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S O C I A L  S C I E N C E S

Childhood lead exposure is associated with lower 
cognitive functioning at older ages
Haena Lee1,2*, Mark W. Lee3,4, John Robert Warren3,4, Joseph Ferrie5

The Flint, Michigan water crisis renewed concern about lead toxicity in drinking water. While lead in drinking water 
has been shown to negatively affect cognition among children, much less is known about its long-term consequences 
for late-life cognition. Using a nationally representative sample of U.S. older adults linked to historical administra-
tive data from 1940, we find that older adults who lived as children in cities with lead pipes and acidic or alkaline 
water—the conditions required for lead to leach into drinking water—had worse cognitive functioning but not 
steeper cognitive decline. About a quarter of the association between lead and late-life cognition was accounted 
for by educational attainment. Within the next 10 years, American children exposed to high levels of lead during 
the 1970s will enter older ages. Our evidence highlights the need for stronger actions to identify interventions to 
mitigate long-term damage among people at high risk.

INTRODUCTION
No amount of lead is considered safe for human consumption. Lead 
is a neurotoxicant that can cause permanent damage to the develop-
ing brains of children (1). Extensive research has documented that 
early-life lead exposure, even at low levels, is associated with reduced 
attention span and poorer academic performance among children 
(2–6) and lower intelligence quotient among young adults (7). Re-
cently, this literature has expanded to link childhood lead exposure 
to cognitive outcomes in midlife and later adulthood; lead-exposed 
children were significantly associated with reduced gray matter vol-
ume in areas responsible for memory function and dementia at age 
45 (8) and lower language/executive function at age 64 (9). While 
this line of research has been critical in identifying childhood lead 
exposure as an important contributing factor for brain aging, previous 
studies have focused on regional samples that may not be widely 
generalizable with short periods of follow-up. It is largely unknown 
whether childhood lead exposure affects trajectories of cognitive 
functioning throughout late adulthood in a nationally representa-
tive sample.

Individuals can be exposed to lead through multiple sources in-
cluding leaded gasoline, paint, pesticides, and air pollution; however, 
the dominant source of lead exposure for cohorts born in the early 
20th century was public drinking water (10, 11). Lead does not occur 
naturally in water sources. Instead, it leaches into water as it is trans-
ported through lead service lines to individual houses and buildings. 
The amount of lead that leaches from service lines varies by water 
pH, as shown in Fig. 1. Lead solubility is greatest in acidic (pH ≤6.5) 
or alkaline water (pH ≥8.5); these extremes can corrode or dissolve 
metals substantially more easily than neutral water. For cities with 
lead service lines, highly acidic or alkaline water leaches more lead 
than neutral water, while no lead can leach into drinking water in 
cities that did not use lead service lines regardless of water pH (12).

Service lines connecting homes to street mains in the early 20th 
century were commonly made of lead because of its malleability 

and durability (13). Although some officials were concerned about 
the potential toxicity of lead from water that passed through lead 
pipes as early as the mid-19th century (13), the federal government 
did not begin regulating lead until the passage of the Safe Drinking 
Water Act in 1974. As a result, lead concentrations in tap water in 
that era frequently far exceeded 0.0015 parts per billion (ppb), which 
is currently defined by the Environmental Protection Agency (EPA) 
as the maximum acceptable level in drinking water; cities in 1900 
had water lead concentrations, on average, 20 to 100 times greater 
than the current limit (14). For example, Lowell, Massachusetts had 
lead concentrations of 0.1608 ppb in tap water in 1900, which ex-
ceeded 100 times the current EPA standard.

Conceptually, childhood lead exposure may shape cognitive aging 
through direct or indirect processes. It may directly influence cog-
nitive functioning at older ages through “biological embedding” 
pathways (15), as shown in Fig. 2. The argument is that lead expo-
sure in early life can cause early brain damage (16) that may alter 
gene expression (17) and elevate protein production (18), leading, 
in turn, to increased risk of cognitive impairment in later adulthood 
(19). Another hypothesized direct biological pathway is through the 
remobilization of lead stored in bones, which can lie dormant for 
decades after exposure (19, 20). Once lead is in the body, most of it 
stays in the bone until bone loss occurs (e.g., through osteoporosis); 
as a result of bone loss, some lead can reenter the blood and soft 
tissue. Remobilization of bone lead might, therefore, prompt a large 
increase in blood lead levels decades after exposure and directly ex-
acerbate age-related cognitive decline.

Early-life lead exposure may indirectly shape cognitive aging by 
influencing adult achievements and experiences that subsequently 
matter for cognitive functioning in late life. One well-established and 
important indirect mechanism is through educational attainment. 
Lead exposure has been linked to fewer years of schooling and in-
creased risk of high school dropout (21–23); education, in turn, is 
closely related to adult socioeconomic status (SES). Lower levels of 
education often lead to occupations that involve low mental demands 
and stimulation, which could reduce the brain’s capacity to sustain 
function amid the brain pathology and neuronal losses associated 
with normal aging (24). Cardiovascular health represents another 
pathway through which childhood lead exposure could conceivably 
affect late-life cognition. Lead is known to disrupt not only the central 
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nervous system but also other organ functions and systems integral 
to brain health including the cardiovascular system (19). Among adults, 
occupational and residential lead exposure has been linked to hyper-
tension, stroke, and cardiovascular disease (25, 26), which can damage 
blood vessels in the brain, causing lower cognitive function. Older 
adults with lower levels of education and poor cardiovascular health 
may thus enter old age with higher risk of cognitive impairment and 
faster decline. However, very little research has examined whether 
childhood lead exposure affects late-life cognition indirectly through 
adult education, SES, and health pathways (9, 19).

