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A multiomics disease progression 
signature of low‑risk ccRCC​
Philipp Strauss1*, Mariell Rivedal1, Andreas Scherer2,3, Øystein Eikrem1,4, Sigrid Nakken1, 
Christian Beisland1,5, Leif Bostad1,6, Arnar Flatberg7,8, Eleni Skandalou1, Vidar Beisvåg7,8, 
Jessica Furriol4 & Hans‑Peter Marti1,4

Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Identification of ccRCC likely 
to progress, despite an apparent low risk at the time of surgery, represents a key clinical issue. From 
a cohort of adult ccRCC patients (n = 443), we selected low-risk tumors progressing within a 5-years 
average follow-up (progressors: P, n = 8) and non-progressing (NP) tumors (n = 16). Transcriptome 
sequencing, miRNA sequencing and proteomics were performed on tissues obtained at surgery. We 
identified 151 proteins, 1167 mRNAs and 63 miRNAs differentially expressed in P compared to NP 
low-risk tumors. Pathway analysis demonstrated overrepresentation of proteins related to “LXR/
RXR and FXR/RXR Activation”, “Acute Phase Response Signaling” in NP compared to P samples. 
Integrating mRNA, miRNA and proteomic data, we developed a 10-component classifier including 
two proteins, three genes and five miRNAs, effectively differentiating P and NP ccRCC and capturing 
underlying biological differences, potentially useful to identify “low-risk” patients requiring closer 
surveillance and treatment adjustments. Key results were validated by immunohistochemistry, 
qPCR and data from publicly available databases. Our work suggests that LXR, FXR and macrophage 
activation pathways could be critically involved in the inhibition of the progression of low-risk ccRCC. 
Furthermore, a 10-component classifier could support an early identification of apparently low-risk 
ccRCC patients.

Renal Cell Carcinoma (RCC) constitutes approximately 3% of all cancers worldwide, but its incidence is rising, 
especially in Western countries1–3. Of all subtypes, clear cell Renal Cell Carcinoma (ccRCC) is by far the most 
common, accounting for approximately 60–70% of all RCC​1. Localized or low-stage tumors represent its most 
frequent clinical presentation4.

In the last two decades, enormous advances have been made in the development and implementation of 
medical therapies for ccRCC​5. However, despite extensive efforts6,7, surgery still represents the only curative 
option, mainly available for localized tumors only5,7,8. An improved understanding of the pathophysiology of 
ccRCC and of their progression is critically required9–11 to envisage novel therapeutic approaches to prevent 
and treat metastatic disease.

Transcriptomics has widely been used to promote the understanding of processes underlying tumor progres-
sion. Therefore, the molecular view of ccRCC has mostly been based on gene expression data with inadequate 
information on protein features12. However, the correlation between mRNA and protein levels is far from firm, 
and quantitative mRNA data alone cannot accurately predict the extent of protein expression associated with 
ongoing disease processes13,14. Thus, there is a need for a more holistic and integrated approach, combining 
several different omics-related datasets9–11. This is particularly important for the identification of subgroups of 
patients whose clinical outcome is not correctly predictable based on conventional staging/scoring systems. In 
these cases, a more reliable classification might be of critical relevance for an adequate adjustment of therapeutic 
protocols.

Predictive classification of ccRCC is usually based on the Leibovich score15. However, in a small number of 
cases, classified as low-risk, tumor progression does occur16. These patients might benefit from a more accurate 
surveillance, from the application of specific adjuvant treatments, and/or from tailored therapeutic regimens.
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To address this issue, we have assembled two closely matched cohorts of apparently “low-risk” ccRCC and 
we have examined the process of disease progression vs. non-progression by integrating three separate levels 
of -omics data.

Here we show that low-risk progressing ccRCC are characterized by specific molecular features and identify 
a multiomic signature predicting tumor progression amenable to clinical investigation.

Materials and methods
Patients.  Tumor tissues were initially collected from a cohort of 443 ccRCC patients treated between 1997 
and 2014, in the Haukeland University Hospital (Bergen, Norway). Inclusion criteria were low-risk ccRCC 
defined by a Leibovich score between 0 and 2, according to the 2003 version of the score. When the updated 
score was made public in 2018, all cases were re-scored using the updated algorithm17–20. No sample lost its 
status as low-risk in the updated score. In addition to low-risk status, we also required available follow-up data 
of progression (later occurrence of metastases) or non-progression (absence of tumor recurrence/metastases).

