rectified Linear Unit (ReLU) which returns 
0 for values smaller than 0, this multiplies the attention values 
with a slope (0.01 in this study) if the given values are below 
0. The feature values of neighbors and trainable weights are 
nonlinearly activated to generate the attention values, and 
the calculated attention value is normalized at the end. This at-
tention calculation mechanism is repeated for K times to stabil-
ize the calculation result. It is called multihead attention and is 
formulated as below (Velickovic et al. 2017):

h′i = ||Kk=1σ


j∈Ni

αk
ijW

khj

 

(7) 

where K is the number of total attention layers, σ is a nonlinear 

activate function, and h′i is the updated node features. At the fi-
nal layer, the result from each attention layer is averaged in-
stead of concatenation:

h′i = σ
1
K

K

k=1



j∈Ni

αk
ijW

khj

⎛

⎝

⎞

⎠ (8) 

This final value h′i is used as a predicted phenotype from the 
model. GAT was chosen among graph neural networks due to 
its attention mechanism which can more precisely capture 
key prediction patterns underlying the given data to enhance 
prediction performance.

For RF and SVR, Sklearn (v1.2.2) was used for the model imple-
mentation in Python. The number of trees in RF was set as 1,000 
while the default setting was used for other hyperparameters. 
In SVR, the radial basis function (RBF) was used for the kernel 
and the default setting was used for the remaining parameters. 

For GAT, Pytorch Geometric (v2.3.0) was used. Since phenotype 
and genetic marker nodes contained different types of informa-
tion, they needed to be identified as different node types. Hence, 
the graph was converted into a heterogeneous graph. The model 
was 3-layered with 1 hidden layer with 20 channels and a dropout 
rate of 0 was applied to every layer. The Exponential Linear Unit 
(ELU) function was used for the activation functions. The total 
number of heads was set as 1. The model was trained with 50 
epochs by minibatched graphs with a batch size of 8. AdamW 
was selected for the optimizer with a learning rate of 0.005 and 
weight decay of 0.

Naïve ensemble-average model
The naïve ensemble-average model leveraged in this study is for-
mulated as below:

η′ =
N

n=1 ηn

N
(9) 

where η′ = {η′1, η′2, . . . , η′n} is a vector of the final predicted pheno-
types, η represents predicted phenotypes from each individual 
genomic prediction model, and N is the total number of individual 
genomic prediction models, as defined in equation (1), that was 
assigned as 6 in this study. Equation (9) indicates predicted pheno-
types from each individual genomic prediction model were aver-
aged with the same weight.

Genomic marker effect estimation
The extraction of estimated genomic marker effect values from 
each model can suggest how each model estimates the genomic 
marker effect of respective SNPs for predicting target pheno-
types, allowing a comparison of the genomic prediction models 
at the genomic level. For rrBLUP and BayesB, the genomic mark-
er effects were extracted using β which represents allele substi-
tution effect.

For RKHS and SVR, the Shapley value (Shapley 1953) was em-
ployed to estimate genomic marker effects. The Shapley value is 
a metric, originally in the field of game theory, to assess the equit-
able distribution of resources and rewards to players based on 
their contribution level under cooperative scenarios (Winter 
2002). A larger Shapley value is allocated to SNPs causing larger 
changes in predicted values. The SNP Shapley value is calculated 
below (Lundberg and Lee 2017):

Φi =


S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

[ fS∪{i}(xS∪{i}) − fs(xs)] (10) 

where Φi is a Shapley value for feature i (SNPi in this case), S is a 
subset of features F, fS∪{i} is a model predicting a target value 

with a feature subset including i, and fs is a model predicting the 
target value without including i. In this study, the Shapley value, 
a genomic marker effect of a SNP, is estimated as the average gap 
in predicted phenotypes between the cases where the target SNP 
is included and the case where the target SNP is excluded. For 
RKHS, the Shapley value was implemented using iml (v0.11.3) 
(Molnar et al. 2020) in R whereas SHAP (v0.42.1) (Lundberg and 
Lee 2017) was applied to SVR in Python. Since the Shapley value 
returns element-wise feature effects, the final Shapley value of 
each SNP is calculated by averaging the Shapley values for the tar-
get SNP from RILs in a test set.