We examine the long-term association between childhood lead 
exposure and trajectories of cognitive change in late life among re-
spondents to the Health and Retirement Study (HRS); we use 
data from the 1998–2016 biannual survey waves (27). As the 

longest-running aging survey of its kind, the HRS allows for more 
than two decades of follow-up on cognitive functioning in late life, 
along with financial status and cardiovascular health that we hy-
pothesize to be impor tant indirect pathways shaping cognition in 
late life. It is also one of the only publicly available nationally repre-
sentative samples of U.S. older adults that has been linked to the 
1940 U.S. Census. The main advantage of using these linked data is 
that it allows us to identify the city in which respondents lived as 
children, to construct early-life measures of lead exposure from 
municipal drinking water systems. Given that lead was a ubiquitous 
and poorly regulated environmental exposure for children born 
across much of the 20th century, it is vital to understand the poten-
tial impact that this pollutant has had on the cognitive health of 
these cohorts as they age.
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Fig. 1. Conceptual framework of life course processes through which childhood lead exposure shapes cognitive function. Incorporating the life course perspec-
tive, we posit that childhood lead exposure may affect cognitive functioning through direct (solid line) and indirect (dashed line) pathways. The italicized font indicates 
demographic and childhood covariates adjusted for in all models that include age, sex, race, childhood SES, childhood health, and place of birth.

Fig. 2. Location of cities that had lead pipes and acidic/alkaline water in 1940, the conditions required for lead to leach into municipal water. Cities with lead 
pipes and acidic/alkaline water are marked on the map with red solid circles, and those with lead pipes and neutral water are marked on the map with red open circles. 
Cities using nonlead pipes regardless of water pH are marked on the map with gray open circles. Water pH level less than 6.5 or greater than 8.5 is considered acidic and 
alkaline water, respectively. Data source: The Manual of American Water-Works (30) and the U.S. Geological Survey (31).
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We hypothesize that older adults who, as children, lived in cities 
with lead-contaminated water will have lower cognitive function and 
faster cognitive decline in late life compared with peers who were 
not exposed to lead-contaminated water. Because childhood expo-
sures can influence adult social positions and cardiovascular health 
that may, in turn, affect cognitive aging, we also hypothesize that the 
association between childhood lead exposure and late-life cognition 
will be accounted for by education, adult SES, and health.

Data
We combine data from 10 waves of the HRS (1998 to 2016) and 
multiple sources of historical administrative data. The HRS was first 
conducted in 1992 on a national sample of persons born in 1931 to 
1941. The following year, the HRS fielded the cohort born before 
1924. In 1998, these cohorts were merged, and to create a sample 
representative of Americans of age 51 and older, two new cohorts 
born in 1924 to 1930 and 1942 to 1947 were enrolled and interviewed 
biannually thereafter. Among HRS respondents who were born by 
1940 (n = 20,066), 9654 were successfully matched to their house-
hold records in the 1940 U.S. Census (28) that became available to 
the public after a mandatory 72-year waiting period (29). The 
matching was done on the basis of the respondents’ first and last names 
(including maiden name for women), age, sex, state of birth, and the 
names of other people living in the household in 1940 (e.g., parents 
and siblings). A machine learning algorithm was used to identify 
the correct record from among all possible records in the 1940 Census. 
The algorithm was trained to minimize false-positive matches and 
maximize the overall linkage rate. More information on the linking 
procedures is described in Materials and Methods.

Information regarding whether cities used lead service lines comes 
from The Manual of American Water-Works (30). Water pH data 
for our sample are primarily available through a report published by 
the U.S. Geological Survey (31), although some were identified on 
city websites if they included local histories of their water utility. We 
mapped the location of cities that used lead pipes and had acidic or 
alkaline water in Fig. 3. Cities in the Northeast and Midwest were 
more likely to use lead pipes and less likely to have pH neutral water 
(i.e., acidic or alkaline) than those in the South and West.

Of the 9654 HRS sample members who were successfully linked 
to the 1940 Census, we excluded individuals who were aged over 16 
to focus on those who were children or adolescents in 1940. We ex-
cluded those who were not living in cities (n = 3893) and who did 
not have valid piping and water pH data (n = 748). We also excluded 
individuals who were lost to follow-up because of death or non-
response before the baseline survey (n = 193) and individuals with 
missing values on key (time-invariant) covariates (n = 215), which 
yielded our final analytic sample of 1089 individuals living in 398 
different cities in 1940. These participants contributed 7432 observa-
tions between 1998 and 2016 (mean follow-up time = 6.8 years). We 
started with the 1998 core wave because it is the first time that the 
sampling represents U.S. adults aged 51 and older. A chart showing the 
steps that we took to arrive at the analytic sample is displayed in fig. S1.

