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Agent-based models are used to study complex phenomena in many fields of
science. While simulating agent-based models is often straightforward,
predicting their behaviour mathematically has remained a key challenge.
Recently developed mathematical methods allow the prediction of the
emerging spatial patterns for a general class of agent-based models, whereas
the prediction of spatio-temporal pattern has been thus far achieved only for
special cases. We present a general and mathematically rigorous methodology
that allows deriving the spatio-temporal correlation structure for a general class
of individual-based models. To do so, we define an auxiliary model, in which
each agent type of the primary model expands to three types, called the
original, the past and the new agents. In this way, the auxiliary model keeps
track of both the initial and current state of the primary model, and hence
the spatio-temporal correlations of the primary model can be derived from
the spatial correlations of the auxiliary model. We illustrate the agreement
between analytical predictions and agent-based simulations using two
examplemodels from theoretical ecology. In particular, we show that themeth-
odology is able to correctly predict the dynamical behaviour of a host–parasite
model that shows spatially localized oscillations.
1. Introduction
In many fields of science, ranging from physics to biology to humanities, it is of
major interest to understand how the microscopic interactions among agents
lead to emerging patterns at the macroscopic level. Often the interactions are
spatially localized, meaning that an interaction between agents is more likely
to take place if they are located close to each other in space. Localized inter-
actions lead generally to emerging patterns where agents are non-randomly
distributed with respect to each other over space and time. Such emerging pat-
terns can be characterized with the help of spatial and spatio-temporal
correlation structures. Spatial correlation structures concern patterns that can
be observed at a single time, describing e.g. how much more or less likely it
is to observe an agent in a given location, given that another agent is observed
in a nearby location. Spatio-temporal correlation structures in turn concern
comparisons of spatial patterns observed at multiple times, describing e.g.
how much more or less likely it is to observe an agent in a given location at
a given time, given that another agent was observed in a nearby location
some time ago.

Agent-based models provide a generic tool for studying complex dynamical
phenomena in many fields of science [1–4]. They are typically straightforward
to simulate, and emerging properties of the dynamics, such as spatial or
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spatio-temporal correlations, are routinelymeasured from their
output. However, it has remained difficult to develop generic
tools that could be used to supplement simulation results
with analytical insights. Recently developed mathematical
methods are filling this gap, as they allow mathematically rig-
orous predictions of the emerging spatial patterns for a very
general class of agent-based models [5,6]. However, at the
moment, there are no general mathematical methods that
would allow one to predict the spatio-temporal correlation
structures generated by the dynamics of agent-based models.
This is a major caveat, because understanding the causes and
consequences of spatio-temporal correlation structures is
central to the study of many fields of research.

As one example of the relevance of spatio-temporal
correlation structures, a central topic in ecology is that of spatial
synchrony in spatial population dynamics, meaning that
spatially nearby populations tend to fluctuate over time in
synchronywith each other. Ecologists have long been interested
in the mechanisms behind such synchrony [7], including why
and how patterns of such synchrony vary over geographical
regions [8]. Theoretical works based on simulations [9] and
mathematical analyses [10,11] have shown that spatial syn-
chrony in population dynamics can be generated both by
dispersal and by environmental stochasticity, the relative roles
between these two depending on the strength of density
regulation [10]. Such theoretical insights may be compared to
empirical data, e.g. a case study on forest insect outbreaks
suggesting that spatially correlated environmental stochasticity
(the so-called Moran effect) is more important than dispersal
in generating spatial synchrony in population dynamics [12].
Spatio-temporal correlation structures can have major conse-
quences to large-scale dynamics, such as synchrony in
population dynamics increasing the risk of global extinction
[13]. As another example of the relevance of spatio-temporal
correlation structures, the prediction of an upcoming earth-
quake mainshock can be based on the distribution of smaller
events in the nearby area [14]. Based on the spatio-temporal
correlation structure of the Burridge–Knopoff model [15], pre-
ceding the mainshock, the frequency of smaller events is
gradually enhanced, whereas it is dramatically suppressed in
the close vicinity just before the upcoming mainshock.