The cohort has been described in detail previously21. Briefly, we selected progressors (P) progressing within a 
3 months–7 years time range (4.5 years average, n = 8) and, as comparators, two clinically matched non-progres-
sors (NP) per each P (n = 16, 8 years average follow up). A sample was considered matched if the P and NP pair 
had a similar Leibovich score, age, sex, Fuhrmann grade, tumor stage/size, creatinine levels, and type of surgical 
tumor removal. Patients, who were not treatment naïve, had lymph node metastasis, suffered from heart failure 
(grade ≥ 3 according to the New York Heart Association Classification), or used immunosuppressive drugs due 
to transplantation, or suffered from rheumatic disease at the time of the biopsy were excluded from the study.

All patients showed an estimated glomerular filtration rate (eGFR) > 45 mL/min/1.73 m2 at the time of 
nephrectomy, except for one P with an eGFR of 36 mL/min/1.73m2, and a Charlson comorbidity index (CCI) > 1. 
We examined the patient’s clinical records for information on the follow-up and the development of metastases. 
Patients’ data are reported on Table 1. NP patients were last evaluated at the end of the follow-up period for this 
study (11.1.2022), thereby updating the previously published follow-up data21.

During this process, one patient included in the NP group was revealed to have developed metastasis after 
a 10-year follow-up. In comparison, the matched progressor sample had developed a metastasis after 3.5 years. 
The sample was not otherwise clinically distinct from the other NP (Table 1) and did not cluster outside the NP 
group in systematic expression analysis (Fig. 1). Therefore, considering this very late progression, this patient 
was still included in the NP group.

The Regional Ethics Committee (REC) of Western Norway approved this study (REC no. 78–05), and all 
methods were carried out in accordance with relevant guidelines and regulations, including the declaration of 
Helsinki. Informed consent for their inclusion was obtained from all participants or their legal guardians.

Tumor specimen collection.  Partial or full nephrectomy specimens of all 24 ccRCC patients were sent 
from the operating room directly to our Department of Pathology for processing and storage as formalin-fixed 
and paraffin-embedded (FFPE) samples at room temperature. Tissue specimens remaining after routine diag-
nostic evaluation were used in our study.

Pathology and staging.  As described previously21, each sample was initially examined and scored by an 
experienced renal pathologist (LB) according to Fuhrmann grade. Prior to inclusion in this study each patient 
was subsequently reassessed and rescored, by the same experienced renal pathologist (LB). The second scoring 
was performed independently of the first.

RNA extraction.  As described previously21, four 10 µm sections per FFPE block were cut for total RNA 
extraction, which was performed using the miRNeasy FFPE kit (cat no. 217504; Qiagen, Venlo, The Nether-
lands), as previously described22,23. Total RNA concentration was measured using a Qbit RNA HS assay kit on 
a Qubit 2.0 fluorimeter (Thermo Fisher Scientific, Waltham, MA, USA). RNA integrity was assessed using an 
Agilent RNA 6000 Nano kit on a 2100 bioanalyser (Agilent Technologies, Santa Clara, CA, USA), and DV200 
values (percentage of fragments > 200 nucleotides) were calculated. Following RNA extraction, samples were 
stored at − 80 °C.

RNA library preparation and sequencing.  As described previously21, sequencing libraries were gener-
ated using the TruSeq RNA exome library kit (Illumina, San Diego, CA, USA), according to manufacturers’ 
instructions.

Libraries were quantitated by qPCR using the KAPA library quantification kit–Illumina/ABI Prism (Kapa 
Biosystems, Wilmington, MA, USA) and validated using the Agilent high-sensitivity DNA kit on a bioanalyzer. 
Libraries were normalized to 2.6 pM and subjected to cluster and paired-end read sequencing, performed for 
2 × 75 cycles on two NextSeq500 HO flowcells (Illumina), according to manufacturers’ instructions. Base-calling 
was performed using the NextSeq500 instrument, and RTA 2.4.6. FASTQ files were generated using bcl2fastq2 
conversion software (v.2.17; Illumina).

miRNA sequencing.  As described previously24,25, small RNA sequencing of the 24 samples/libraries was 
performed using the NEXTflex small RNA-seq kit v3 (Bio Scientific, Austin, TX, USA). The adapter-dimer 
reduction technology incorporated into this kit allows low input library preparation. Briefly, 100 ng total RNA, 
extracted from solid tissues, were used as template for 3′ 4 N and 5′ 4 N adenylated adapter ligation, followed by 
reverse transcription-first strand synthesis. By applying these products as template for second-strand synthesis, 
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double-stranded cDNA was prepared by PCR amplification (22 cycles). Fragments/libraries were run on a Lab-
chip GX (Caliper/PerkinElmer), for quality control and quantitation. Individual libraries were normalized to 
25 nM and pooled. The library pool was purified with the QIAquick PCR Purification Kit (Qiagen AB, Sweden), 
according to providers’ instructions. Automated size selection was performed using the Blue Pippin technology 
(Sage Science, Beverly, MA, USA), with a range of 135–165 bp to select the ~ 152 bp fragment.