Our dependent variable is global cognitive function based on the 
three cognitive tests available in the HRS core survey (32): a 10-word 
immediate and delayed recall tests of verbal memory (0 to 20 points), 
a counting backward test of attention and processing speed (0 to 2 points), 
and a serial 7s subtraction test of working memory (0 to 5 points). 
A small percentage of respondents in each wave refused to partici-
pate in the cognitive tests, and to reduce sample attrition, the HRS 

has imputed cognitive measures for missing data (33). We used the 
imputed cognitive test variables released by the HRS in our analysis 
and standardized the summary score to have a mean of 0 and an 
SD of 1.

Our primary independent variable is a measure of childhood lead 
exposure in 1940. We identified HRS respondents who were exposed 
to lead as children by creating an interaction between two dichoto-
mous variables (lead versus nonlead pipes and acidic/alkaline versus 
neutral water). Adult mediators included educational attainment (less 
than high school, high school, some college, and college or more), 
household income, wealth, and diagnoses of stroke, hypertension, 
and heart disease. We categorized both income and wealth into 
deciles that were treated as continuous variables in our models. All 
variables except education were time varying. We controlled for de-
mographic and childhood covariates including sex, race/ethnicity, 
childhood SES, childhood health, and region of birth.

We used growth curve models to account for repeated observa-
tions of cognitive functioning per person (34, 35); we focus on the 
relationship between lead exposure and both the intercept and slope 
of these growth curves. Following previous work (36–38), we used 
ordinary least squares and logistic regression models to assess the 
relationship of adult mediators with childhood lead exposure. A formal 
mediation test using the Karlson, Holm, and Breen (KHB) method 
was then used to decompose the relative importance of the direct and 
indirect pathways from childhood lead exposure to late-life cogni-
tion (39, 40). More information on the measures and the statistical 
analysis is presented in Materials and Methods.

RESULTS
Table 1 presents baseline summary statistics, stratified by lead exposure 
status. The mean standardized global cognitive function score is 0.61, 
but there are substantial differences by exposure status: Respondents 
from cities with lead pipes and highly acidic or alkaline water had 
lower cognitive scores (0.35) than their peers in places with nonlead 
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Fig. 3. The chemistry of water and lead. The lead concentration varies by water 
chemistry. For people whose municipal water has pH values less than 6.5 or great-
er than 8.5, we would expect lower cognitive functioning as lead levels in their 
bodies would have increased as lead from water lines leaches as the result of alka-
line or acidic water chemistry. However, for people whose municipal water has a 
pH level between 6.5 and 8.5, lead municipal water pipes are less problematic 
because the lead is not readily leached into the water. Adapted from (12) with per-
mission from Elsevier.
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pipes (0.59) or lead pipes and neutral water (0.68). Compared to 
those who were not exposed to lead in drinking water as children, 
the lead-exposed group had significantly higher levels of many of 
the risk factors that we hypothesized to be important for cognitive 
decline, including lower educational attainment, less household in-
come (decile), and a higher prevalence of heart disease. The non-
exposed group, while advantaged in terms of adult education and 
SES conditions, had a significantly higher prevalence of southern 
birth. The lead-exposed group was primarily born in the Northeast, 

had fewer female members, and far fewer Black members compared 
to the nonexposed group.

Results from growth curve models predicting cognitive trajectories 
are shown in Table 2. Results from model 1 indicate that childhood 
lead exposure predicts lower levels of cognitive functioning after 
adjustment for age, sex, race/ethnicity, childhood SES, childhood 
health, and region of birth. We find that individuals exposed to lead 
as children had, on average, 0.41 SD lower cognitive functioning at 
age 72 relative to those from cities with nonlead pipes and/or lead 

Table 1. Summary statistics of analytic sample at baseline, HRS (n = 1089). These statistics are shown separately by lead exposure status. We classified 
respondents from cities that had lead pipes and extreme levels of water pH (acidic or alkaline), the conditions required for lead to leach into drinking water, as 
exposed. Because, for cities that did not use lead pipes or that had neutral water, lead cannot leach into drinking water regardless of water pH, we considered 
the rest of respondents unexposed. We performed significant group comparisons based on chi-square test, Kruskal-Wallis test, and t test. 

Percentage (N) or mean (SD)

Exposed Nonexposed

Full sample
Lead pipes and acidic/

alkaline water  
(7.07%; N = 77)

Lead pipes and 
neutral water 

(36.18%; N = 394)
Nonlead pipes 

(56.75%; N = 618) P value

Cognitive score (0–27) 17.29 (4.02) 16.10 (4.14) 17.65 (4.08) 17.22 (3.94) P < 0.01

Standardized cognitive 
score

0.61 (0.87) 0.35 (0.90) 0.68 (0.89) 0.59 (0.86) P < 0.01

Lead pipes (%) 43.25 (471)

Acidic/alkaline water (%) 10.47 (114)

Age (57–93) 65.49 (5.01) 65.52 (4.81) 65.41 (4.95) 65.54 (5.08) P = 0.92

Female (%) 50.69 (552) 45.45 (35) 55.33 (218) 48.38 (299) P = 0.06

Race/ethnicity (%) P = 0.07

 Non-Hispanic, white 88.89 (968) 97.40 (75) 89.59 (353) 87.38 (540)

 Non-Hispanic, Black 7.99 (87) 2.60 (2) 7.87 (31) 8.74 (54)

 Hispanic 2.30 (25) – 1.27 (5) 3.24 (20)

 Other 0.83 (9) – 1.27 (5) 0.65 (4)