Understanding the emergence of spatio-temporal corre-
lation structures can be especially important during transient
dynamics, as e.g. the fate of an evolving population can
depend critically on small chance events earlier in time. As
one example, empirically derived spatio-temporal correlation
functions describing plant community dynamics were used
to explore how interactions among and within species influ-
ence the pathways of primary successional dynamics [16].
As another example, spatio-temporal correlation structures
emerging from agent-based models were used to understand
within-host immune response during the early spread of flu
infection [17] as well as the early phase of viral propagation
of HIV [18]. As a third example, simulations of an agent-
based model were used to characterize the spatial synchrony
of an influenza epidemic spreading over the continental scale
of Australia [19].

Spatio-temporal correlation structures emerging from sto-
chastic and spatial models have thus far been derived mainly
from simulation approaches, whereas mathematical results
are available for special cases only. As one example of a
mathematical result, the exact two-point spatio-temporal cor-
relation function for the Takayusa model of mass aggregation
has been derived analytically [20]. The Takayusa lattice
model describes a system in which masses diffuse, coalesce
upon contact, and adsorb mass from outside, and it can be
considered as a simple toy model for earthquake dynamics
[20]. As another example of a mathematical result, [21]
derived the spatio-temporal correlation structure of a lat-
tice-based self-organized critical model of punctuated
equilibrium, with results mimicking patterns observed in
the fossil record and in earthquake data. As a third example
of a mathematical result, the spatial scale of population syn-
chrony was shown to depend additively on the spatial scales
of environmental stochasticity and dispersal [10]. This result
was not derived from an agent-based model but a stochastic
model of a spatially continuous population, and it relied on
the assumption of small noise, the consequences of which
assumption were examined later [22]. In all three cases, the
availability of mathematical results on spatio-temporal corre-
lation structures has allowed for more general insights than
would have been possible if relying on a simulation-based
approach only.

As discussed above, being able to predict spatio-temporal
correlation structures emerging from agent-based models
would be highly valuable, but thus far this has been possible
only for special cases. Here, we overcome this caveat by extend-
ing the recently developed approach for predicting spatial
patterns [5,6] to cover also the prediction of spatio-temporal pat-
terns.Wenote that themathematically rigorousmethods of [5,6]
were preceded by heuristic methods [23], in which methods
were used to derive not only spatial but also spatio-temporal
correlation structures, e.g. of a metapopulation model [24] and
of a host–parasite model [23]. However, in addition to these
results not beingmathematically rigorous, they required tedious
model-specific derivations. Here we provide a step-change by
introducing a systematic and mathematically rigorous pro-
cedure for predicting the spatio-temporal correlation structure
of a very general class of agent-based models.
2. The mathematical framework of reactant–
catalyst–product models

We consider the modelling framework of spatio-temporal
point processes, also called Markov evolutions in the space of
locally finite configurations [5]. In particular, we consider the
general class of models suggested by [6] that can be generated
with the help of reactants (R), catalysts (C) and products (P),
called henceforth RCP models. Reactants are any agents that
disappear in a reaction, products are any agents that appear
in a reaction, whereas catalysts are any agents that remain
unchanged but they modify a rate of a reaction. RCP models
apply to a broad class of situations, such as models of popu-
lation ecology [5,6,25], metapopulation ecology [24,26],
community ecology [23,27,28], pathogenesis [29], evolutionary
ecology [6,30,31] and movement ecology [6,32].

The general theory and mathematical framework of RCP
models is discussed in detail in [5,6]. Briefly, the state of an
RCP model at any time t is a point configuration gt in the
d-dimensional Euclidean space Rd, where typically d = 1,2,3.
We consider marked configurations, so that gt contains
not only information on the locations of the agents, but
also their types, so that the process can contain e.g.
multiple species. We assume that the number of individuals
within any finite region is finite, so that mathematically,
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we consider the space of locally finite configurations,
G :¼fg , Rd,jg> Lj , 1 for any bounded L , Rdg, where,
if A is a discrete set of points, then jAj stands for the
number of points in A. A probability measure mt on G

describes the state of the system at time t. Informally, the
measure mt describes how likely the system is to be in a
given configuration at time t, given that it starts from an
initial state described by the measure m0 at time 0. The
evolution of the measure is defined with the help of observa-
bles F, i.e. functions on G which typically take real values.
Given a configuration g, the observable F(g) is a numerical
quantity that characterizes some property of the confi-
guration, such as the number of agents in a particular
subdomain. A pairing between an observable F and a
measure m is defined as hF,mi :¼ Ð