For RF, genomic marker effects were estimated by extracting 
impurity-based feature importance values, measuring the 
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importance of features X by splitting the data using a value s from 
X at node t formulated as below (Ishwaran 2015):

Δ̂(s, t) = Δ̂(t) −
NL

N
Δ̂(tL) +

NR

N
Δ̂(tR)

 

(11) 

where Δ̂(t) represents impurity at node t, N is the total number of 

data points in daughter node tL and tR, NL
N is the weight of left 

daughter node tL, NR
N is the weight of right daughter node tR, 

Δ̂δ(tL) is the impurity value of left daughter node tL, and Δ̂(tR) is 
the impurity value of right daughter node tR. The impurity is mea-
sured by the summed squared value at the gap between the mean 
value of the prediction target and the actual value of each element 
in each node. Since this denotes only the impurity gap at node t, 
the summation of the impurity gap across all nodes leads to the 
total impurity gap for a target feature SNP. The importance of 
the feature was extracted using Sklearn (v1.2.2) in Python.

The genomic marker effects of GAT were estimated by lever-
aging an interpretability method called integrated gradients 
(Sundararajan et al. 2017), integrating the gradient of a line drawn 
between 2 points; the baseline point shows the prediction value 
without the effect of the target feature SNP, and the other indi-
cates the prediction value with the feature SNP value. Using the 
baseline point, the true gradient can be calculated by eliminating 
the effect of the initial value. Integrated gradient is calculated as 
below (Sundararajan et al. 2017):

IG(xi) ≈ (xi − x′i) ∗
m

k=1

∂F x′i +
k
m
∗ (xi − x′i)

 

∂xi
∗

1
m

(12) 

where x is a feature, x′ is a baseline value of x, and m is the total 
number of interpolation steps of the integral. Similar to the 
Shapley value, integrated gradient also returns element-wise 
marker effect, and thus, the final genomic marker effect was esti-
mated by averaging the effect of the target SNP across RILs in a 
test set. Pyg (v2.4.0) was used for the implementation.

Assessment criteria
Experimental flow
The experimental framework for evaluation of the individual gen-
omic prediction and the ensemble models is shown in Fig. 1. This 
study evaluated the performance of the genomic prediction mod-
els under within-population prediction scenarios. Each RIL popu-
lation, data in the TeoNAM dataset were randomly split into 
training and test sets. After SNPs were filtered based on the LD fil-
tering, the training set was used to train the 6 individual genomic 
prediction models. The performance of the trained individual gen-
omic prediction models was evaluated using the test set. Vectors 
of predicted phenotypes for RILs in the test set, derived from each 
individual genomic prediction model, were assembled to con-
struct a predicted phenotype matrix. The ensemble genomic 
prediction model leveraged the predicted phenotype matrix as 
the input. After evaluating the prediction performance of the en-
semble approach, the genomic marker effects from each of the 
6 individual genomic prediction models were extracted by the 
interpretable approaches explained in the Genomic marker effect 
estimation section.

To ensure the generalizability of the observed result, we repeat-
edly implemented the genomic prediction models for several 
different settings. Three different training-test ratios (0.8–0.2, 
0.65–0.35, and 0.5–0.5) were leveraged with a random sampling of 
500. Hence, each genomic prediction model was evaluated over 
1,500 prediction results (3 ratios*500 samples) in each population- 
trait combination.

Metrics
Two metrics were leveraged to measure the performance of the 
genomic prediction models. The Pearson correlation measured 
the concordance of ranks between the predicted and observed 
phenotypes for the test set to measure prediction accuracy (1 in-
dicates that the ranking between predicted and observed pheno-
types completely matches). Mean squared error (MSE) was used 
to measure the prediction error between the predicted and 

Fig. 1. A diagram of the experimental flow used in this study. Each individual genomic prediction model was trained using genetic markers. The 
performance of the trained individual genomic prediction models was evaluated using the test set. Predicted phenotypes for RILs in the test set from the 
individual genomic prediction models were used as input data for the ensemble model.
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observed phenotypes (0 indicates that there is no difference be-
tween the predicted and observed phenotypes).