Childhood SES (%) P = 0.63

 0 45.55 (496) 40.26 (31) 44.67 (176) 46.76 (289)

 1 24.24 (264) 31.17 (24) 23.35 (92) 23.95 (148)

 2 17.26 (188) 18.18 (14) 17.77 (70) 16.83 (104)

 3+ 12.95 (141) 10.39 (8) 14.21 (56) 12.46 (77)

Poor childhood health 
(%)

7.07 (77) 10.39 (8) 7.61 (30) 6.31 (39) P = 0.37

Southern born (%) 16.53 (180) 2.60 (2) 19.80 (78) 16.18 (100) P < 0.001

Educational attainment 
(%) P < 0.05

 <High school 12.30 (134) 20.78 (16) 10.41 (41) 12.46 (77)

 High school 39.12 (426) 44.16 (34) 40.10 (158) 37.86 (234)

 Some college 20.75 (226) 12.99 (10) 19.4 (77) 22.49 (139)

 College+ 27.82 (303) 22.08 (17) 29.95 (118) 27.18 (168)

Income (1–10) 6.24 (2.63) 5.96 (2.48) 5.90 (2.62) 6.49 (2.64) P < 0.01

Wealth (1–10) 6.43 (2.66) 6.34 (2.52) 6.44 (2.67) 6.42 (2.68) P = 0.96

Ever had stroke (%) 4.41 (48) 3.90 (3) 4.57 (18) 4.37 (27) P = 0.96

Ever had hypertension 41.05 (447) 33.77 (26) 41.88 (165) 41.42 (256) P = 0.40

Ever had heart diseases 15.98 (174) 18.18 (14) 15.99 (63) 15.70 (97) P = 0.85
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pipes and neutral water ( = −0.408, P < 0.01). However, we did not 
find childhood lead exposure to be significantly associated with rates 
of cognitive decline.

The negative relationship between lead exposure and baseline 
cognition persisted with the inclusion of educational attainment in 
model 2. Accounting for educational attainment reduced the mag-
nitude of the coefficient for childhood lead exposure by 34%, but the 
coefficient remained statistically significant ( = −0.268, P < 0.05). 
Higher levels of educational attainment were associated with higher 
levels of cognitive functioning net of childhood and demographic 
covariates, with respondents with high school diplomas and college 
or more education having, on average, 0.491 and 0.955 SD higher 
levels of cognitive functioning (P < 0.001), respectively, than those 
with less than high school diplomas. These results suggest that about 

one-third of the association between childhood lead exposure and 
later-life cognition is accounted for by educational attainment.

Further adjusting for income, wealth, and cardiovascular health in 
models 3 and 4 did not eliminate the association between lead exposure 
and cognitive outcomes. Individuals exposed to lead as children have 
0.261 and 0.271 SD lower cognitive functioning at age 72 after adjustment 
for the adult SES and cardiovascular health mediators (P < 0.05), 
respectively. While each adult SES indicator was associated with 
higher levels of cognitive functioning, only higher wealth was asso-
ciated with a slower rate of cognitive decline ( = 0.001 and 0.002 in 
models 3 and 4, respectively, P < 0.05). Model 4 reveals that the mag-
nitude of the estimated association between childhood lead exposure 
and baseline cognition was on par with or exceeded the magnitude 
of other well-established cognitive risk factors including stroke. 

Table 2. Growth curve modeling predicting cognitive function by childhood lead exposure, adult education, and health outcomes, HRS, 1998 to 2016 
(n = 7432 person-wave observations). All models adjust for demographic and childhood covariates including sex, childhood SES, childhood health, and 
region of birth. Coefficients for these demographic and childhood covariates can be found in table S1. AIC, Akaike information criterion; BIC, Bayesian 
information criterion. *P < 0.05; **P < 0.01; ***P < 0.001. 

Model 1 Model 2 Model 3 Model 4

Intercept Slope Intercept Slope Intercept Slope Intercept Slope

Fixed effects

Age (centered) −0.050*** −0.049*** −0.062*** −0.066***

Age squared −0.001*** −0.001*** −0.001*** −0.001***

Lead 0.087 0.002 0.054 0.002 0.066 0.001 0.063 0.001

Acidic/alkaline 
water 0.112 0.009 0.096 0.012 0.097 0.011 0.106 0.012

Lead X acidic/
alkaline 
water

−0.408** −0.006 −0.268* −0.009 −0.261* −0.006 −0.271* −0.006

Educational attainment (<high school = reference)

 High school 0.491*** −0.005 0.448*** −0.006 0.453*** −0.005

 Some college 0.693*** −0.003 0.624*** −0.006 0.627*** −0.005

 College+ 0.955*** 0.001 0.829*** −0.005 0.830*** −0.004

Income 0.019*** 0.001 0.019*** 0.001

Wealth 0.024*** 0.001* 0.023*** 0.002*

Stroke −0.156** −0.009

Hypertension 0.014 0.010**

Heart diseases 0.011 0.000

Intercept 0.341*** −0.389*** −0.608*** −0.599***

Variance 
components

Variance of 
random 
intercept

0.373*** 0.298*** 0.288*** 0.283***

Variance of 
random 
slope

0.001*** 0.001*** 0.001*** 0.001***

Residual 
variance 0.313*** 0.313*** 0.312*** 0.312***

Goodness of fit

AIC 15258.05 15070.48 15022.62 15004.94

BIC 15472.37 15326.28 15306.08 15329.87
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Although the point estimate for lead was larger than the point esti-
mate for stroke ( = −0.156, P < 0.01), for example, the coefficient 
for stroke is far more precise, further research is needed to replicate 
this finding in other samples.