G F(g)dm(g), and this pair-
ing gives information about the state of the system, i.e. the
measure m. The dynamics of the configuration over time is
described by a linear operator L acting on the observables,
which operator defines the set of model components, i.e.
the population events that can take place, as well as how
the rates at which the reactions take place depend on
the current configuration of the agents. The evolution of
states is then defined through the differential equation
ðd/dtÞhF,mti ¼ hLF,mti. For a more detailed discussion of
the mathematical framework, see [5,6].

As an example used to derive our argument, we consider
the spatial and stochastic logistic model [5], henceforth, the
SSLM. This model includes three processes, which we call
density-independent death, density-dependent death and
reproduction. The rate at which density-independent death
takes place is a constant m. In the terminology of RCP models,
the agent that dies is a reactant, as it disappears in the reaction.
The rate of density-dependent death for an agent located at x
is

P
y[gtnx a

�(x� y), where a�( � ) is the competition kernel,
which defines how the rate by which an agent at y increases
thedeath rateof anotheragent locatedat xdependson thediffer-
ence x� y of their spatial coordinates, typically (but not
necessarily) on the distance jx� yj. In the terminology of RCP
models, the agent at x is a reactant as it disappears during the
reaction, whereas the agent at y is a catalyst as it remains
unchanged during the reaction. Finally, the per-unit-area rate
of reproduction at locationy is

P
x[gt

aþ(x� y),where the repro-
duction kernel aþ(x� y) defines the per-unit-area rate bywhich
themother at x produces offspring to the vicinity of y. In the ter-
minology of RCP models, the mother is a catalyst, as it remains
unchangedwhen theprocess takesplaces,whereas the offspring
is a product, as it appears in the reaction. While we have
described here themodel verbally, we refer to [5,6] and the elec-
tronic supplementary material on how RCP models can be
defined mathematically in terms of time evolution of a prob-
ability distribution of point configurations.

The utility of the RCP framework is the availability of
mathematical tools that make it possible to predict many
properties of the dynamics generated by the models, even if
the models are spatial, stochastic and can include nonlinear
behaviour. Most importantly, it is possible to write down
an exact equation for the time evolution of spatial correlation
functions. The one-point correlation function k(1)t (x) measures
expected agent density at location x, so that the expected
number of agents within an area L can be computed as

E(jgt > Lj) ¼
ð
L

k(1)t (x)dx: ð2:1Þ
The two-point correlation function k(2)t (x1,x2) measures the
expected product for the numbers of agents that are found
within the areas L1 and L2 by

E(jgt > L1jjgt > L2j) ¼
ð
L1

ð
L2

k(2)t (x1,x2)dx2dx1

þ
ð
L1>L2

k(1)t (x)dx: ð2:2Þ

We note that the second term appears because if the areas
L1 and L2 are not disjoint, as then the expectation
E(jgt > L1jjgt > L2j) counts also the pair of the agent and
itself, and that the density of such self-pairs is given by the
density k(1)t (x) of the agents themselves. Similarly, we may
define three-point or four-point correlation functions, or
more generally the correlation functions of any order. Corre-
lation functions of all possible orders are collected into the
vector kt(h), where h [ G0, and G0 is the set of all finite
subsets of Rd.

The focus of the present paper is to develop methods for
predicting spatio-temporal correlation functions that emerge
from the dynamics of any RCP model. While the method-
ology extends to an arbitrary number of time points, we
restrict the treatment here to two time points, denoted by t
and tþ Dt, where Dt � 0. With the spatio-temporal corre-
lation function kt,Dt(x1,x2), we wish to ‘look’ at the system at
location x1 at time t, and at location x2 at time tþ Dt, thus
having a time lag Dt between the two observations. The
spatio-temporal correlation function relates to the expected
product between the number of agents that are in the area
L1 at time t, and the number of agents that are in the area
L2 at time tþ Dt:

E(jgt > L1jjgtþDt > L2j) ¼
ð
L1

ð
L2

kt,Dt(x1,x2)dx2dx1

þ
ð
L1>L2

kt,Dt(x)dx: ð2:3Þ

We note that as with equation (2.3), we have included
here the term kt,Dt(x) that arises due to a possibility of a
self-pair, if an agent that was present at location x at time t
is still there at time tþ Dt.