Results
Lower ensemble prediction error than average 
model prediction error with diverse models
An improvement in prediction performance was observed using 
the naïve ensemble-average model compared to the average of in-
dividual genomic prediction models. The naïve ensemble-average 
model outperformed the average of the individual genomic pre-
diction models in prediction accuracy (Pearson correlation) and 
MSE for both DTA and TILN traits (Fig. 2). The median prediction 
accuracy of the naïve ensemble-average model (0.919 for DTA 
and 0.790 for TILN) was higher than the average of the individual 
genomic prediction models (0.719 for DTA and 0.671 for TILN). For 
the prediction error, the naïve ensemble-average model reached a 
lower median MSE (10.167 for DTA and 0.277 for TILN) compared 
to the average of the individual genomic prediction models (16.893 
for DTA and 0.356 for TILN).

The diversity in prediction performance among each individual 
genomic prediction model can also be visually represented (Fig. 3). 
For the prediction accuracy, the median Pearson correlation of 
rrBLUP, BayesB, RKHS, RF, SVR, and GAT was 0.878, 0.887, 0.767, 
0.782, 0.312, and 0.802 for the DTA trait and 0.705, 0.708, 0.657, 
0.668, 0.605, and 0.665 for the TILN trait. For the prediction error, 
the median MSE of rrBLUP, BayesB, RKHS, RF, SVR, and GAT was 

8.715, 8.048, 17.217, 14.268, 35.613, and 17.500 for the DTA trait 
and 0.319, 0.315, 0.365, 0.357, 0.401, and 0.392 for the TILN trait. 
This demonstrates prediction diversity among the individual gen-
omic prediction models, creating the potential to reduce the ensem-
ble error.

The advantage of the naïve ensemble-average model over the in-
dividual models indicates that the prediction diversity among indi-
vidual genomic prediction models was sufficient to decrease the 
ensemble error compared to the average error (Table 2). The ensem-
ble error was lower than the average error for both traits. The value 
for the ensemble error was 10.17 for the DTA trait and 0.28 for the 
TILN trait, while the average error was 17.26 for DTA and 0.36 for 
TILN. The lower ensemble error was attributed to the prediction di-
versity among the individual genomic prediction models, which was 
7.09 and 0.09 for the DTA and TILN traits, respectively (Table 2).

Considered in terms of the Diversity Prediction Theorem, these 
results indicate that for both traits measured in the TeoNAM da-
taset, the naïve ensemble-average model improved prediction 
performance by reducing the ensemble error compared to the 
average error with diverse individual genomic prediction models 
(Figs. 2 and 3 and Table 2).

Ensemble of models outperformed the best 
individual genomic prediction models
The naïve ensemble-average model demonstrated higher predic-
tion accuracies and lower prediction errors compared to the best 

Fig. 2. Violin plots comparing genomic prediction performance of the average of individual genomic prediction models (individual) in the blue vs the naïve 
ensemble-average model (ensemble) in the red. The performance of genomic prediction models was measured with a) the Pearson correlation and b) 
MSE. The width of the violins represents the distribution of metric values for predictions from all combinations of the 5 RIL populations, 3 training-test 
ratios, and 500 random samples. Box plots within the violin plots represent the median metric value (white line) and the interquartile range (black box) 
with whiskers extending 1.5 times the interquartile range.
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individual genomic prediction models for both traits when aver-
aged across populations and training-test ratios (Fig. 3).

For the DTA trait, the best genomic prediction model depended 
on which metric (prediction accuracy or prediction error) was 
used for the performance evaluation. Prediction accuracy was 
highest for the naïve ensemble-average model (median = 0.920) 
with the best individual genomic prediction model being 
BayesB (median = 0.888). In contrast, BayesB reached the lowest 
prediction errors (median = 7.765) among all the genomic predic-
tion models including the naïve ensemble-average model 
(median = 9.340).