Figure 4 displays the association between childhood lead expo-
sure and cognitive trajectories over time, based on the estimates from 
model 1. As we saw in Table 2, lead-exposed individuals (red solid 
line) initially started with lower levels of cognitive functioning, but 
they did not necessarily have a steeper rate of cognitive decline over time.

Overall, the results in Table 2 suggest that childhood lead expo-
sure has little relationship with the rates of cognitive decline, that 
childhood lead exposure has a sizable association with baseline cog-
nitive functioning in later life, that about a third of that association 
is accounted for by educational attainment, and that very little of that 
association is accounted for by adult SES or cardiovascular health. 
To more formally explore the pathways through which childhood 
lead exposure might affect later-life cognitive functioning, we con-
ducted mediation analyses (tables S2 and S3). Following previous 
work, in models described in table S2, we first regressed the adult 
SES and health mediators on childhood lead exposure, controlling 
for age, sex, race/ethnicity, childhood SES, childhood health, and 
region of birth; this provides estimates of the relationship of these 
adult mediators with childhood lead exposure net of covariates. We 
found that childhood lead exposure is unrelated to most of the adult 
SES and health indicators except for educational attainment. For 
example, lead-exposed individuals had 4.663 times greater odds of 
receiving less than high school education, providing partial evidence 
for our second hypothesis. We did not find income, wealth, stroke, 
hypertension, and heart diseases to be associated with childhood lead 
exposure. Results from the KHB method in table S3 also confirm 
that most of the total relationship is accounted for by the direct, rather 
than indirect, effect of childhood lead exposure on cognitive func-
tioning. Only 26% of the association was explained by adult path-
ways, and nearly all of the indirect effect of lead exposure occurred 
via educational attainment.

We conducted several other supplementary analyses. First, in addi-
tion to our main specification of acidic/alkaline water, we considered 
different cut points in pH to measure acidic (pH ≤6.4 or 6.6) or 
alkaline (pH ≥8.4 or 8.6), as the exact threshold for defining highly 
acidic or highly alkaline water remains debatable. Using both stricter 
and looser specifications of acidic/alkaline, our findings are generally 
robust (tables S4 and S5). Second, instead of our primary specifica-
tion of lead exposure, which only considers people to have been exposed 
if their city exclusively used lead service line pipes, we combined 
cities using mixed service line materials with cities using only lead 
pipes. Under this alternative specification, we found that childhood 
lead exposure no longer predicted cognition (table S6). However, com-
bining “mixed metal” places with lead-only places may have biased 
our estimate of the lead’s effect toward zero because we may have 
included some cities with a very small share of lead pipes in the ex-
posure group. Third, whereas our main analyses included imputed 
values for missing cognitive measures, we ran models using the 
original cognitive data without imputations; excluding respondents 
with imputed values did not alter our main results (table S7). Fourth, 
we analyzed models separately for each cognitive domain—verbal 
memory, working memory, and attention and processing speed 
(table S8). We found that childhood lead exposure is associated with 
baseline levels of working memory (but not decline in working memory) 
and that the association remained statistically significant with the 
inclusion of all mediators. As for baseline verbal memory, we found 
childhood lead exposure to be a significant predictor, but the lead 
coefficient was no longer significant with the inclusion of educational 
attainment. However, the lead coefficient with baseline verbal memory 
was nearly the same as in the models with the global cognitive score. 
We did not find childhood lead exposure to be associated with baseline 
attention or processing speed (or declines therein). Last, we ran models 
that restrict the sample to those who were born in the Northeast; the 
results are widely the same, although estimates were less precise. This 
suggests that our main findings are not driven by the geographic clus-
tering of lead exposure in our sample.

DISCUSSION
Beginning in 2014, residents of Flint, Michigan were exposed to high 
levels of lead in drinking water when a new source of public water 
corroded the lead service lines. The Flint water crisis has highlighted 
the neurodevelopmental consequences—lower cognitive abilities and 
poorer academic outcomes—of lead exposure in children (41, 42). 
However, several unresolved questions remain regarding the long-term 
health and cognitive consequences of childhood lead exposure. Do 
people exposed to lead as children have poor cognitive function at 
older ages? Do they experience faster cognitive decline? To what extent 
is the association between lead and cognition explained by adult socio-
economic position and cardiovascular health? We present results 
from analyses of data that include historical plumbing and water 
pH data merged with records from a nationally representative sam-
ple of U.S. older adults to address the three questions above that 
have long been concerns for social and medical science researchers 
and policy-makers.

We find that people who lived in cities with lead-contaminated 
water as children had worse baseline cognitive functioning at age 72 
as compared to others who did not. The conditional association be-
tween childhood lead exposure and baseline cognitive functioning 
from model 1 (adjusting for demographic characteristics and early-life 
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confounders) was equivalent to the effect of eight additional years 
of age as estimated in model 1. Educational attainment appears to 
be a mediator in the relationship between childhood lead exposure 
and late-life cognitive functioning. Other mediators—income, wealth, 
stroke, hypertension, and heart disease—did little to mediate the 
relationship between childhood lead exposure and baseline cogni-
tive functioning. However, we found no association between childhood 
lead exposure and rate of cognitive decline.