Earlier work [6] shows that for any RCP model, the vector
of correlation functions of all orders follows a differential
equation that can be written as

d
dt

kt(h) ¼ (LDkt)(h), ð2:4Þ

where the linear operator LD can be derived for any RCP
model using the systematic and mathematically rigorous pro-
cedure of [6]. For example, the dynamical equation of the
one-point correlation function in the SSLM is given by

d
dt

k(1)t (x) ¼ �mk(1)t (x)

�
ð
Rd
a�(x� y)k(2)t (x,y)dyþ

ð
Rd
aþ(x� y)k(1)t (y)dy:

ð2:5Þ
The general expression for the operator LD describes the
dynamics simultaneously for all orders of correlation func-
tions and is given for the SSLM in [5].

While the mathematical methods for deriving the dyna-
mical equations of spatial correlation functions are well
developed for RCP models [6], a corresponding theory for
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Figure 1. An illustration of the relationship between an primary model and the corresponding auxiliary model. The primary model is shown in (a,c,e), and it consists
of a single entity type, shown by the filled circles. The auxiliary model is shown in (b,d,f ), and it consists of three entity types: original agents (empty circles), past
agents (circles with minus sign) that were present initially but that are not present currently, and new agents (circles with plus sign) that were not present initially
but are present currently. For any time lag Dt, the initial configuration of the primary model (a) can be reconstructed from the auxiliary model as the union of the
original and past agents, whereas the current configuration of the primary model (e.g. (e)) can be reconstructed from the auxiliary model (e.g. panel ( f )) as the
union of the original and new agents.
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spatio-temporal correlation functions has been lacking. Thus,
the open question that we solve here is how to obtain an
expression for the spatio-temporal correlation functions
kt,Dt(x1,x2).
3. The auxiliary model: original, new and past
agents

The main idea behind our solution of how to obtain spatio-
temporal correlation functions is illustrated in figure 1.
Panels a,c and e illustrate the dynamics of a particular para-
meterization of the SSLM on R2, the locations of the agents
shown for a small subset of the simulation domain. The snap-
shots shown in a, c and e illustrate the dynamics at time
points t ¼ 0, t ¼ 0:1 and t = 3.0, respectively. To address
spatio-temporal correlations, we consider an auxiliary
model, the dynamics of which are illustrated in b, d and f of
figure 1. In the auxiliary process, the time t of the primary
model is kept fixed, here t = 0. The dynamic time variable
of the auxiliary model is Dt, which is the time since the auxili-
ary process was initiated. The auxiliary model involves three
kinds of agents. The first set of agents, called the original
agents (or the O agents), are those that were present initially
(at time t when Dt ¼ 0) and that are still present at the current
time Dt. The new agents (or the + agents) are those agents that
were not present initially but are present at the current time
(when Dt . 0). The past agents (or the - agents) are those
that were present initially but that are not present anymore
(at Dt . 0). We denote by gODt the set of original agents, by
gþDt the set of new agents and by g�Dt the set of past agents.
Initially (at Dt ¼ 0), the auxiliary model consists solely of the
original agents, whose distribution is thus identical to the dis-
tribution of the agents of the primary model (figure 1a,b) so
that gODt¼0 ¼ gt whereas gþDt and g�Dt are empty. At a later
time, the state of the auxiliary model will involve a mixture
of the original, new and past agents (figure 1d). After a long
enough time, the state of the auxiliary model will consist
solely of the new and past agents (figure 1f ), assuming that
the dynamics of the system are such that all agents have a
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positive death rate (or more generally, may act as reactants), as
is the case with SSLM.