For the TILN trait, the highest prediction accuracies and lowest 
prediction errors were observed with the naïve ensemble-average 
model. The highest prediction accuracy was observed in 
BayesB (median = 0.709) within the individual genomic prediction 
models and the naïve ensemble-average model surpassed it 

(median = 0.797). BayesB reached the lowest prediction error 
among the individual genomic prediction models (median = 
0.297), but the lower prediction error was observed in the naïve 
ensemble-average model (median = 0.257). The same trend was 
observed at the per-population level (Supplementary Fig. 1) and 
per training-test ratio (Supplementary Fig. 2).

No consistent winner among individual genomic 
prediction models
The individual genomic prediction model with the highest predic-
tion accuracies and the lowest prediction errors varied across the 
3 training-test ratios (Table 3). This result suggests the absence of 
a “best” individual genomic prediction model for all prediction 
scenarios.

Among the individual genomic prediction models, BayesB 
maintained the highest prediction accuracy percentage across 

Fig. 3. A comparison of genomic prediction performance of the naïve ensemble-average (ensemble) model vs each of the individual genomic prediction 
models in violin plots. The width of the violins indicates the distribution of the metric values for predictions from all combinations of the 5 RIL 
populations, 3 training-test ratios, and 500 random samples. The performance of genomic prediction models was measured with a) the Pearson 
correlation and b) MSE. The orange represents the performance of classical models (rrBLUP, BayesB, and RKHS) while the green represents machine 
learning models (RF, SVR, and GAT). The red is the performance of the ensemble. Box plots within the violin plots represent the median metric value 
(white line) and the interquartile range (black box) with whiskers extending 1.5 times the interquartile range.
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training-test sets for the three training-test ratios (DTA ranged be-
tween 0.44 and 2.08% and TILN between 0.24 and 0.40%), while the 
second highest prediction accuracy percentage in the individual 
genomic prediction models was rrBLUP with the range of 0.04 
and 1.24% for the DTA trait and 0.00% for the TILN trait. The high-
est prediction accuracy percentage was observed with the other 
individual genomic prediction models (RKHS, RF, SVR, and GAT) 
in less than 1.00% of training-test set samples.

The individual genomic prediction model with the highest per-
centage of lowest prediction errors depended on the combination 
of training-test ratios and traits. For the DTA trait, the lowest pre-
diction error percentage was the highest in rrBLUP (39.32%) when 
the training-test set ratio was 0.8, but BayesB was the highest 
when the ratio of the training set became smaller (72.00% for 
0.65 and 94.12% for 0.5). For the TILN trait, the lowest prediction 
errors among the individual genomic prediction models were ob-
served with BayesB across all ratios of the training-test (from 9.28 
to 16.04%).

Classical genomic prediction models outperform 
machine learning models
The classical genomic prediction models (rrBLUP, BayesB, and 
RKHS) demonstrated higher prediction accuracies and lower pre-
diction errors than the machine learning models (RF, SVR, and 
GAT) (Fig. 3). However, the magnitudes of differences were 
trait-dependent.

For the DTA trait, SVR had considerably lower median Pearson 
correlations (0.360) and higher median MSE (29.811) than other in-
dividual genomic prediction models. RF and GAT demonstrated 
comparable prediction accuracies and errors to RKHS with me-
dian Pearson correlations (0.778, 0.818, and 0.806) and median 
prediction errors (14.274, 14.537, and 12.976). rrBLUP and BayesB 
demonstrated the highest median prediction accuracies (0.878 
and 0.888) and lowest median prediction errors (8.308 and 7.765) 
of all the individual genomic prediction models.

For the TILN trait, smaller performance differences between 
the classical genomic prediction models and machine learning 
models were observed in both prediction accuracy and error. 
SVR demonstrated the lowest median Pearson correlations 
(0.650) and higher median MSE errors (0.368) compared to the 
other individual genomic prediction models. RF and GAT demon-
strated comparable prediction accuracies and errors to RKHS with 
median Pearson correlations (0.676, 0.670 and 0.675) and median 
MSE errors (0.339, 0.369 and 0.340). rrBLUP and BayesB demon-
strated the highest median prediction accuracies (0.708 and 
0.709) and lowest prediction errors (0.302 and 0.297) of all the in-
dividual genomic prediction models.

