
RESEARCH ARTICLE

Differential Expression of Lipid Metabolism-
Related Proteins in Different Breast Cancer
Subtypes
Sewha Kim, YuKyung Lee, Ja Seung Koo*

Department of Pathology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-
752, Republic of Korea

* kjs1976@yuhs.ac

Abstract

Purpose

This study aimed to determine the expression and clinical significance of proteins that are

involved in lipid metabolism in human breast tumors.

Methods

Tumors from 476 breast cancer patients were used to construct tissue microarrays. Then,

immunohistochemistry (IHC) for hormone-sensitive lipase (HSL), Perilipin 1 (PLIN1), fatty

acid binding protein 4 (FABP4), carnitine palmitoyltransferase IA (CPT-1A), acyl-CoA oxi-

dase 1 (ACOX-1), and fatty acid synthase (FASN) was performed on these microarrays.

Results

Breast tumors were classified into 4 subtypes: luminal A (n = 242; 50.8%), luminal B

(n = 134; 28.2%), human epidermal growth factor receptor 2 (HER2) (n = 50; 10.5%), and tri-

ple negative breast cancer (TNBC) (n = 50; 10.5%). The expression of PLIN1 (p< 0.001),

FABP4 (p = 0.029), CPT-1A (p = 0.001), ACOX-1 (p< 0.001), and FASN (p< 0.001) dif-

fered significantly among these tumor subtypes. Notably, PLIN1, CPT-1A, and FASN ex-

pression was highest in HER2 tumors and lowest in TNBC tumors. Similarly, the expression

of FABP4 and ACOX-1 was highest in HER2 tumors and lowest in luminal A tumors. In addi-

tion, ACOX-1 positivity was associated with significantly shorter overall survival (p = 0.018).

When tumor subtype was considered, FABP4 positivity was associated with significantly

shorter disease-free survival (p = 0.005) and overall survival (p = 0.041) in TNBC.

Conclusion

Lipid metabolism-related proteins are differentially expressed in different IHC subtypes of

breast cancer and some are associated with decreased survival rates.

PLOS ONE | DOI:10.1371/journal.pone.0119473 March 9, 2015 1 / 15

a11111

OPEN ACCESS

Citation: Kim S, Lee Y, Koo JS (2015) Differential
Expression of Lipid Metabolism-Related Proteins in
Different Breast Cancer Subtypes. PLoS ONE 10(3):
e0119473. doi:10.1371/journal.pone.0119473

Academic Editor: Harriet Wikman, University
Medical Center Hamburg-Eppendorf, GERMANY

Received: August 31, 2014

Accepted: January 29, 2015

Published: March 9, 2015

Copyright: © 2015 Kim et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This study was supported by a grant from
the National R&D Program for Cancer Control,
Ministry of Health & Welfare, Republic of Korea
(1420080). The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0119473&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Introduction
In oncology, the Warburg effect describes a significant metabolic change in energy production
from oxidative phosphorylation in normal cells to aerobic glycolysis in cancer cells [1]. Howev-
er, this definition is somewhat simplistic as tumors can use several different metabolic mecha-
nisms to produce energy, depending on the type of tumor [2], which complicates targeted
delivery of metabolic inhibitors to cancer cells. One such mechanism is lipid metabolism,
which involves lipid synthesis, lipid degradation and catabolism, and fatty acid (FA) oxidation.
Lipid synthesis includes FA and triacylglycerol (TAG) synthesis by fatty acid synthase (FASN)
[3], and lipid degradation and catabolism include TAG, cholesterol ester, and phospholipid hy-
drolysis. A key enzyme in this process is hormone-sensitive lipase (HSL) [4–6]. FA oxidation
involves catabolism of free fatty acids in the mitochondria to produce energy. Carnitine palmi-
toyltransferase IA (CPT-1A) and acyl-CoA oxidase 1 (ACOX-1) are two important enzymes in
this process [5–7]. Aside from this process, lipid transport and uptake are indeed an important
and under-appreciated aspect of lipid metabolism in cancer [8,9]. Two important proteins in
this process are fatty acid binding protein 4 (FABP4), which transports free fatty acids, and
Perilipin 1 (PLIN1), which helps to regulate triacylglycerol storage by suppressing its hydrolysis
[10]. In addition, it is also becoming clear that lipid droplets are more than just passive storage
components and are important in cancer as well, in particular for survival under stressful con-
ditions [11,12], where lipid droplet proteins (HSL and PLIN1) play an important role.