One possible explanation for this pattern of findings—i.e., childhood 
lead exposure being associated with baseline cognitive functioning 
but not with the pace of cognitive decline—is that the lead-exposed 
respondents in our sample showed a greater rate of decline before 
study enrollment potentially due to early brain damage. Childhood 
lead exposure has been found to alter brain structure (43), harm neuro-
behavioral development (23), and impair academic performance (3), 
all of which may accelerate cognitive deficits early in the life course 
(19). The rate of cognitive decline for the lead-exposed older adults 
could, therefore, be greater earlier in life but slower after age 50. 
Another explanation is that selective survival before study enrollment 
may attenuate the effects of lead on decline (44), which may bias our 
estimates toward the null. However, supplementary analyses of sur-
vival using Cox proportional hazards model, in which the risk of death 
through 2016 was estimated as a function of childhood lead expo-
sure, showed that childhood lead exposure does not predict survival 
in the HRS. Regardless, in the absence of evidence of a relationship 
between childhood lead exposure and pace of cognitive decline, our 
findings have important implications for individual cognitive aging 
as a higher level of cognitive performance may postpone or delay the 
onset of cognitive impairment (45). Further investigation is needed 
to better understand the role of early-life environmental exposure 
on cognitive trajectories.

We contribute to the sparse literature by identifying childhood 
lead exposure as an important yet underappreciated source of early- 
life risk for later-life cognitive impairment (9, 19). Although expo-
sures in childhood are increasingly being documented as predictors 
of life course health outcomes (46), efforts to identify early-life de-
terminants of cognitive aging have largely focused on individual- 
level factors. Unexpectedly, little research has systematically examined 
the magnitude of environmental hazards over the life course. A major 
reason for this gap lies in limitations in available datasets. Investi-
gating the effects of early-life lead exposure on cognitive aging 
requires data on both older adults’ cognitive performance and their 
childhood residential environment. However, in most aging studies, 
childhood environmental conditions are either measured poorly or 
not measured at all. A few studies have linked early-life environment 
to cognitive aging, but they have used aggregate-level measures (e.g., 
state of birth) as proxies for early-life residence (47, 48). Using mul-
tiple sources of historical contextual data at the city level, our lead 
exposure captures greater spatial variation in environmental effects 
while eliminating recall bias that influences the accuracy of estimates 
of early-life exposures.

There are several other advantages of studying the historical ef-
fects of lead exposure. First, lead’s toxicity in drinking water was not 
widely known to the public during the period of the current study. 
There is little evidence that city officials used information about lead’s 
effects on health to decide whether to use lead pipes (49), making 
water-borne lead exposure an exogenous factor affecting population 
health. Second, lead exposure via drinking water in the early and 
mid-20th century was uniformly distributed within cities. Studies 

examining the effect of lead in modern or more recent populations 
have documented that children from more disadvantaged backgrounds 
are more likely to be exposed to lead than those from advantaged back-
ground (50, 51); this is because of neighborhood-to-neighborhood 
variation in the ability to replace older water pipes. This makes it 
difficult to separate the effects of lead exposure from the effects of 
contextual characteristics such as neighborhood poverty and segre-
gation. Given that the entire city population was, in most cases, 
exposed to lead through municipal water in earlier eras (49), historical 
lead exposure minimizes the possibility that estimated effects on in-
dividuals may come from selection into locations with different levels 
of exposure. Last, our historical measure offers an efficient tool for 
operationalizing the long-term consequences of early-life lead expo-
sure; the best alternative would involve measuring levels of blood or 
bone lead in a large, national sample of children and then following 
them over 50 to 80 years to measure late-life cognition. There are 
some prospective cohort studies that include blood lead level mea-
surements in childhood, but it will be several more decades before 
these cohorts are old enough to measure late-life cognition (7, 17).

Despite these strengths, we acknowledge several limitations of 
the current study. The generalizability of our finding may be limited 
to those cognitively intact at study enrollment. Compared to our 
analytic sample, those who were excluded because of the failed census 
linkage and missing data did have lower levels of cognition (table S9). 
Information on early brain structure or functioning is not available 
in the HRS; therefore, it is not feasible to explicitly examine cumu-
lative biological effects through which early-life exposure to lead affects 
cognitive aging. Furthermore, other unobserved factors such as tem-
perature, chlorination, flow rate, and the presence of other metal 
concentrations in the water are important in lead leaching (52). Con-
sidering only tap water excludes environmental exposure through 
other well-documented pathways, such leaded gasoline and paint. The 
historical measure of lead exposure may not be as precise as directly 
assessing lead levels in blood or bones. These limitations make ser-
vice line material and water pH a crude measure, at best, of actual 
lead exposure, which might have biased our effect estimates toward 
the null. Despite this, our measure has proved useful in other popu-
lation health studies to study the effect of lead on infant mortality, 
young adult cognition, and violent crime (10, 12, 49). Future research 
replicating our findings with other sources of lead exposure may be 
better able to estimate the effect of early-life lead exposure on health 
over time.