Large variation in the genomic marker effects 
estimated by individual genomic prediction 
models
Large magnitudes of variation were observed in genomic marker 
effects across the classical and machine learning genomic predic-
tion models. Fig. 4 shows the pairwise comparisons of predicted 

phenotypes (top right triangle) and genomic marker effects (bot-
tom left triangle) between the individual genomic prediction mod-
els. Positive associations were observed between several pairwise 
comparisons of predicted phenotypes, but not consistently ob-
served for comparisons of genomic marker effects. Only a few 
models showed that positive associations were between genomic 
marker effects. Each individual model estimated large traits ef-
fects to different SNP markers, leading to diversity in the esti-
mated genomic marker effect sizes. Despite the variation in 
genomic marker effect sizes, the SNPs identified as putative QTL 
by Chen et al. (2019) were frequently included as features in the in-
dividual genomic prediction models (Fig. 4).

For the predicted phenotypes, the strength of the associations 
among the individual genomic prediction models did not vary sig-
nificantly (Supplementary Table 1). Strong positive associations 
were observed among the classical genomic prediction models, 
with high Pearson correlations between rrBLUP and BayesB, 
rrBLUP and RKHS, and BayesB and RKHS. Weaker but positive as-
sociations were observed among machine learning models, with 
high Pearson correlations between RF and SVR, RF and GAT, and 
SVR and GAT. Furthermore, strong positive associations were ob-
served among classical and machine learning genomic prediction 
models.

In contrast, lack of associations between genomic marker ef-
fects were consistently observed among individual genomic pre-
diction models. While a relatively high association was observed 
between rrBLUP and BayesB, most other pairs showed weak asso-
ciations, with Pearson correlations lower than 0.5 between the 
classical, machine learning, and mixed genomic prediction mod-
els for both traits.

Discussion
Prediction performance depends on the 
complexity of the network affecting a trait
The complexity of an underlying biological network controlling a 
target trait can contribute to differences in prediction perform-
ance (Cooper et al. 2005). While networks of genes control the 
DTA trait (Buckler et al. 2009; Dong et al. 2012), models based on 
additive effects alone have been sufficient to account for the 
phenotypic diversity. In contrast, the TILN trait results from non-
linear marker interactions of the shoot branching network 
(Doebley et al. 1995; Bertheloot et al. 2020; Powell et al. 2022). The 
genomic prediction models evaluated in this study may lack me-
chanisms to fully capture patterns of genetic variation generated 
by such intricate networks. Azodi et al. (2019) compared the pre-
diction performance of parametric (rrBLUP and Bayesian) against 
nonparametric machine learning models (RF, SVR, and neural 
networks) for complex traits such as crop yield and plant height 
across various crops. Across the genomic prediction models eval-
uated, low prediction accuracies were consistently observed for 
many traits, indicating that the high complexity of gene networks 
underlying target traits in crop breeding can reduce the predictive 
performance of genomic prediction models.

The difference in the complexity of networks underlying target 
traits can also inferred by comparing the performance of individ-
ual genomic prediction models. For the DTA trait, nonparametric 
machine learning models (RF, SVR, and GAT) showed lower pre-
diction performance than the parametric models (rrBLUP and 
BayesB), especially for SVR. However, this lower prediction per-
formance diminished for the TILN trait. The different prediction 
performances of parametric and machine learning models might 
be explained by the way they capture prediction patterns from the 

Table 2. Estimates of the average value and their standard error 
for each term of the Diversity Prediction Theorem (Equation (1)) 
across 7,500 scenarios for the DTA and TILN traits.

Ensemble error 
(first term)

Average error 
(second term)

Prediction diversity 
(third term)

DTA 10.17 ± 1.34 17.26 ± 1.77 7.09 ± 0.73
TILN 0.28 ± 0.05 0.36 ± 0.05 0.09 ± 0.01
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data. The machine learning models prioritize capturing nonlinear 
prediction patterns (Ryo and Rillig 2017). The lower prediction per-
formance of machine learning models for the DTA trait may result 
from their inability to construct simpler models focusing on linear 
effects, leading to overfitting (Hawkins 2004). Hence, the rrBLUP 
and BayesB, focused on capturing linear patterns, outperformed 
the machine learning models.