Due to the clinical, histological, and molecular heterogeneity of breast tumors, many classi-
fication schemes have been proposed to group tumors with similar features. For example, gene
profiling analyses of breast tumors have suggested 5 molecular subtypes, namely, luminal A, lu-
minal B, HER2, normal breast-like, and basal-like) [13]. Since these subtypes differ in terms of
their histology, clinical behavior, and therapeutic response, it is not surprising that they use
metabolic pathways differentially. Indeed, previous studies have shown that proteins that are
involved in glycolysis [14,15], glutaminolysis [16], and glycine or serine metabolism [17] are
differentially expressed among different tumor subtypes. However, little is known about the
differential expression of proteins that are involved in lipid metabolism in different breast can-
cer subtypes. As a result, this study aimed to determine the expression and clinical significance
of proteins that are involved in lipolysis and mitochondrial β-oxidation in different breast
cancer subtypes.

Methods

Cell culture and western blot
Five breast cancer cell lines, namely, MCF-7, MDA-MB-453, MDA-MB-435S, MDA-MB-231,
and MDA-MB-468, were obtained from the American Type Culture Collection (ATCC).
MDA-MB-435S, MDA-MB-231, and MDA-MB-468 cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin (Hyclone) in a humidified incubator with 5% CO2 at 37°C. MCF-7 cells were
cultured in DMEM without phenol red (Gibco) supplemented with 10% FBS, 1% penicillin-
streptomycin, and 10 mg/mL insulin. MDA-MB-453 cells were maintained in L-15 medium
(ATCC) supplemented with 10% FBS.

Cells were harvested and lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 1% nonyl phenoxy-
polyethoxylethanol, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM ethylenediaminetetra-
acetic acid, and 0.1% sodium dodecyl sulfate [SDS]) containing protease inhibitors.
Subsequently, lysates were centrifuged at 13,000 g for 15 min at 4°C. Protein concentrations
were measured by using the bicinchoninic acid assay (Thermo-Scientific). An equal amount of
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protein from each sample was separated by SDS polyacrylamide gel electrophoresis and then
blotted onto nitrocellulose membranes (Bio-Rad). The membranes were blocked with 7% non-
fat dry milk in phosphate-buffered saline with Tween 20, and then incubated with primary an-
tibodies against HSL, PLIN1, FABP4, CPT-1A, ACOX-1, and β-actin (Table 1) for 1 hour at
room temperature. Then, the membranes were incubated with a horseradish peroxidase-
conjugated secondary antibody for 1 hour at room temperature. Finally, the bound antibodies
were visualized by using an enhanced chemiluminescent reagent (GE Healthcare Life Sciences).
All antibodies were purchased from Abcam.

Patients selection
The study group consisted of 476 patients who were diagnosed with invasive breast cancer and
underwent surgical excision at Yonsei University Severance Hospital (Seoul, Korea) between
January 2002 and December 2006. Patients who received preoperative hormonal therapy or
neoadjuvant chemotherapy were excluded from the study. This study was approved by the In-
stitutional Review Board of Yonsei University Severance Hospital.

Hematoxylin and eosin (H&E)-stained tumor sections were retrospectively reviewed by a
breast pathologist who graded the tumor using the Nottingham grading system [18]. For each
patient, age at the time of initial diagnosis, lymph node metastasis, tumor recurrence, distant
metastasis, and survival were recorded.

Construction of tissue microarrays
A representative area was selected from a H&E section and the corresponding area was marked
on the surface of the paraffin-embedded tissue block. Then, a paraffin tissue punch was used to
extract a 3 mm core sample from the selected area, which was placed into a 6 × 5 recipient
block. Two tissue cores were extracted to reduce sampling bias. Each core was assigned a
unique tissue microarray location number, which was linked to a database that contained other
clinicopathological data.

Immunohistochemistry
All immunohistochemical staining was performed on formalin-fixed, paraffin-embedded tissue
sections. Briefly, 5 μm-thick sections were cut with a microtome, transferred onto adhesive
slides, and then dried at 62°C for 30 minutes. All slides were incubated with primary antibodies
(Table 1). After applying primary antibodies, blocking time was 2 hours at 37°C. Subsequently,
immunodetection was performed by using a commercial streptavidin-biotin kit according to
the manufacturer’s instructions, which involved incubation with biotinylated anti-mouse or
anti-rabbit immunoglobulin, followed by peroxidase-labeled streptavidin and 3,30-diamino-
benzidine chromogenic substrate. The primary antibody incubation step was omitted in the
negative control. Finally, the slides were counterstained with Harris hematoxylin.