Following size selection, the pool was evaluated on Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA) using the High Sensitivity DNA kit. The pool of libraries was quantified with the KAPA Library Quanti-
fication Kit (Roche, Pleasanton, CA, USA). Libraries were quantified by quantitative polymerase chain reaction 
(qPCR) using the KAPA Library Quantification Kit–Illumina/ABI Prism® (Kapa Biosystems, Wilmington, MA, 
USA) and validated using the Agilent High Sensitivity DNA Kit on a bioanalyzer. Libraries were normalized 
to 2.8 pM subjected to clustering. Single read sequencing was performed for 51 cycles on a NextSeq500 HO 
flowcell (Illumina, San Diego, CA, USA), according to the manufacturer’s instructions. Base calling was done 
on the NextSeq500 instrument by RTA 2.4.6. FASTQ files were generated using bcl2fastq2 Conversion Software 
v2.17 (Illumina, Inc. San Diego, CA, USA).

Proteomics sample preparation.  For protein extraction, 3–4 tissue sections of 10-μm thickness were 
used to get approximately equal tissue amounts per specimen. Excess paraffin was trimmed off and sections were 
deparaffinized using Deparaffinization solution (Qiagen, Cat. No. 19093). Lysis buffer (0.1 M Tris pH 8, 0.1 M 
dithiothreitol [DTT], 4% sodium dodecyl sulfate) was added to the sections that were homogenized in a Pre-
cellys Evolution Homogenizer (BertinPharma, Cat. No. P000062-PEVO0-A) using ceramic (zirconium oxide) 
beads (BertinPharma, Cat. No. P000933-LYSK0-) and then sonicated. Samples were centrifuged at 15,000g for 

Table 1.   Patient characteristics. One NP patient (RCC19) developed a metastasis after 10 years of follow-up.

Unique ID Group Age (year) Gender
Nephrectomy 
type Creatinine

Primary 
tumour 
status

Tumour 
size (mm)

Fuhrmann 
grade

Leibovich 
Score 20031

Leibovich 
Score 20182

Time to 
metastasis 
(days) Pair ID

RCC01 Progressor 72 Female Radical 106 T1a 20 2 0 2 2680 5

RCC02 Progressor 72 Male Radical 109 T1b 50 2 2 5 2319 6

RCC03 Progressor 66 Male Radical 113 T1a 35 3 1 3 2632 3

RCC05 Progressor 83 Male Radical 81 T1b 50 2 2 5 109 7

RCC06 Progressor 67 Male Radical 176 T1b 48 2 2 5 1385 8

RCC08 Progressor 63 Male Radical 60 T1a 40 3 1 3 1994 2

RCC09 Progressor 51 Female Radical 58 T1a 38 3 2 5 1544 1

RCC11 Progressor 66 Male Partial 61 T1a 15 3 2 5 965 4

RCC04 Nonprogres-
sor 63 Male Radical 82 T1b 50 2 2 5 6

RCC07 Nonprogres-
sor 76 Male Radical 98 T1b 45 2 2 5 7

RCC10 Nonprogres-
sor 78 Female Partial 64 T1a 20 2 0 2 5

RCC12 Nonprogres-
sor 63 Male Radical 80 T1b 45 2 2 5 8

RCC13 Nonprogres-
sor 34 Male Partial 73 T1a 23 3 1 3 1

RCC14 Nonprogres-
sor 72 Male Partial 97 T1b 55 2 2 5 6

RCC15 Nonprogres-
sor 75 Male Radical 73 T1b 45 2 2 5 7

RCC16 Nonprogres-
sor 62 Male Radical 82 T1a 30 3 1 3 3

RCC17 Nonprogres-
sor 54 Male Partial 68 T1a 35 3 1 3 2

RCC18 Nonprogres-
sor 68 Female Partial 45 T1a 20 2 0 2 5

RCC19 Nonprogres-
sor 68 Male Radical 68 T1b 45 2 2 5 8

RCC20 Nonprogres-
sor 66 Male Radical 67 T1a 30 3 1 3 2

RCC21 Nonprogres-
sor 57 Male Partial 73 T1a 30 3 1 3 3

RCC22 Nonprogres-
sor 66 Male Partial 83 T1a 38 3 1 3 4

RCC23 Nonprogres-
sor 74 Male Partial 81 T1a 16 3 1 3 4

RCC24 Nonprogres-
sor 47 Female Partial 48 T1a 40 3 1 3 1
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10  min and supernatants transferred to new tubes. Protein concentration was measured using BCA Protein 
Assay Kit (Abcam, Cat. No. ab102536) and 20 µg of protein in 20 µL of lysis buffer was used in the following 
steps.