The utility of the auxiliary model is that it allows one
to re-construct both the initial (Dt ¼ 0) and current (Dt . 0)
configuration of the primary model. Namely, the initial con-
figuration of the primary model is the union of the original
and the past agents (gt ¼ gODt < g�Dt), whereas the current con-
figuration of the primary model is the union of original and
the new agents (gtþDt ¼ gODt < gþDt). The spatial correlation
function of the auxiliary model thus includes the necessary
information for constructing the spatio-temporal correlation
function of the primary model. Namely, denoting the spatial
correlation function of between agent types A [ {O,þ ,�}
and B [ {O,þ ,�} in the auxiliary model by kABDt (x,y), we can
compute the spatio-temporal correlation function of the
primary model as

kt,Dt(x,y) ¼ kOO
Dt (x,y)þ kOþ

Dt (x,y)þ k�O
Dt (x,y)

þ k�þ
Dt (x,y),

kt,Dt(x) ¼ kODt(x) ð3:1Þ

If the primary model belongs to the class of RCP models,
the auxiliary model will also do so (though see electronic
supplementary material for a more technical discussion),
and hence it is possible to use earlier established methods
to describe the time evolution of its spatial correlation func-
tions (equation (2.4)), and hence by equation (3.1) the
spatio-temporal correlations of the primary model.

We next develop the above idea in more detail by defin-
ing the auxiliary model corresponding to the SSLM. Let us
first consider the process of density-dependent death. If an
original agent dies, it becomes a past agent, which will
remain in the system indefinitely. If a new agent dies, it
will disappear from the system. Thus, the density-indepen-
dent death induces two reactions for the auxiliary model:
change of type from original to past agents and disappear-
ance of new agents, both taking place with rate m.
Similarly, density-dependent death induces the two reactions,
in one of which original agents change their type to become
past agents, and in the other one of which new agents disap-
pear. Both of these reactions take place with rateP

y[gO
Dt<gþ

Dt
a�(x� y), where the sum goes over the union of

original and new agents as these are the agents that are actu-
ally present in terms of the primary model. Finally,
reproduction produces new agents in the auxiliary model at
location y with the per-unit-area rate

P
x[gO

Dt<gþ
Dt
aþ(x� y).

Again, the sum goes over the union of original and new
agents, as these are the agents that are actually present and
thus produce offspring. The full mathematical definition of
this auxiliary model is given in the electronic supplementary
material.
4. Solving spatial and spatio-temporal
correlations with a perturbation expansion

While equation (2.4) is exact, it is typically not closed in the
sense that the dynamics of the lower order correlation functions
depend on higher order correlation functions [5,6], e.g. the
dynamics of the first-order correlation function depending on
the second-order correlation function in equation (2.5). This
means that equation (2.4) cannot be solved analytically or
numerically except for some trivial cases, such as the SSLM
without density-dependent death. To resolve this issue, [5,6]
developed a perturbative approach by which equation (2.4)
can be solved approximately, the accuracy of the approximation
increasing with increasing length scales of the spatial kernels
involved. To do so, all spatial kernels, such as the competition
kernel a� and reproduction kernel a + , are scaled as

a1(x) :¼ 1da(1x): ð4:1Þ

This scaling preserves the integral of the kernel but makes
the spatial interactions increasingly long ranged when 1 ! 0.
We denote correlation functions of the scaled process by k1,t.
The utility of the perturbation expansion is that it results in a
mathematically rigorous approximation of correlation func-
tions. Namely, it can be shown [5,6] that for the first-order
correlation, i.e. for population density, it holds that

k1,t(x) ¼ qt(1x)þ 1dpt(1x)þ o(1d): ð4:2Þ

Here qt(x) is the mean-field term, pt(x) is the first-order
correction to it, and o(1d) denotes a term that, when divided
by 1d, vanishes when 1 ! 0. For higher orders of the correla-
tion function, the perturbation expansion is most naturally
written in terms of the cumulants instead of the correla-
tion functions. The second-order cumulant is defined by
u(x,y) ¼ k(x,y)� k(x)k(y), and a general expression for the
cumulant of order n is given in [5]. It can be shown [5,6] that
the second-order cumulant follows the perturbation expansion

u1,t(x,y) ¼ 1dgt(1x,1y)þ o(1d), ð4:3Þ

where gt(x,y) is the leading term of the second-order cumulant.
The key utility of the perturbation expansion is that it pro-

duces a closed set of equations that can be solved explicitly.
Namely, for the general class of RCP models, the perturbation
expansion results in the set of equations [6]:

d
dt

qt ¼ Hq(qt), ð4:4Þ

d
dt

gt ¼ Hg(qt,gt), ð4:5Þ

d
dt

pt ¼ Hp(qt,gt,pt), ð4:6Þ

meaning that one can first solve (analytically or numerically)
qt from equation (4.4), then gt from equation (4.5), and finally
pt from equation (4.6).