Interpretation of immunohistochemical staining
The status of all immunohistochemical markers was determined by using light microscopy to
assess the fraction of stained cells. HSL, PLIN1, FABP4, CPT-1A, ACOX-1, and fatty acid
synthase (FASN) immunostaining were scored as the product of the proportion of stained cells
(0 = no staining, 1 = less than 30%, or 2 = more than 30%) and staining intensity (0 = no stain-
ing, 1 = weak, 2 = moderate, or 3 = strong). The scores for the proportion of stained cells and
the staining were multiplied to provide a total score. A total score of 2–6 was considered posi-
tive, while a score of 0 or 1 was considered negative [19]. Similarly, Ki-67 immunostains were
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scored as the percentage of stained tumor cells, which was defined as the Ki-67 labeling index
(LI). In addition, estrogen receptor (ER) and progesterone receptor (PR) positivity were de-
fined as one percent or more cells having positively stained nuclei [20].

HER2 immunohistochemistry (IHC) results were classified according to American Society
of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines, which in-
cludes the following categories: 0 = no immunostaining; 1+ = weak/incomplete membrane
staining in less than 10% of tumor cells; 2+ = complete membrane staining that is either uni-
form or weak in at least 10% of all tumor cells; and 3+ = uniform, intense membrane staining
in at least 30% of tumor cells. HER2 positivity was defined as IHC 3+, while IHC 0 or 1+ were
considered to be HER2 negative [21]. However, IHC 2+ is an equivocal classification, so in
these cases, HER2 expression was further evaluated with fluorescence in situ hybridization
(FISH).

Fluorescence in situ hybridization (FISH) analysis
FISH was performed by using a PathVysion HER2 DNA Probe Kit (Vysis, Downers Grove, IL,
USA) according to the manufacturer’s instructions. Then, theHER2 gene copy number was
quantified by using an epifluorescence microscope (Olympus, Tokyo, Japan). At least 60 tumor
cell nuclei from three separate regions were used to measure signals from DNA probes specific
for HER2 and the centromeric region of chromosome 17 (CEP17).HER2 gene amplification
was determined according to ASCO/CAP guidelines [21]. Specifically, HER2 negativity was de-
fined as a dual-probe HER2/CEP17 signal ratio less than 1.8 with an absolute HER2 gene copy
number of less than 4 signals per cell. On the other hand, a HER2/CEP17 ratio greater than 2.2
with an absolute HER2 gene copy number of greater than 6 signals per cell was considered to
be HER2 positive. HER2/CEP17 ratios between 1.8 and 2.2 or absolute HER2 copy numbers
between 4 and 6 were considered to be HER2 equivocal.

Classification of tumor phenotypes
Breast tumor phenotypes were classified into four subtypes according to their IHC results for
ER, PR, and Ki-67 and IHC/FISH results for HER2 as follows: (1) luminal A = ER+ and/or PR
+, HER2-, and Ki-67 LI<14%; (2) luminal B = ER+ and/or PR+, HER2-, and Ki-67 LI�14%;

Table 1. Source, clone, and dilution of used antibodies.

Antibody Clone Catalogue number Antigen retrieval Dilution Company

Molecular subtype-related

ER SP1 RM-9101-S Citric acid / microwave 1:100 Thermo Scientific, CA,

USA

PR PgR 636 M3569 Citric acid / microwave 1:50 DAKO, Denmark

HER2 Polyclonal A0485 Citric acid / microwave 1:1500 DAKO, Denmark

Ki-67 MIB-1 M7240 Citric acid / microwave 1:150 DAKO, Denmark

Lipolysis-related Citric acid / microwave

HSL Polyclonal ab45422 Citric acid / microwave 1:100 Abcam, Cambridge, UK

PLIN1 Polyclonal ab61682 Citric acid / microwave 1:100 Abcam, Cambridge, UK

FABP4 Polyclonal ab13979 Citric acid / microwave 1:100 Abcam, Cambridge, UK

CPT-1 8F6AE9 ab128568 Citric acid / microwave 1:200 Abcam, Cambridge, UK

Acyl-CoA oxidase 1 Polyclonal ab128549 Citric acid / microwave 1:50 Abcam, Cambridge, UK

FASN EPR7466 ab128870 Citric acid / microwave 1:200 Abcam, Cambridge, UK

doi:10.1371/journal.pone.0119473.t001
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or ER+ and/or PR+ and HER2+; (3) HER2 = ER-, PR-, and HER2+; and (4) triple negative
breast cancer (TNBC) = ER-, PR-, and HER2− [22].

Statistical analyses
Student’s t test and Fisher’s exact test were used to detect statistically significant differences
(p< 0.05) in continuous and categorical variables, respectively. Kaplan-Meier survival curves
and log-rank statistics were also used to estimate disease-free survival (DFS) and overall surviv-
al (OS) rates. Multivariate regression analysis was performed with the Cox proportional haz-
ards model. All statistical analyses were calculated with SPSS for Windows, version 12.0 (SPSS
Inc., Chicago, IL, USA).