Samples were reduced using 2 µL of 100 mM Dithiothreitol and alkylated with 3 µL of 200 µM Iodoaceta-
mide. For peptides isolation, SeraMag Speed Beads (GE Healthcare, Cat. No. 45152105050250 and Cat. No. 
65152105050250) were used following manufacturer’s instructions. Sequencing grade modified trypsin (0.8 µg 
per sample) was used to hydrolyse proteins for 16 h at 37 °C. Digested peptides were eluted and desalted using 
Oasis HLB µElution plates (Waters, Milford, MA), dried in a vacuum centrifuge, and rehydrated in 2% acetoni-
trile (ACN) and 0.1% formic acid (FA). Peptide concentration was measured using a NanoDrop One (Ther-
moFisher, Cat. No. ND-ONE-W).

Liquid chromatography and tandem mass spectroscopy (LC–MS/MS).  As described previously26, 
tryptic peptides, from 0.5 µg of protein dissolved in 2% ACN and 0.1% FA, were injected into an Ultimate 3000 
RSLC system (Thermo Scientific) which was connected online to a linear quadrupole ion trap-orbitrap mass 
spectrometer (Thermo Scientific), equipped with a nanospray Flex ion source (Thermo Scientific). For trapping 
and desalting, samples were loaded and desalted on a pre-column (Acclaim PepMap 100, 2 cm × 75 µm i.d. 
nanoViper column, packed with 3 µm C18 beads) at a flow rate of 5 µl/min for 5 min with 0.1% trifluoroacetic 
acid (vol/vol).

Computational and Statistical data analysis.  Proteomics.  Raw mass spectrometer files were ana-
lyzed using MaxQuant v 1.6.1.027. MS spectra were searched in the Andromeda search engine against the for-
ward and reverse Human Uniprot database (Swissprot reviewed, canonical and isoforms 23.04.18). Label-free 
quantification was used to identify the relative concentration of proteins in each sample. Proteins with at least 
two peptide counts were considered to be reliably detected and were included in further analysis. Only proteins 
with abundance values in seven or more NP samples and four or more P samples were further considered (“qual-
ity filtered proteins”). The numbers differ between groups due to different samples abundances (n = 8 and n = 16). 
Raw data were further processed and statistically analyzed with JMP Genomics (v 9, SAS, North Carolina, USA; 
www.​jmp.​com). Raw data were first log2 transformed and any missing data were imputed by multivariate nor-
mal imputation.

Multivariate normal imputation, which replaces missing data with predicted values based on the multivariate 
normal distribution using least squares imputation, was run per sample group using a shrinkage estimator for the 
covariances, to improve the estimation of the covariance matrix28. Data were quantile normalized and standard-
ized, and ANOVA was applied, including groups of matched patients as blocking variable (Table 1, “Pair ID”), 
in order to preserve the close clinical matching of the P and NP groups. Protein abundance differences between 
patient groups were considered significant if they reached a minimum fold change of 1.5 and p-value ≤ 0.05. 
Canonical pathways were sorted by the smallest Benjamini–Hochberg adjusted p-value. Pathway analysis was 
performed with Ingenuity Pathway Analysis (v.47547484; Qiagen, Redwood City, CA, USA), with the Ingenuity 
Knowledge Base used as reference set. The significance values (p-value of overlap) for the canonical pathways 
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Figure 1.   Hierarchical clustering analyses and principal component analyses (PCA). Hierarchical clustering of 
emerging data results in effective separation of patients’ groups. However, an overlap is still visible in the PCA of 
the proteomics data (A), whereas for mRNA (B) and miRNA data (C) PCA allows a complete separation of the 
two groups.
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are calculated by the right-tailed Fisher’s Exact Test. (https://​qiagen.​secure.​force.​com/​Knowl​edgeB​ase/​Knowl​
edgeI​PAPage?​id=​kA41i​00000​0L5pA​CAS).

mRNA abundances.  FASTQ files were quality controlled with fastqc (v0.11.9) then filtered and trimmed by 
fastp (v0.20.0). Trimmed sequences were aligned to the genome reference using STAR (v2.7.9a) and quality met-
rics were extracted with picard CollectRNASeqMetrics (v2.21.5). Transcript counts were generated using quasi 
alignment (Salmon v1.7.0) to the GRCh38 transcriptome reference sequences29.