In contrast, the TILN trait, with a higher potential to exhibit 
nonlinear patterns, the performance may have been a more suit-
able prediction problem for the machine learning models. 
However, the machine learning models may not have been able 
to capture all interactions in the complex network using a small 
amount of training data, resulting in similar prediction perfor-
mances to the parametric genomic prediction models. The differ-
ent prediction performance of SVR across the 2 traits could be an 
example of this. Using the kernel of the RBF, SVR mainly targeted 
complex nonlinear prediction patterns, which may have gener-
ated models of too much complexity to accurately predict the 
DTA trait. For the TILN trait, this kernel could have enabled SVR 
to capture some of the complex interactions. These observations 
indicate that complexity of gene and trait networks underlying 
target traits in crop breeding programs can be a crucial factor af-
fecting the performance of genomic prediction models.

No consistent winner among individual genomic 
prediction models
The lack of a consistent winner among the individual genomic 
prediction models (Fig. 3; Supplementary Fig. 1) poses the rele-
vance of the No Free Lunch Theorem (Wolpert and Macready 
1997) for genomic prediction problems. For the DTA trait, while 
rrBLUP and BayesB slightly outperformed the other models by 
rrBLUP and BayesB was observed, all the individual genomic pre-
dictions, except SVR, showed similar prediction accuracy and er-
ror. This absence of a best individual genomic prediction model 
was also evident in the TILN trait, with no clear differences in pre-
diction accuracy and error among the models. The No Free Lunch 
Theorem is further supported by the positive associations be-
tween predicted phenotypes from different genomic prediction 
models (Fig. 4). Each individual genomic prediction model re-
turned similar predicted phenotypes for the same RILs, resulting 
in similar prediction performance. Therefore, the distinctive algo-
rithms of the individual genomic prediction models did not result 
in significantly diverse prediction performances.

The lack of a consistent winner among individual models has 
been observed for prediction problems in other fields. For in-
stance, Fernández-Delgado et al. (2014) tested 179 prediction mod-
els over 121 datasets and concluded that RF achieved the overall 
highest prediction performance. However, no statistical perform-
ance superiority of RF to the second best (support vector machine 

leveraging Gaussian kernel) was detected in their experiment, in-
dicating a subtle performance difference. The results from Gómez 
and Rojas (2016) also showed that no individual model clearly out-
performed the others. The absence of a prediction model that was 
immune to all the negative factors (noise from datasets, data im-
balance, and dissatisfaction with model assumptions) was consid-
ered to be the cause of finding no single “best” individual model. 
Similarly, other research (Merrick and Carter 2021; Plavšin et al. 
2022) suggested the difficulty in finding a single “best” individual 
model. These results indicate that some prediction individual 
models can outperform others in specific scenarios but are not 
universally superior.

Therefore, we argue that focusing on developing an individual 
genomic prediction model for diverse tasks is not strategic. 
Instead, leveraging the expectations from the Diversity Prediction 
and No Free Lunch Theorems, ensemble approaches can be one so-
lution to overcome the limitations of optimizing prediction-based 
crop breeding around individual genomic prediction algorithms.

Ensemble improved prediction performance
One clear consensus, from the results of this study, is the im-
proved predictive ability of the naïve ensemble-average model 
compared to the individual genomic prediction models. For the 
DTA and TILN traits, the median prediction accuracy of the 
naïve ensemble-average model was the highest across the RIL po-
pulations. Although the naïve ensemble-average model did not 
achieve the lowest MSE for the DTA trait, it was almost equivalent 
to rrBLUP and BayesB that achieved the lowest MSE (Fig. 3 and 
Table 2). When compared against the average of the individual 
genomic prediction models, the naïve ensemble-average model 
consistently outperformed the individual genomic prediction 
models on the basis of prediction accuracy and error (Fig. 2). 
These results suggest an opportunity to improve prediction per-
formance with the naïve ensemble-average model.