Results

Patient characteristics
The clinicopathological characteristics of the 476 female patients in this study are shown in
Table 2. The distribution of tumor subtypes was as follows: 242 luminal A (50.8%), 134 luminal
B (28.2%), 50 HER2 (10.5%), and 50 TNBC (10.5%). When comparing clinicopathologic fac-
tors among molecular subtypes, TNBC tumors tended to have a higher histologic grade (p<
0.001) and higher Ki-67 LI (p< 0.001) than other subtypes.

Differential expression of lipid metabolism-related proteins in in vitro cell
lines
Western blotting revealed differential expression of lipid metabolism-related proteins among
different breast cancer cell lines. Specifically, HSL and ACOX-1 were highly expressed in
MDA-MB-453 cells (HER2 subtype). The expression of FABP4 and CPT-1A in MCF-7 cells
(luminal subtype) and MDA-MB-453 cells was higher than in MDA-MB-435S, MDA-MB-231,
and MDA-MB-468 cells (TNBC subtypes) (Fig. 1).

Differential expression of lipid metabolism-related proteins in different
tumor subtypes
When comparing expressions of lipid metabolism—related proteins among molecular sub-
types, the expression of PLIN1 (p< 0.001), FABP4 (p = 0.029), CPT-1A (p = 0.001), ACOX-1
(p< 0.001), and FASN (p< 0.001) differed significantly among the different tumor subtypes.
Specifically, PLIN1, CPT-1A, and FASN expression were highest in HER2 tumors and lowest
in TNBC tumors. Similarly, FABP4 and ACOX-1 expression were highest in HER2 tumors and
lowest in luminal A tumors (Table 3 and Fig. 2).

Correlation between expression of lipid metabolism-related proteins and
clinicopathological characteristics
As shown in Table 4, HER2 positivity was significantly associated with CPT-1A positivity (p<
0.001) and ACOX-1 positivity (p< 0.001). ACOX-1 positivity also tended to be associated
with a higher histologic grade (p = 0.006), ER negativity (p< 0.001), PR negativity (p< 0.001),
and a higher Ki-67 LI (p< 0.001). FABP4 positivity was significantly correlated with ER nega-
tivity (p = 0.018).
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Association of the expression of lipid metabolism—related proteins with
prognosis
The only statistically significant relationship revealed by univariate analysis was an association
between ACOX-1 positivity and shorter OS (p = 0.018; Table 5). However, when tumor sub-
type was considered, there were also significant associations between FABP4 positivity and
shorter DFS (p = 0.005) and shorter OS (p = 0.041) in TNBC (Fig. 3).

Multivariate Cox regression analysis revealed that higher T stage is an independent predic-
tive factor for shorter DFS (hazard ratio: 3.801, 95% CI: 1.361–10.61, p = 0.011), but no other
parameter had a statistically significant association with either DFS or OS (Table 6).

The effect of the expression of lipid metabolism-related proteins on survival rates depending
on ER, PR, and HER2 status of breast tumors is shown in Fig. 4. ACOX-1 positivity was associ-
ated with shorter OS in patients with ER positive tumors (p = 0.024) and HER2 positive tumors
(p = 0.023). In addition, FASN negativity was associated with shorter DFS in patients with PR
negative tumors (p = 0.046).

Table 2. Clinicopathologic characteristics of patients according to breast cancer phenotype.

Parameter Total Luminal A Luminal B HER2 TNBC P-value*
(n = 476) (n = 242) (n = 134) (n = 50) (n = 50)
(100%) (50.8%) (28.2%) (10.5%) (10.5%)

Age (Years, mean ±SD) 50.5±10.3 51.0±10.3 47.9±9.7 53.3±9.6 51.9±11.8 0.003

Histologic grade <0.001

I/II 352 (73.9) 220 (90.9) 87 (64.9) 29 (58.0) 16 (32.0)

III 124 (26.1) 22 (9.1) 47 (35.1) 21 (42.0) 34 (68.0)

Tumor stage 0.577

T1 274 (57.6) 145 (59.9) 77 (57.5) 27 (54.0) 25 (50.0)

T2/T3 202 (42.4) 97 (40.1) 57 (42.5) 23 (46.0) 25 (50.0)

Nodal metastasis 0.288

Absent 283 (59.5) 139 (57.4) 78 (58.2) 30 (60.0) 36 (72.0)

Present 193 (40.5) 103 (42.6) 56 (41.8) 20 (40.0) 14 (28.0)