It is worth noting that equations (4.5) and (4.6) are linear
in gt and pt, respectively, and hence are always solvable ana-
lytically, in terms of qt. On the other hand, these equations
are non-homogeneous, in particular, zero-functions do not
solve them. This means that even if the initial distribution
of agents is spatially completely random (follows the Poisson
distribution), the dynamics will not follow the mean-field
model over time but spatial correlation will evolve. Note
also that, in the case of agents of different types, all equations
(4.4)–(4.6) are vector equations. The reference [6] provides a
full mathematical explanation of the equations (4.4)–(4.6), as
well as computer code that allows one to automatically
generate them for any specific RCP model.

To simplify the notation, we consider in the examples
below the case where the initial condition is spatially homo-
geneous. In this case, the first-order correlation function is
independent of spatial location, and we may thus write
qt(x) ¼ qt and pt(x) ¼ pt. Further, second-order correlation
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functions and cumulants depend only on the distance between
the two points, and thus we may write gt(x,y) ¼ gt(x� y).

While the perturbation expansion for spatial correlations
(equations (4.4)–(4.6)) was published earlier [5,6], we now
turn to the new result, which is the perturbation expansion
for spatio-temporal correlations. To do so, we first extend
the definition of the two-point spatial cumulant into the
two-point spatio-temporal cumulant as

ut,Dt(x,y) ¼ kt,Dt(x,y)� kt(x)ktþDt(y): ð4:7Þ

In the space-homogeneous case, we can write
ut,Dt(x,y) ¼ ut,Dt(x� y). Applying equation (3.1), we may
write the spatio-temporal cumulant of the primary model
in terms of spatial cumulants of the auxiliary model,

ut,Dt(x) ¼ uOO
Dt (x)þ uOþ

Dt (x)þ u�O
Dt (x)þ u�þ

Dt (x): ð4:8Þ

Applying next the perturbation expansion, we may write

u1,t,Dt(x) ¼ 1dgt,Dt(1x)þ o(1d), ð4:9Þ
where gt,Dt(x) is the leading term of the second-order spatio-
temporal cumulant. By applying the perturbation expansion
for spatial correlation functions to the auxiliary model (for
details, see electronic supplementary material), we obtain
that, similarly to equation (4.8)

gt,Dt(x) ¼ gOO
Dt (x)þ gOþ

Dt (x)þ g�O
Dt (x)þ g�þ

Dt (x): ð4:10Þ

Since the leading terms of the second-order spatial cumu-
lants for the auxiliary model can be solved from equation
(4.5), one can solve gt,Dt(x) by summing these up according
to equation (4.10). In the space-homogeneous case, one can,
however, solve gt,Dt(x) also more directly. Namely, if defining
ht,Dt(j) ¼ ~gt,Dt(j)þ qODt, where ~g denotes the Fourier transform
of the function g, then ht,Dt satisfies a linear equation

d
dDt

ht,Dt ¼ Hh,Dt(qtþDt,ht,Dt), ð4:11Þ

where qtþDt is the solution to equation (4.4) at time tþ Dt. In
contrast with equation (4.5) and (4.6), equation (4.11) is
homogeneous, i.e. the zero-function formally solves it,
making it efficient for mathematical analyses. We note that
at time lag Dt ¼ 0 the spatio-temporal cumulant coincides
with the spatial cumulant, and hence gt,0(x) ¼ gt(x) and
qODt¼0 ¼ qt, which provide the initial condition for equation
(4.10): ht,0(j) ¼ ~gt(j)þ qt. The equations for qODt,qtþDt and ht,Dt
form a closed system, and hence it is possible to solve gt,Dt(x)
at least numerically. In the electronic supplementary material,
we derive equation (4.11) for all the processes needed to con-
struct the two example models of this paper. We hypothesize
that equation (4.11) holds more generally for any RCP model
and expect to prove this in a forthcoming paper.
5. Spatio-temporal correlations in the spatial and
stochastic logistic model