. An empirical expression filter was applied, including genes with > 1 count per million in at least three 
samples. Trimmed mean of M values30 normalization was applied to adjust for variation in library size. Group 
was used to determine the difference between the two patient groups, and age matching was accounted for as a 
blocking factor, with one P and two NP samples per age-matched block. Comparative analysis was performed 
using the voom/Limma R package (www.​Bioco​nduct​or.​org)31.

To reduce unwanted variation induced by unknown sources but avoid overfitting, two surrogate variables 
were added using the SVA package in R Bioconductor (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​
sva.​html). Application of the SVA package in R, indicated that 2 surrogate variables were sufficient to help in 
this respect. Genes with a p-value ≤ 0.05 and an absolute fold change (abs.FC) ≥ 2 were considered differentially 
expressed. Pathway analysis was performed with Ingenuity Pathway Analysis (v.47547484; Qiagen, Redwood City, 
CA, USA), with the Ingenuity Knowledge Base used as reference set. The significance values (p-value of overlap) 
for the canonical pathways were calculated by the right-tailed Fisher’s Exact Test. (https://​qiagen.​secure.​force.​
com/​Knowl​edgeB​ase/​Knowl​edgeI​PAPage?​id=​kA41i​00000​0L5pA​CAS). Canonical pathways were sorted by the 
smallest Benjamini–Hochberg adjusted p-value.

microRNA abundances.  FASTQ files were quality controlled with fastqc (v0.11.9) then filtered and trimmed by 
fastp (v0.20.0). Small RNA annotation was performed using the Unitas pipeline v1.7.032. An empirical expres-
sion filter was applied, which included genes with ≥ 5 count per million in at least three samples. Trimmed mean 
of M values30 normalization was applied to adjust for variation in library size. Again, group was used to deter-
mine the difference between the two patient groups, and age matching was accounted for as a blocking factor, 
with one P and two NP samples per age-matched block.

Comparative analysis was performed using the voom/Limma R package (www.​Bioco​nduct​or.​org). For micro-
RNA (miRNA) as well, to reduce undesired variation induced by unknown sources while avoiding overfitting, 
two surrogate variables were added using the SVA package in R Bioconductor (https://​bioco​nduct​or.​org/​packa​
ges/​relea​se/​bioc/​html/​sva.​html). Also, for miRNA, genes with a p-value ≤ 0.05 and abs.FC ≥ 2 were considered dif-
ferentially expressed and pathway analysis was performed with Ingenuity Pathway Analysis (v.47547484; Qiagen, 
Redwood City, CA, USA), with the Ingenuity Knowledge Base used as the reference set. The significance values 
(p-value of overlap) for the canonical pathways were calculated by the right-tailed Fisher’s Exact Test. (https://​
qiagen.​secure.​force.​com/​Knowl​edgeB​ase/​Knowl​edgeI​PAPage?​id=​kA41i​00000​0L5pA​CAS. Canonical pathways 
were sorted by the smallest Benjamini–Hochberg adjusted p-value.

Data integration.  Multiomics data integration was performed using the R package mixOmics (https://​www.​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​vigne​ttes/​mixOm​ics/​inst/​doc/​vigne​tte.​html) in Bioconductor33, and 
uploading sets of features from the three omics platforms. For the biomarker analysis, a set.seed of 150 was cho-
sen arbitrarily and kept for reproducibility purposes. Clustering was performed with Ward´s method.

Immunohistochemistry.  Immunohistochemistry (IHC) experiments were performed using antibodies 
against Desmoplakin (DSP) to confirm observations at the proteomic level. We chose DSP due to the high 
degree of difference (Fold change P/NP; 4.77) found between P and NP samples in the proteomics dataset (see 
below). IHC was performed on 4-μm-thick FFPE sections, with the following primary antibody: anti-DSP Anti-
body (1:100, polyclonal, Rabbit, HPA054950, ATLAS ANTIBODIES, Bromma, Sweden) and one hour incuba-
tion at pH 6.0. Sections were counterstained with haematoxylin (no. CS70030-2; Dako, Kyoto, Japan).

qRT‑PCR.  As described previously21, qRT-PCR was performed to confirm AGAP2-AS1 at the mRNA 
level, as reported previously21. We chose AGAP2-AS1 as it was one of the mRNAs that best separated P from 
NP specimens (see below). qRT-PCR was performed using SuperScript IV VILO master mix with ezDNase 
(No. 11766050; Thermo Fisher Scientific), TaqMan Fast Advanced master mix (No. 4444556; Thermo Fisher Sci-
entific), and the AGAP2-AS1 primer and probe (Hs01096080_s1, no. 4426961; Thermo Fisher Scientific). qRT-
PCR was performed on a StepOne Plus real-time PCR system (Applied Biosystems, Carlsbad, CA, USA), with 
the gene encoding 40S ribosomal protein S13 (RPS13; Hs01011487_g1, no. 4426961; Thermo Fisher Scientific) 
used to normalize samples. RNA input for cDNA was 50 ng. We used a no template control as negative control.