Estrogen receptor status <0.001

Negative 110 (23.1) 5 (2.1) 5 (3.7) 50 (100.0) 50 (100.0)

Positive 366 (76.9) 237 (97.9) 129 (96.3) 0 (0.0) 0 (0.0)

Progesterone receptor status <0.001

Negative 162 (34.0) 34 (14.0) 28 (20.9) 50 (100.0) 50 (100.0)

Positive 314 (66.0) 208 (86.0) 106 (79.1) 0 (0.0) 0 (0.0)

HER2 status <0.001

Negative 349 (73.3) 242 (100.0) 57 (42.5) 0 (0.0) 50 (100.0)

Positive 127 (26.7) 0 (0.0) 77 (57.5) 50 (100.0) 0 (0.0)

Ki-67 LI (%) <0.001

�14 305 (64.1) 242 (100.0) 41 (30.6) 16 (32.0) 6 (12.0)

>14 171 (35.9) 0 (0.0) 93 (69.4) 34 (68.0) 44 (88.0)

Tumor recurrence 22 (4.6) 8 (3.3) 5 (3.7) 5 (10.0) 4 (8.0) 0.124

No. of patient deaths 26 (5.5) 9 (3.7) 5 (3.7) 5 (10.0) 7 (14.0) 0.010

Duration of clinical follow- 58.5±15.3 60.1±14.1 58.8±15.7 52.9±20.0 55.5±13.1 0.074

up (months, mean ± SD)

TNBC, triple negative breast cancer.

* P-value was calculated by Fisher’s exact test.

doi:10.1371/journal.pone.0119473.t002
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Discussion
In this study, we observed differential expression of lipid metabolism-related proteins in 4
breast cancer subtypes. In particular, HER2 tumors showed the highest expression of PLIN1,
CPT-1A, FASN, FABP4, and ACOX-1. This finding is consistent with two previous studies
about HER2 and FASN. In one study, FASN expression was strongly correlated with HER2 sta-
tus [23]. Another study showed that HER2 interacts with FASN and promotes FASN phos-
phorylation, which increases its activity and leads to cancer cell proliferation, and eventually,
metastasis [24]. Our results suggest that lipid metabolism in breast tumors with the HER2 sub-
type is higher than that in other subtypes. Previous studies showed the difference of lipid me-
tabolism genes according to breast cancer subtypes: products of de novo fatty acid synthesis,
such as palmitate-containing phosphatidylcholine, were high in ER negative and grade 3 breast
cancers [25], and acyl-CoA:cholesterol acyltransferase 1 (ACAT) activity was high in ER-nega-
tive basal-like breast cancer [26]. However, there was one report that the gene for secreted
phospholipase A2 (sPLA2) is silenced in triple negative breast cancer cells [27]. Therefore, fur-
ther study is required to evaluate the status of lipid metabolism genes according to breast
cancer subtypes.

More generally, our results support the hypothesis that different breast cancer subtypes use
different metabolic pathways, which has been previously suggested [2]. In this study, the

Fig 1. Expression of lipolysis-related proteins in five subtypes of breast cancer cells.MCF-7 (luminal-
like), MDA-MB-453 (HER2), MDA-MB-435S (TNBC), MDA-MB-231 (TNBC), and MDA-MB-468 (TNBC) cells
were lysed with RIPA buffer, and then cell lysates were subjected to SDS-PAGE and blotted with the
indicated antibodies. Blots are representative of three independent experiments. TNBC, triple-negative
breast cancer; HSL, hormone sensitive lipase; FABP4, fatty-acid binding protein 4; CPT-1A, carnitine
palmitoyltransferase IA; ACOX1, Acyl-CoA oxidase 1; FASN, fatty acid synthase.

doi:10.1371/journal.pone.0119473.g001
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expression of three lipid metabolism-related proteins (PLIN1, CPT-1A, and FASN) in TNBC
cells was lower than that in other subtypes. Although a previous study demonstrated that the
gene for secreted phospholipase A2 (sPLA2) is silenced in triple negative breast cancer cells
[27], another report showed that sPLA2-induced lipid droplet formation plays an important
role in TNBC cell proliferation and survival during starvation [12], indicating controversial re-
sults. Specifically, TNBC is often associated with a high histologic grade, accelerated mitosis,
tumor necrosis, aggressive clinical behavior, and poor prognosis [28,29]. In addition, glycoly-
sis-related proteins are highly expressed in TNBC and basal-like breast tumors, which imply
high glycolytic activity [14,15], suggesting high metabolic activity in TNBC. Therefore, further
study of lipid metabolism activity in TNBC is required.