We next solve the spatio-temporal correlation structure of the
SSLM. We first recall from earlier work [5] that in the transla-
tionally invariant case, the mean-field equation of the SSLM
is given by the deterministic and non-spatial logistic model,

Hq(qt) ¼ (Aþ �m)qt � A�q2t , ð5:1Þ
where Aþ ¼ Ð
Rd aþ(x)dx and A� ¼ Ð

Rd a�(x)dx. The equations
(4.4)–(4.5) and equation (4.10) allow one to consider how
the leading terms of population densities, spatial correlation
functions and spatio-temporal correlation functions evolve
during transient dynamics (for details, see electronic sup-
plementary material). At the stationary regime, i.e. the limit
of t ! 1, we recall from [5] that the leading term of the
population density converges (assuming a positive initial
population density) to

q� ¼ Aþ �m
A� , ð5:2Þ

and that the fixed point to equation (4.5) is given by

~g�(j) ¼ q�
~aþ(j)� q�~a�(j)

Aþ � ~aþ(j)þ q�~a�(j)
: ð5:3Þ

As detailed in the electronic supplementary material, for
the SSLM the limit of equation (4.10) as t ! 1 is described by

~g1,Dt(j) ¼ (q� þ ~g�(j)) exp {�[Aþ � ~aþ(j)þ q�~a�(j)]Dt}

� q� exp {�AþDt}: ð5:4Þ

Hence, underassumptions on the reproduction and compe-
tition kernels described in the electronic supplementary
material, in the SSLM the spatio-temporal correlations decay
exponentially with increasing time lag Dt, with the rate of
decay depending on the frequency parameter j in the Fourier
space. Moreover, we verify in the electronic supplementary
material that with increasing time lag ðDt ! 1Þ, the cumulant
vanishes also in the real-space ðgt,DtðxÞ ! 0Þ, confirming the
intuitively obvious expectation that point configurations
become statistically independent of each other if the time
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Figure 3. Spatio-temporal dynamics of the host–parasite model. These show mean-field dynamics (a), a snapshot of simulations (b), and the second-order spatio-
temporal cumulant between parasites and hosts as resolved by the mathematical method (c), by simulations (d ) and the difference between these two (e). Model
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(e) as compared to (c,d).
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between recording them becomes very long. We also note that
this property holds in the SSLM not only at the stationary state
ðt ! 1Þ, but more generally also for any fixed t (see the elec-
tronic supplementary material). To obtain the spatio-temporal
correlations in the real-space, the inverse Fourier transform of
~g�Dt can be computed numerically. Figure 2 illustrates the
match between such a numerically derived solution (the lines)
and simulation-based results (the dots) is accurate not only
for the two-point spatial cumulant (lines with Dt ¼ 0), but
also for spatio-temporal cumulants (lines with Dt . 0).
6. Spatio-temporal correlations in a
host–parasite model

To illustrate how the methodology described above
applies to the general class of RCP models, we next derive
the spatio-temporal correlations for a host–parasite model,
called henceforth the HP model. The HP model differs from
the SSLM in two qualitative aspects. First, while the SSLM
concerns only one type of agents, the HP model involves
two types of agents, namely the hosts and the parasites.
Second, while the dynamical behaviour of the SSLM is
very simple, the HP model shows much richer dynamics,
with damping oscillations in the mean-field dynamics and
locally synchronized oscillations in the full stochastic and
spatial model.

We denote the host and parasite configurations by gH and
gP, respectively. The model can be defined verbally as follows:
hosts produce other hosts with kernel aþ and have density-
dependent mortality with kernel a�. Parasitized hosts turn
uninfected hosts into parasitized hosts with kernel b, and
parasitized hosts have density-independent mortality with
rate m. The full mathematical description of the model is
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given in the electronic supplementary material, and its mean-
field approximation is given by

d
dt

qHt ¼ qHt (A
þ � A�qHt � BqPt )

d
dt

qPt ¼ qPt (Bq
H
t �m)

9>=
>;: ð6:1Þ

Here A+, A− and B denote the integrals of the kernels a+,
a− and b, respectively. We note that this HP model can be
equally well interpreted as a predator–prey model.