Three technical replicates were used to compile an average Ct value, which was used in subsequent analyses. 
qRT-PCR absolute fold change between groups analyzed by averaging normalized Ct values for each group and 
determining the ∆∆Ct with averaged values. Significance and p-values were evaluated using the Mann–Whitney 
U test according to ∆Ct values from each sample.

Data confirmation.  Key findings, based on the molecules making up the classifier and the top 20 features 
of the proteomics and mRNA datasets were further confirmed by accessing The Cancer Genome Atlas (TCGA) 
data. We obtained sequencing data related to the identified genes from the GDC TCGA Kidney Clear Cell Car-
cinoma (KIRC) study, utilizing the Xena Functional Genomics Explorer (https://​xenab​rowser.​net/)34. We then 

https://qiagen.secure.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5pACAS
https://qiagen.secure.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5pACAS
http://www.Bioconductor.org
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://qiagen.secure.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5pACAS
https://qiagen.secure.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5pACAS
http://www.Bioconductor.org
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
https://qiagen.secure.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5pACAS
https://qiagen.secure.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5pACAS
https://www.bioconductor.org/packages/release/bioc/vignettes/mixOmics/inst/doc/vignette.html
https://www.bioconductor.org/packages/release/bioc/vignettes/mixOmics/inst/doc/vignette.html
https://xenabrowser.net/
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examined the prognostic potential for key mRNA findings. The association between molecule expression and 
prognosis was assessed using the Kaplan Meier method to generate survival plots split between high and low 
abundance for the molecule being examined. The survival of the different groups was then compared using the 
log-rank test through the Xena Functional Genomics Explorer. We also examined if the prognostic potential (if 
any) for each protein/mRNA was present only in low-risk patients or universal for ccRCC overall, irrespective 
of stage. Proteomic findings were validated using The Human Protein Atlas (http://​www.​prote​inatl​as.​org), to 
verify the identified proteins35, and prognostic associations were examined and compared to our own results, as 
described above.

Ethics approval and consent to participate.  The Regional Ethics Committee (REC) of Western Nor-
way approved this study (REC no. 78–05) and permission for their inclusion was obtained from all participants.

Results
Patients.  Of the 443 ccRCC patients, 8 were both classified as low-risk patients and developed disease pro-
gression. These patients were thus included as progressors (P). We also included n = 16 patients classified as low-
risk that did not develop disease progression. These patients were included as non-progressors (NP) and were 
closely matched to the progressive patients, see Materials and Methods. One patient included in the NP group 
was later revealed to have developed metastasis after a 10-year follow-up. The matched progressor sample had 
developed a metastasis after 3.5 years and the sample was not clinically distinct from the other NP and did not 
cluster outside the NP group in systematic expression analysis (Fig. 1).

Proteomics analysis.  Formalin-fixed and paraffin embedded kidney samples obtained at initial surgery 
from patients with ccRCC with Leibovich scores ≤ 2 were subjected to LC–MS/MS proteomics analysis.

LC–MS/MS identified 28,189 unique peptides mapping to 3,954 proteins. Of these, 3,266 proteins were identi-
fied with at least 2 unique peptides (minimum confidence score: 82) and were included in further analyses. The 
highest number of unique peptides found for a single protein was 178 (Neuroblast differentiation-associated 
protein AHNAK, UniProt Accession No. Q09666).

To identify proteins with a significantly altered abundance in P compared with NP cancers, we performed 
ANOVA on 1,220 quality filtered proteins (see “Materials and methods”). Criteria for being considered signifi-
cantly differentially abundant were set to a p-value ≤ 0.05 and an abs. FC ≥ 1.5. A total of 151 proteins met these 
criteria, of which 75 (49.7%) were more abundant in P than in NP. The twenty proteins with the largest abs. FC 
are listed in Supplementary document S1.