The preference of different breast cancer subtypes for different metabolic pathways may
have clinical implications. For example, ACOX-1 positivity was significantly correlated with
shorter OS as well as clinicopathological characteristics, such as higher histologic grade (p =
0.006), ER negativity (p< 0.001), PR negativity (p< 0.001), and higher Ki-67 LI (p< 0.001),
that are associated with poor prognosis in breast cancer patients. These results are in accor-
dance with a previous study that showed that ACOX-1 expression increases with worsening
histologic grade in brain glioma [30]. Similarly, FABP4 positivity was significantly associated
with shorter DFS and OS in TNBC patients. These findings are supported by the observations
that serum FABP levels are significantly higher in breast cancer patients than in healthy pa-
tients, and high serum levels of FABP are associated with adverse tumor characteristics, such as
large tumor size and lymph node metastasis [31]. Similar correlations have also been found in
bladder cancer [32] and prostate cancer [33].

Table 3. Expression of metabolism-related proteins according to breast cancer subtype.

Parameter Total Luminal A Luminal B HER2 TNBC P-value*
(n = 476) (%) (n = 242) (%) (n = 134) (%) (n = 50) (%) (n = 50) (%)

HSL 0.082

Negative 406 (85.3) 199 (82.2) 115 (85.8) 44 (88.0) 48 (96.0)

Positive 70 (14.7) 43 (17.8) 19 (14.2) 6 (12.0) 2 (4.0)

PLIN1 <0.001

Negative 422 (88.7) 222 (91.7) 120 (89.6) 34 (68.0) 46 (92.0)

Positive 54 (11.3) 20 (8.3) 14 (10.4) 16 (32.0) 4 (8.0)

FABP4 0.029

Negative 468 (98.3) 240 (99.2) 133 (99.3) 47 (94.0) 48 (96.0)

Positive 8 (1.7) 2 (0.8) 1 (0.7) 3 (6.0) 2 (4.0)

CPT-1A 0.001

Negative 406 (85.3) 217 (89.7) 107 (79.9) 36 (72.0) 46 (92.0)

Positive 70 (14.7) 25 (10.3) 27 (20.1) 14 (28.0) 4 (8.0)

Acyl-CoA oxidase 1 <0.001

Negative 418 (87.8) 234 (96.7) 121 (90.3) 22 (44.0) 41 (82.0)

Positive 58 (12.2) 8 (3.3) 13 (9.7) 28 (56.0) 9 (18.0)

FASN <0.001

Negative 312 (65.5) 160 (66.1) 88 (65.7) 22 (44.0) 42 (84.0)

Positive 164 (34.5) 82 (33.9) 46 (34.3) 28 (56.0) 8 (16.0)

TNBC, triple negative breast cancer.

* P-value was calculated by Fisher’s exact test.

doi:10.1371/journal.pone.0119473.t003
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Fig 2. Expression of lipid metabolism related proteins according to the molecular subtypes of breast cancer. PLIN1, CPT-1A, and FASN expression
are highest in HER2 tumors and lowest in TNBC tumors. Similarly, FABP4 and ACOX-1 expression are highest in HER2 tumors and lowest in luminal
A tumors.

doi:10.1371/journal.pone.0119473.g002

Lipid Metabolism in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0119473 March 9, 2015 9 / 15



Table 4. Correlations between the expression of lipid metabolism—related proteins and clinicopathologic parameters.

Parameters HSL PLIN1 FABP4

Negative Positive P-value* Negative Positive P-value* Negative Positive P-value*
n = 406 (%) n = 70 (%) n = 422 (%) n = 54 (%) n = 468 (%) n = 8 (%)

Age (Years, mean ±SD) 50.6±10.3 49.4±10.5 2.232 50.3±10.2 52.1±11.1 1.380 50.5±10.3 46.2±11.7 1.458

Histologic grade 3.060 0.186 0.186

I/II 298 (73.4) 54 (77.1) 319 (75.6) 33 (61.1) 349 (74.6) 3 (37.5)

III 108 (26.6) 16 (22.9) 103 (24.4) 21 (38.9) 119 (25.4) 5 (62.5)

Tumor stage 2.874 0.906 1.482

T1 231 (56.9) 43 (61.4) 238 (56.4) 36 (66.7) 271 (57.9) 3 (37.5)

T2/T3 175 (43.1) 27 (38.6) 184 (43.6) 18 (33.3) 197 (42.1) 5 (62.5)

Nodal metastasis 4.296 3.462 5.160

Absent 240 (59.1) 43 (61.4) 249 (59.0) 34 (63.0) 278 (59.4) 5 (62.5)

Present 166 (40.9) 27 (38.6) 173 (41.0) 20 (37.0) 190 (40.6) 3 (37.5)