Legislative restrictions on leaded gasoline and paint are thought 
to have eliminated lead from communities, but residents of many 
U.S. cities are still exposed to high levels of lead via drinking water 
(53–55). Recent evidence shows that more than 40% of schools in 
the United States have higher than EPA-recommended levels of lead 
in their school tap water (56). Our findings point to the need for 
stronger actions in water management, corrosion control, and regu-
lation at the state and local levels to avert future lead exposure and 
its enduring health consequences.

Our findings are also germane to public health concerns about 
American children born during the 1960s, 1970s, and 1980s who 
were exposed to historically unprecedented levels of lead via leaded 
gasoline and other sources. These cohorts had blood lead levels, on 
average, three times the current reference value (57), and within the 
next 10 to 20 years, they will enter ages at which dementia risk is 
heightened. McFarland et al. (58) recently estimated that 170 million 
Americans alive today—more than half the population—were exposed 
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to high levels of lead as children. More research is clearly and urgently 
needed to better understand the lifelong implications of childhood 
lead exposure for brain aging and to identify effective interventions 
to mitigate lead’s long-term consequences.

MATERIALS AND METHODS
1940-HRS records linkage
The linking procedures involved the following three steps: (i) pre-
paring and formatting data files containing HRS respondents’ iden-
tifying information, (ii) deploying machine learning algorithms to 
mechanically link HRS records to the 1940 U.S. Census, and (iii) hand 
linking records that could not be machine linked and hand-verifying 
a portion of those that could be (28). Because the results of machine 
record linkage can vary by formatting issues (e.g., whether strings 
are in uppercase or lowercase, whether spaces have been removed, 
and whether punctuation is included), data were cleaned to standard-
ize place names and given names. For example, the strings “North 
Dakota” and “N. Dakota” may be treated as different strings by a 
computer, although they may seem the same by a human being.

The machine linkage algorithms considered the HRS respondents’ 
first names, last names, women’s last names in 1940, states of birth, 
and years of birth to locate corresponding individuals in the 1940 
Census. To match the HRS respondents’ records to the 1940 Census, 
the population of potential matches was first identified including 
pairs of 1940-HRS records that displayed identical or similar char-
acteristics on features that should be consistent over time such as 
year of birth. The probabilistic linking algorithm was then used to 
identify the correct record from among all possible records in the 
1940 Census. The algorithm was trained to assign scores to pairs of 
1940-HRS records to determine which single 1940 Census record is 
most likely to be the HRS sample member.

Last, hand linking and verification procedures were used to en-
sure high-quality matches and adjudicate between multiple possible 
matches. Other information of HRS respondents such as siblings’ 
and/or children’s names, parents’ years of birth, and race/ethnicity 
was used beyond the information that was used in the machine link-
ing. More information on the linking procedures has been described 
in detail elsewhere (28).

Measures
Cognitive functioning
For the immediate and delayed word recall tests, respondents were 
given a list of 10 nouns by interviewers and asked to recall as many 
words as possible from the list in any order. After approximately 
5 min of asking other survey questions, the respondent was asked to 
recall the nouns previously presented as part of the immediate recall 
task. We counted the total number of immediate and delayed words 
that were recalled correctly (0 to 20 points). For the counting back-
ward test, respondents were asked to count backward for 10 continuous 
numbers beginning with the number 20 as quickly as possible. We 
scored 2 points if answered correctly on the first try; 1 point if correctly 
answered on the second try; 0 if incorrect on the first or second try 
(0 to 2 points). For a serial 7s subtraction test, respondents were asked to 
subtract 7 from 100 and continue subtracting 7 from each subsequent 
number for a total of five trials. We counted the number of correct 
subtractions among the five trials (0 to 5 points). The summary score 
ranged from 0 (severely impaired) to 27 (high functioning) (32). 
Although additional cognitive status variables are assessed in the HRS, 

they are only administered to respondents aged 65 and older. Hence, 
we included these three measures administered to all sample members.
Childhood lead exposure
We use historical data about municipal service lines and water chemis-
try as a proxy measure of lead exposure via lead-contaminated drinking 
water. For cities that did not use lead service lines, no lead can leach 
into drinking water regardless of water pH. However, for cities with 
lead service lines, highly acidic (pH ≤6.5) or alkaline (pH ≥8.5) water 
leaches more lead than neutral water (12).
Adult SES and cardiovascular outcomes
Adult SES was measured using educational attainment (less than 
high school, high school, some college, and college or more) and 
household income and wealth. Both income and wealth were drawn 
from the RAND Income and Wealth Imputation data (version V1). 
Some respondents have zero income and negative wealth. We cate-
gorized income and wealth into deciles that were treated as a con-
tinuous variable in our models. Stroke, hypertension, and heart disease 
(diagnosed = 1 and nondiagnosed = 0) were considered as cardio-
vascular outcomes. We coded 1 if respondents reported that their 
doctors told them that they had a stroke, hypertension (or high blood 
pressure), or a heart disease (a heart attack, coronary heart disease, 
angina, congestive heart failure, or other heart problems). All variables 
except education were time varying.
Covariates
Demographic covariates include sex (female = 1) and race/ethnicity 
(non-Hispanic white, non-Hispanic Black, Hispanic, and other). We 
also controlled for childhood covariates including childhood SES, 
childhood health, and region of birth. We measured an index of 
childhood SES that included five items from the core survey: father’s 
education (less than 8 years = 1), mother’s education (less than 
8 years = 1), self-reported financial situation (financially poor = 1), 
moved because of financial difficulty (yes = 1), and received help from 
relatives because of financial difficulty (yes = 1). The Cronbach’s 
alpha was 0.71, indicating good reliability among the items. Follow-
ing previous work (37, 38), we imputed missing data for mother’s 
and father’s education as less than 8 years as respondents in the HRS 
missing data on parental education have economic and health variables 
similar to those whose parents had less than 8 years of education. 
Few respondents experienced four or more adversities, so we collapsed 
the index to range from zero to three or more. Childhood health 
was coded 1 if respondents reported in the core that they had “poor” 
or “fair” health. We compared individuals who were born in southern 
states (=1) to those who were born in non-southern states (=0).