Expression levels of the 151 differentially abundant proteins did separate the two sample groups when ana-
lyzed by unsupervised hierarchical clustering (Fig. 1A, upper panel). However, unsupervised principal compo-
nent analysis (PCA), used to visualize variance in the data set, indicated that separation of P and NP cancers 
was not complete, since NP-12 and NP-13 samples were clustering closer to P tissues (Fig. 1A, lower panel). 
These two samples did not differ from other NP in clinical or technical matters and were therefore not excluded 
from further analysis.

mRNA‑seq.  Statistical analysis (see Materials and Methods) of read counts for 18,942 genes showed that 
1167 genes were differentially expressed in P and NP ccRCC with p-values ≤ 0.05 and abs. FC ≥ 2. Unsupervised 
data visualization and dimension reduction techniques revealed that these results effectively separated the two 
sample groups according to clinical outcome (Fig. 1B upper panel). Importantly, unlike the proteomic data, no 
overlap of P and NP specimens was detectable upon PCA (Fig. 1A lower panel). The twenty genes with largest 
abs. FC are listed in Supplementary document S1.

microRNA‑seq.  We analyzed sequencing data from 1,894 microRNAs (miRNA). A total of 63 miRNAs 
passed the pre-set criteria for statistical significance (see above). As shown in Fig. 1C, hierarchical cluster analy-
sis clearly separated the two sample groups, and PCA identified “Diagnosis”, i.e., P vs. NP, as the main source of 
variance in principal component 1. The twenty miRNAs with largest fold changes are listed in Supplementary 
Document S1.

Pathway analysis.  Pathway analysis was then used to identify pathway enrichments in the three lists of 
differentially affected proteins, mRNAs and miRNAs, or their combinations (Table 2 and Fig. 2). The highest 
number (n = 112) of significantly (p-value ≤ 0.05) affected pathways was detected for differentially abundant pro-
teins, whereas the analysis of differentially affected mRNAs yielded 36 significantly affected pathways. In con-
trast, evaluation of miRNAs expression did not result in the identification of any specific pathway, although the 
analysis of miRNA-target mRNAs led to the identification of 14 significantly affected pathways (Supplementary 
Document S2, available at https://​figsh​are.​com/​artic​les/​online_​resou​rce/​Untit​led_​Item/​19086​512). The twenty 
most affected pathways identified by proteomic, or mRNA analysis are reported in Table 2, whereas a full list 
of analyzed pathways, including defined genes and gene products is available in Supplementary Document S2 
(https://​figsh​are.​com/​artic​les/​online_​resou​rce/​Untit​led_​Item/​19086​512). We selected the 10 most significantly 
affected canonical pathways, as identified in the three analyses with proteomics alone, mRNA-seq alone, and 
combinatorial multiomics analysis. We then examined how using combinations of the individual omics results 
as input for the pathway analysis affected the significance levels of those pathways, see Fig. 2A–C, respectively. 
Most notably, the overlap of the identified pathways was minimal, and a variety of pathways were identified only 
in the proteomics, or in mRNA-seq data. In particular, proteomic analysis unraveled an overexpression in NP, 

http://www.proteinatlas.org
https://figshare.com/articles/online_resource/Untitled_Item/19086512
https://figshare.com/articles/online_resource/Untitled_Item/19086512
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as compared to P tissues, of proteins associated with translation processes via EIF2 pathway (p-value = 1.0E−13), 
as well as with acute phase response signaling (p-value = 2.29E−09), LXR/RXR, FXR/RXR activation (p-val-
ues = 6.61E−09 and 9.77E−09, respectively), and IL-12 signaling in macrophages (p-value = 2.34E−04) (Table 2).

Instead, transcriptomics analysis, besides a “Molecular mechanisms of cancer” pathway enrichment, 
revealed a relatively strong representation of pathways related to the adaptive immune system, such as B cell 

Table 2.   Twenty pathways from each dataset, sorted by increasing p-values. P progressor, NP nonprogressor.

Ingenuity canonical pathways P-value adj. P-value Ratio Ratio (# molecules) P > NP (# proteins) NP > P (# proteins)

Proteomics

EIF2 signaling 1.00E−13 3.98E−11 0.08 17/224 5 12

Acute phase response signaling 2.29E−09 3.98E−07 0.07 12/180 0 12

LXR/RXR activation 6.61E−09 7.59E−07 0.08 10/121 0 10

FXR/RXR activation 9.77E−09 8.32E−07 0.08 10/126 0 10

Regulation of eIF4 and p70S6K signaling 1.41E−06 9.77E−05 0.05 9/166 3 6

Production of nitric oxide and reactive oxygen species in mac-
rophages 4.17E−06 2.34E−04 0.05 9/189 2 7