Estrogen receptor status 0.168 0.060 0.018

Negative 101 (24.9) 9 (12.9) 90 (21.3) 20 (37.0) 104 (22.2) 6 (75.0)

Positive 305 (75.1) 61 (87.1) 332 (78.7) 34 (63.0) 364 (77.8) 2 (25.0)

Progesterone receptor status 0.096 0.018 0.126

Negative 147 (36.2) 15 (21.4) 134 (31.8) 28 (51.9) 156 (33.3) 6 (75.0)

Positive 259 (63.8) 55 (78.6) 288 (68.2) 26 (48.1) 312 (66.7) 2 (25.0)

HER2 status 2.604 0.078 1.308

Negative 295 (72.7) 54 (77.1) 317 (75.1) 32 (59.3) 345 (73.7) 4 (50.0)

Positive 111 (27.3) 16 (22.9) 105 (24.9) 22 (40.7) 123 (26.3) 4 (50.0)

Ki-67 LI (%) 0.168 0.132 0.858

�14 252 (62.1) 53 (75.7) 278 (65.9) 27 (50.0) 302 (64.5) 3 (37.5)

>14 154 (37.9) 17 (24.3) 144 (34.1) 27 (50.0) 166 (35.5) 5 (62.5)

Tumor recurrence 21 (5.2) 1 (1.4) 1.356 20 (4.7) 2 (3.7) 6.000 21 (4.5) 1 (12.5) 1.902

Patient death 24 (5.9) 2 (2.9) 2.412 24 (5.7) 2 (3.7) 4.530 25 (5.3) 1 (12.5) 2.184

Parameters CPT-1 Acyl-CoA oxidase 1 FASN
Negative Positive P-value* Negative Positive P-value* Negative Positive P-value*
n = 406 (%) n = 70 (%) n = 504 (%) n = 236 (%) n = 504 (%) n = 236 (%)

Age (Years, mean ±SD) 50.4±10.2 50.8±11.1 4.806 50.3±10.5 51.7±8.8 1.896 51.6±10.5 48.4±9.8 0.012

Histologic grade 3.618 <0.001 0.060

I/II 302 (74.4) 50 (71.4) 321 (76.8) 31 (53.4) 219 (70.2) 133 (81.1)

III 104 (25.6) 20 (28.6) 97 (23.2) 27 (46.6) 93 (29.8) 31 (18.9)

Tumor stage 4.410 2.994 4.704

T1 235 (57.9) 39 (55.7) 243 (58.1) 31 (53.4) 181 (58.0) 93 (56.7)

T2/T3 171 (42.1) 31 (44.3) 175 (41.9) 27 (46.6) 131 (42.0) 71 (43.3)

Nodal metastasis 0.486 3.990 4.614

Absent 248 (61.1) 35 (50.0) 247 (59.1) 36 (62.1) 184 (59.0) 99 (60.4)

Present 158 (38.9) 35 (50.0) 171 (40.9) 22 (37.9) 128 (41.0) 65 (39.6)

Estrogen receptor status 1.440 <0.001 5.892

Negative 90 (22.2) 20 (28.6) 72 (17.2) 38 (65.5) 72 (23.1) 38 (23.2)

Positive 316 (77.8) 50 (71.4) 346 (82.8) 20 (34.5) 240 (76.9) 126 (76.8)

Progesterone receptor status 0.942 <0.001 5.208

Negative 133 (32.8) 29 (41.4) 122 (29.2) 40 (69.0) 107 (34.3) 55 (33.5)

Positive 273 (67.2) 41 (58.6) 296 (70.8) 18 (31.0) 205 (65.7) 109 (66.5)

(Continued)
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These differences suggest that selective inhibition of lipid metabolism-related proteins may
be a potential chemotherapeutic strategy for some breast cancer subtypes. This hypothesis is
supported by the observation that inhibitors of glycolysis-related molecules, such as hypoxia-
inducible factor 1α [34,35], glucose transporter 1 [36,37], carbonic anhydrase IX [38], and
monocarboxylate transporter 4 [39], suppress tumor progression in several types of cancer, in-
cluding breast cancer. In addition, several FASN inhibitors have been shown to decrease tumor
cell growth or increase tumor cell death [24,40,41]. However, further studies are needed to de-
termine the value of lipid metabolism-related proteins as therapeutic targets.