Figure 3 illustrates the damping oscillations generated by
the parameterization we have chosen for the mean-field
model, as well as a spatial patterning of the distribution of
hosts and parasites as recorded from the stationary state of
the agent-based simulation.

We computed the leading term of the spatio-temporal
cumulant of the HP model by applying the methodology
described above, i.e. by first constructing the auxiliary ver-
sion of the HP model, and then applying the perturbation
expansion approach to it (see electronic supplementary
material for details). Figure 3 c, d and e show a strikingly
good match between the analytically derived (figure 3c)
and simulation-based (figure 3d ) spatio-temporal cumulant
between parasites (recorded at time t) and hosts (recorded
at time tþ Dt). Note that this two-point cumulant is negative
for short time lags, meaning that areas with a high density of
parasites will in the near future have a low density of hosts,
as expected from the fact that parasites consume hosts.
With increasing time lag Dt, the spatio-temporal cumulant
shows damping oscillations that alternate between positive
and negative values. With increasing spatial lag Dx, the
spatio-temporal cumulant expectedly decreases to zero,
meaning that the dynamics in locations far away from each
other are statistically independent of each other. Figure 4
further shows the two-point cumulant as a function of the
time lag Dt for all four pairs between the two types of
agents. We observe that all four two-point cumulants oscil-
late over time, and that the rate of damping in the
oscillations is faster for short spatial distances than for large
spatial distances. Most importantly, figure 4 illustrates that
the mathematical theory (lines) is a very accurate approxi-
mation of the simulated behaviour of the agent-based
model (dots). Further illustrations, including a movie that
visualizes the time evolution of the point configurations,
are given in electronic supplementary material.
7. Discussion
In this work, we have presented a general methodology for
deriving the spatio-temporal correlation structure for the
class of RCP models. The main idea behind our method is to
define an auxiliary process which, even if being a ‘memoryless’
Markov process, keeps track not only on the distribution of the
present agents, but also the distribution of the agents at an ear-
lier time. With the help of this property, the spatio-temporal
correlations of the original process correspond to the spatial
correlations of the auxiliary process, and thus the previously
derived toolbox for assessing spatial correlations [5,6] applies
also for spatio-temporal correlations. To our knowledge, the
method developed here is the first one that can be used to
mathematical study the spatio-temporal correlations in spatial
Markov processes with local interactions.

In both of the example models we considered, we found
the function Hg,Dt of equation (4.11) to be related in a
simple way to the function Hg of equation (4.5) (see electronic
supplementary material for details). While we are not able to
prove that such a simple relationship between Hg and Hg,Dt

holds in the general case, we conjecture that this is the case.
If the conjecture holds, it would make it even more straight-
forward to derive spatio-temporal correlations, as one could
directly write down the dynamical equation for the spatio-
temporal cumulants without the need to first construct the
auxiliary model. We thus hope that future work will resolve
whether the conjecture holds for all RCP models or some
special subset of them.

In both of the example models we considered, we found
that the linear equation (4.11) for the auxiliary function
ht,Dt ¼ ~gt,Dt þ qODt is homogeneous, making it especially con-
venient for further analysis. Supported by the fact that this
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property holds for all of the reactions included in the example
models, we conjecture that the same property holds for all
RCP models, or at least some large subset of them. We thus
hope that future work will find out general form for equation
(4.11) in terms of reaction rates of RCP models, as that would
enable the straightforward incorporation of spatio-temporal
correlation structures into the toolbox of [6].

While the methods presented here apply to the large class
of RCP models as such, not all agent-based models can be
formulated as RCP models. Namely, many agent-based simu-
lation models that are primarily aimed at simulation tools can
be difficult to even define mathematically, and they can com-
bine deterministic and stochastic rules to incorporate e.g.
environmental heterogeneity in space and time and processes
related to the ageing or learning of the agents. Such models
are clearly not possible to implement within the relatively
simplistic framework of RCP models, as these models are
restricted to continuous space, continuous time, point-like
agents and solely stochastic processes. Yet, the fundamental
idea shown in figure 1 that forms the basis of this work
extends much beyond RCP models.
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