Analytic strategy
We first estimated summary statistics of key variables used in our 
study at baseline. These statistics are shown separately by lead expo-
sure status. We classified respondents from cities that had lead pipes 
and extreme levels of water pH (acidic or alkaline), the conditions 
required for lead to leach into drinking water, as exposed. Because, 
for cities that did not use lead pipes or that had neutral water, lead 
cannot leach into drinking water regardless of water pH, we considered 
the rest of respondents unexposed. We performed significant group 
comparisons on the basis of chi-square test, analysis of variance 
(ANOVA), or Kruskal-Wallis test.

Next, we fit a series of nested models to assess the association 
between childhood lead exposure and cognitive trajectories. We 
first fit model 1 predicting the long-term association between child-
hood lead exposure and trajectories of cognitive function. We 
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then accounted for educational attainment in model 2 because educa-
tion is prior to income and wealth attainment (38). Model 3 considered 
income and wealth. Model 4 further adjusted for adult cardiovascular 
health conditions. Accounting for adult SES and health indicators 
in this sequential manner allowed us to investigate to what extent 
the association between childhood lead exposure and cognitive func-
tioning observed in model 1 is mediated by the adult SES and health 
pathways (38). All models were controlled for covariates including 
age, sex, race/ethnicity, childhood SES, childhood health, and region 
of birth. The unconditional model (model 0) estimating the associa-
tion between childhood lead exposure and late-life cognitive trajec-
tories without childhood covariates can be found in table S1.

Following procedures previously described in (38), we fit these 
models using growth curve models. This analytical framework ac-
counts for partially missing (or unbalanced) data using maximum 
likelihood and performs equally well or better than multiple impu-
tation methods (34, 35). The mean number of observations per 
respondent was 6.8. Time was modeled by age in the current study 
and was centered on its grand mean at age 72. Preliminary analyses 
showed a nonlinear relationship between age and the outcome, so 
we added age squared to all models. All independent variables and 
covariates were interacted with age to test for differences in the rate 
of change in cognitive functioning. The model is expressed formally as

      
 Cognitive functioning  ij   =  γ  00   +  γ  10    Age  ij   +  γ  20    Age ij  2   +  X  ij   β +

     
(  X  ij      ×   Age  ij   ) λ +  ζ  0i   +  ζ  1i    Age  ij   +  ϵ  ij  

   

where subscripts i and j index the individual and person-wave ob-
servation, respectively. i represents individual, and j represents mea-
surement occasion, which, in this case, is survey wave. 00 denotes 
the fixed intercept, 10 and 20 indicate fixed effects for the linear 
and quadratic terms of age, while  is the vector of coefficients asso-
ciated with the vector of covariates X (e.g., X can be either time in-
variant or time varying; the coefficients for time-invariant childhood 
variables are the same at all j = 1, 2, 3,…,10).  is the vector of coeffi-
cients associated with the vector of covariates and their interaction 
with age. The 0i and 1i terms represent normally distributed random 
effects for the intercept and linear term of age, respectively (these were 
allowed to covary in the model). All models were estimated using 
mixed in Stata 17.

Mediation analyses were carried out in two steps. First, following 
previous work (36–38), we ran a series of models with adult SES and 
health outcomes as a function of childhood lead exposure, net of 
demographic, and childhood covariates. We chose to analyze adult-
hood SES and health outcomes at the baseline survey because results 
from growth curve models only identified level differences in cogni-
tive performance by childhood lead exposure, not slope differences 
in the rate of cognitive change. While this approach is useful to test 
whether childhood lead exposure is related to each of the adult vari-
ables identified as potential mediators, it does not decompose total 
effects into direct and indirect effects.

To formally test for mediation, we used the KHB method (40, 59). 
The KHB method uses the “difference in coefficients” method to 
decompose total effects into direct and indirect effects. To facilitate 
comparability of the coefficients across nested models, the KHB 
method rescales the coefficients of the nested model using the residual 
variance of the full model. The KHB method estimates the percentage 
of the indirect effect that is explained by each of the possible medi-
ating variables, allowing us to determine the relative magnitude of 

the proposed pathways (59). The KHB method has been widely used 
in previous studies of mediation analysis of cognitive functioning 
(38, 60, 61). Same as in table S2, we fit models at baseline. We in-
cluded all the proposed mediators in the full model and compared 
it with the nested model that accounts for childhood lead exposure 
and covariates. The top level shows the relative importance of the 
direct and indirect pathways between childhood lead exposure and cog-
nitive functioning. The bottom shows which pathways (adult educa-
tion, income, wealth, stroke, hypertension, and heart disease) play the 
greatest role in mediating the association between lead and cognition.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn5164
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