Table 4. (Continued)

Parameters CPT-1 Acyl-CoA oxidase 1 FASN
Negative Positive P-value* Negative Positive P-value* Negative Positive P-value*
n = 406 (%) n = 70 (%) n = 504 (%) n = 236 (%) n = 504 (%) n = 236 (%)

HER2 status <0.001 <0.001 0.432

Negative 310 (76.4) 39 (55.7) 328 (78.5) 21 (36.2) 237 (76.0) 112 (68.3)

Positive 96 (23.6) 31 (44.3) 90 (21.5) 37 (63.8) 75 (24.0) 52 (31.7)

Ki-67 LI (%) 2.652 <0.001 4.962

�14 263 (64.8) 42 (60.0) 282 (67.5) 23 (39.7) 201 (64.4) 104 (63.4)

>14 143 (35.2) 28 (40.0) 136 (32.5) 35 (60.3) 111 (35.6) 60 (36.6)

Tumor recurrence 18 (4.4) 4 (5.7) 3.288 18 (4.3) 4 (6.9) 1.968 18 (5.8) 4 (2.4) 0.678

Patient death 19 (4.7) 7 (10.0) 0.510 20 (4.8) 6 (10.3) 0.678 21 (6.7) 5 (3.0) 0.816

* P-values are corrected for multiple testing using the Bonferroni correction.

doi:10.1371/journal.pone.0119473.t004

Table 5. The impact of expression of lipid metabolism-related proteins on prognosis.

Parameter Number of patients/recurrence/death Disease-free survival Overall survival

Mean survival P-value Mean survival P-value
(95% CI) months (95% CI) months

HSL 0.176 0.315

Negative 406/21/24 87 (85–88) 87 (85–88)

Positive 70/1/2 84 (83–85) 83 (81–85)

PLIN1 0.795 0.632

Negative 422/20/24 87 (86–89) 87 (85–88)

Positive 54/2/2 81 (78–84) 81 (78–84)

FABP4 0.161 0.233

Negative 468/21/25 87 (86–89) 87 (86–88)

Positive 8/1/1 59 (43–74) 59 (44–74)

CPT-1A 0.608 0.069

Negative 406/18/19 87 (86–89) 87 (86–89)

Positive 70/4/7 85 (81–89) 83 (79–87)

Acyl-CoA oxidase 1 0.184 0.018

Negative 418/18/20 87 (86–89) 87 (86–89)

Positive 58/4/6 78 (73–82) 77 (72–81)

FASN 0.111 0.106

Negative 312/18/21 86 (84–88) 86 (84–88)

Positive 164/4/5 87 (86–89) 87 (85–88)

doi:10.1371/journal.pone.0119473.t005
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Fig 3. Impact of the expression of lipid metabolism related proteins on patient prognosis in breast cancer (a) and triple negative breast cancer (b,
c).

doi:10.1371/journal.pone.0119473.g003

Table 6. Multivariate analysis of breast cancer survival.

Included parameters Disease-free survival Overall survival

Hazard ratio 95% CI P-value Hazard ratio 95% CI P-value

T stage 0.011 0.107

T1 versus T2–3 3.801 1.361–10.61 2.021 0.859–4.752

N stage 0.183 0.911

N0 versus N1–3 1.848 0.748–4.565 0.953 0.413–2.202

Age 0.731 0.476

<50 versus �50 1.167 0.483–2.823 0.742 0.327–1.686

Histologic grade 0.463 0.946

I/II versus III 1.467 0.527–4.083 1.035 0.383–2.797

ER status 0.272 0.304

Negative versus Positive 1.974 0.587–6.641 1.857 0.571–6.043

PR status 0.234 0.146

Negative versus Positive 1.989 0.641–6.170 2.240 0.756–6.641

HER2 status 0.979 0.459

Negative versus Positive 1.014 0.360–2.858 0.688 0.256–1.849

Ki-67 LI 0.242 0.595

�14 versus >14 0.540 0.191–1.525 0.768 0.290–2.031

HSL 0.399 0.595

Negative versus Positive 0.410 0.051–3.267 0.663 0.146–3.014

PLIN1 0.930 0.672

Negative versus Positive 1.072 0.227–5.071 0.716 0.152–3.367

FABP4 0.319 0.276

Negative versus Positive 2.970 0.349–25.29 3.270 0.387–27.61

CPT1 0.846 0.072

Negative versus Positive 1.125 0.343–3.686 2.406 0.924–6.262

Acyl-CoA oxidase 1 0.647 0.161

Negative versus Positive 1.342 0.381–4.730 2.180 0.733–6.481

FASN 0.164 0.076

Negative versus Positive 0.438 0.137–1.402 0.371 0.124–1.109

doi:10.1371/journal.pone.0119473.t006

Lipid Metabolism in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0119473 March 9, 2015 12 / 15



In conclusion, our results showed that lipid metabolism-related proteins are differentially
expressed in different breast cancer subtypes, which may aid the development of novel
chemotherapeutic agents.
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