The success of the naïve ensemble-average model is derived 
from the diversity of information contributed by multiple, individ-
ual genomic prediction models. The range of associations among 
the estimated genomic marker effects of the individual genomic 
prediction models (Fig. 4) illustrates this diversity These ranges 
of associations are a result of algorithmic differences that differ-
entially weight predictive features from the same input data. 
This phenomenon, called the Rashomon effect (Breiman 2001b), 
states that the sets of models (Rashomon sets) capture different 
effects of features from the same datasets due to distinct properties 
of the prediction algorithms. Ensemble models can use this predic-
tion diversity to generate a more comprehensive representation of 
the prediction problem. In the case of this study, the ensemble pro-
vided a more comprehensive view of trait genetic architecture. 
Hence, prediction diversity from multiple, individual genomic 

Table 3. Percentage of best performance achieved by each genomic prediction model in the respective training-test ratio (0.8, 0.65, and 
0.5) and trait (DTA and TILN) combinations. The performance was measured by Pearson correlation and MSE. The value reaching the 
highest percentage in each combination is highlighted in bold.

Ratio Trait Pearson correlation MSE

rrBLUP BayesB RKHS RF SVR GAT Ensemble rrBLUP BayesB RKHS RF SVR GAT Ensemble

0.8 DTA 1.24 0.44 0.40 0.00 0.00 0.00 97.92 39.32 31.92 15.64 0.08 0.00 0.00 13.04
TILN 0.00 0.40 0.00 0.00 0.04 0.00 99.56 2.84 9.28 0.00 0.04 0.24 0.04 87.56

0.65 DTA 0.24 1.08 0.00 0.00 0.00 0.00 98.68 18.12 72.00 0.12 0.04 0.00 0.00 9.72
TILN 0.00 0.24 0.00 0.00 0.08 0.00 99.68 1.00 13.64 0.00 0.00 0.08 0.04 85.24

0.5 DTA 0.04 2.08 0.00 0.00 0.00 0.00 97.88 4.44 94.12 0.00 0.20 0.00 0.00 1.24
TILN 0.00 0.24 0.00 0.00 0.00 0.00 99.76 0.24 16.04 0.00 0.00 0.00 0.00 83.72
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Fig. 4. Pairwise comparison of individual genomic prediction models at predicted phenotypes (top right triangle) and genomic marker effects (the bottom 
left triangle) levels for both traits: a) the DTA and b) the TILN. The green circle dots represent a pair of predicted phenotypes for RILs included in the test 
set in each sample scenario. The blue square and orange triangle dots indicate a pair of estimated genomic marker effects in each sample scenario 
classified as non-QTL and QTL by Chen et al. (2019), respectively. A genetic marker was classified as a QTL if it was the closest to a QTL position within the 
support interval of 2 logarithms of the odds calculated by Chen et al. (2019). Each point represents predicted phenotypes or genomic marker effect of each 
SNP in predictions from all combinations of the 5 RIL populations, 3 training-test ratios, and 500 random samples.
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prediction models is a core factor behind the improved prediction 
performance of the naïve ensemble-average model.

Although the set of the 6 individual genomic prediction models 
chosen is one of many possibilities, their contrasting algorithms 
for estimating genetic effects contributed to the diversity in effect 
estimates. For example, the parametric models (rrBLUP and 
BayesB) primarily target capturing SNP main effects, while the 
semiparametric model RKHS consider SNP interaction terms in 
addition to SNP main effects. Nonparametric machine learning 
models prioritize SNP interactions by considering nonlinear 
relationships between SNPs. Each distinctive prediction algorithm 
develops a unique hypothetical space, and the true value can be 
outside the space of a particular individual genomic prediction 
model. Creating a new hypothetical space through ensembles 
of individual models can provide predictions outside the 
hypothetical spaces of any one, individual model (Johnson and 
Giraud-Carrier 2019; Dietterich 2000). Complementing the re-
spective errors of each genomic prediction model in the ensemble 
enables the construction of solutions for complex tasks with high-
er performance (Dong et al. 2020; Kick and Washburn 2023).

The impact of information diversity from individual genomic pre-
diction models was also elucidated in terms of the Diversity 
Prediction Theorem (Page 2018). Prediction diversity was observed 
among the individual genomic prediction models, contributed to 
the reduction of the ensemble error (Table 2). Consequently, the pre-
diction accuracy and error of the naïve ensemble-average model 
were higher for both traits. Thus, the level of information diversity 
among the individual prediction models critically influenced the per-
formance of the naïve ensemble-average model from a theoretical 
view as well.

More broadly, the higher predictive ability of the naïve ensemble- 
average model could also be viewed as a result of avoiding stagnation 
in local optima. Each of the 6 genomic prediction modeling algorithms 
may achieve different local optima within their possible prediction 
space, the size of which depends on the given data and algorithms. 
Algorithms trapped in their local optima can inhibit opportunities to 
explore the broader problem state space closer to the global optima, 
where more precise predictions may be achieved. Applying another 
algorithm on top of a set of individual genomic prediction models 
can increase the likelihood of shifting from the local to the global op-
tima. For example, Wu et al. (2019) discussed the benefits of using an 
ensemble concept in population-based optimization approaches (a 
method containing a number of adaptive prediction models to find 
global optima), suggesting that the global optima can be efficiently dis-
covered by cooperatively sharing information from each prediction 
model rather than using them independently. The advantage of disco-
vering global optima by an ensemble has also been mentioned in evo-
lutionary algorithms (iterative model improvement adaptively done 
with observed prediction results) (Yu and Suganthan 2010) and meta-
modeling (representation of a model to a simpler mechanism com-
pared to the original one) (Ferreira and Serpa 2018) as well. In short, 
the ensemble can help reach global optima using information derived 
from different local optima.

Future opportunities
Several components can be considered to improve the prediction 
performance of the genomic prediction models considered in our 
investigation: hyperparameter tuning and weight optimization. 
Below, we briefly discuss each of these components.

In this experiment, hyperparameters of the genomic prediction 
models have been tuned heuristically rather than systematically. 
Systematic hyperparameter tuning can be conducted by 

approaches such as cross-validation and Bayesian methods. 
Prior studies (Sandhu et al. 2021b; Kick et al. 2023) have demon-
strated that hyperparameter tuning can increase prediction per-
formance. Due to the computational limitations and the data 
size (the total number of RILs), the hyperparameter tuning was 
not implemented and default hyperparameter values were pri-
marily used. Hence, optimizing hyperparameters may improve 
prediction performance for both individual and ensemble genom-
ic prediction models by overcoming these computational and data 
limitations.

Lastly, performance improvements can be expected by optimiz-
ing the weights applied to the predicted phenotypes in ensembles 
of genomic prediction models. In this experiment, the predicted phe-
notypes were “naïvely” averaged from the 6 individual genomic pre-
diction models by assigning equal weight to each. In other words, the 
6 individual genomic prediction models contributed equally to the 
ensemble averaging step. However, this is one of many possible 
weighting approaches. In some applications, higher prediction per-
formance was achieved by tuning weights based on the prediction 
performance of each individual model (Liang et al. 2021; 
McCormick et al. 2021; Yu et al. 2021; Wang et al. 2023). Model selec-
tion is an extreme scenario where the weight of some individual 
models is set to 0 based on their contribution level, improving pre-
diction performance of ensembles in in several cases (Zhou et al. 
2002; Li et al. 2004; Huang and Wei 2022). Therefore, weight optimiza-
tion could provide further improvements in the prediction perform-
ance of ensembles of many models.

Conclusion
We investigated the prediction performance of the naïve 
ensemble-average model compared to 6 individual genomic pre-
diction models for the DTA and TILN traits in the TeoNAM data-
set. Our results showed higher prediction accuracies and lower 
prediction errors with the ensemble model compared to individ-
ual genomic prediction models. Therefore, ensemble approaches 
could be a promising tool for genomic prediction. The increased 
predictive ability of the ensemble model is derived from the diver-
sity of prediction outcomes among the individual genomic predic-
tion models, as explained by the Diversity Prediction Theorem. 
Further research is needed to investigate the effectiveness of en-
semble approaches on other datasets. Our results suggest that 
the ensemble can improve selection accuracy and reduce predic-
tion errors, demonstrating the potential to accelerate genetic gain 
in breeding programs.

Data availability
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