Clathrin-mediated endocytosis signaling 4.90E−06 2.40E−04 0.05 9/183 3 6

Phagosome maturation 6.61E−06 2.82E−04 0.05 8/151 6 2

Atherosclerosis signaling 1.95E−05 7.41E−04 0.06 7/127 1 6

Lipid antigen presentation by CD1 2.29E−05 7.76E−04 0.15 4/26 3 1

mTOR signaling 7.08E−05 2.14E−03 0.04 8/210 2 6

CDK5 signaling 7.41E−05 2.14E−03 0.06 6/108 4 2

Antigen presentation pathway 1.17E−04 3.02E−03 0.10 4/39 1 3

Thiosulfate disproportionation III (rhodanese) 1.26E−04 3.02E−03 0.67 2/3 0 2

IL-12 signaling and production in macrophages 2.34E−04 5.37E−03 0.05 6/133 0 6

Virus entry via endocytic pathways 5.37E−04 1.15E−02 0.05 5/102 2 3

Systemic lupus erythematosus signaling 7.59E−04 1.51E−02 0.03 7/229 1 6

Coagulation system 1.51E−03 2.69E−02 0.09 3/35 0 3

Synaptic long term potentiation 1.55E−03 2.69E−02 0.04 5/129 3 2

PPARα/RXRα activation 1.58E−03 2.69E−02 0.03 6/191 2 4

Ingenuity canonical pathways P-value adj. P-value Ratio Ratio (# molecules) P > NP (# RNA) NP > P (# RNA)

RNAseq

Primary immunodeficiency signaling 6.61E−04 1.83E−01 0.16 8/50 2 6

B cell receptor signaling 1.02E−03 1.83E−01 0.09 17/186 9 8

Molecular mechanisms of cancer 1.12E−03 1.83E−01 0.07 29/400 14 15

IL-7 signaling pathway 3.31E−03 4.11E−01 0.16 9/78 2 7

Triacylglycerol biosynthesis 6.92E−03 5.58E−01 0.14 6/44 4 2

Opioid signaling pathway 8.51E−03 5.58E−01 0.07 18/247 13 5

Retinoate biosynthesis I 9.77E−03 5.58E−01 0.15 5/34 3 2

Synaptogenesis signaling pathway 1.12E−02 5.58E−01 0.07 21/312 14 7

Hematopoiesis from pluripotent stem cells 1.17E−02 5.58E−01 0.12 6/49 1 5

GABA receptor signaling 1.20E−02 5.58E−01 0.09 9/95 7 2

B cell development 1.23E−02 5.58E−01 0.14 5/36 3 2

Bladder cancer signaling 1.35E−02 5.61E−01 0.09 9/97 7 2

Cell Cycle: G1/S checkpoint regulation 1.55E−02 5.69E−01 0.10 7/67 3 4

Regulation of the epithelial mesenchymal transition in development 
pathway 1.70E−02 5.69E−01 0.10 8/84 4 4

Inhibition of matrix metalloproteases 1.74E−02 5.69E−01 0.13 5/39 3 2

PKCθ signaling in T lymphocytes 1.86E−02 5.79E−01 0.08 12/155 8 4

Nicotine degradation III 2.34E−02 6.35E−01 0.10 6/57 5 1

Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid 
arthritis 2.45E−02 6.35E−01 0.07 15/218 9 6

Oncostatin M signaling 2.51E−02 6.35E−01 0.17 5/43 3 2

Melatonin degradation I 2.95E−02 6.35E−01 0.10 6/60 5 1

Ingenuity canonical pathways P-value adj. P-value Ratio Ratio (# molecules) P > NP (# microRNA) NP > P (# microRNA)

microRNAseq

No pathways detected
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receptor signaling (p-value = 1.02E−03) and B cell development (p-value = 1.234E−02), cell cycle regulation 
(p-value = 1.55E−02), and, intriguingly, GABA receptor signaling (p-value = 1.2E−02).

Differences between each representation of biological processes became even more evident when higher-
level biological categories were assigned to the 50 pathways with the lowest adjusted p-value from each analysis 
(Fig. 2D). Indeed, among the 50 most affected pathways in the proteomics analysis, 26% were related to cellular 
or humoral immune response, and 36% to metabolism. In contrast, in the mRNA-seq-derived list, 62% of the 
identified pathways were related to metabolism and cell growth, and 20% were associated with immune response. 
These differences were balanced out when input lists from proteins, mRNAs and miRNAs experiments were 
combined (Fig. 2D).

Multiomics integration.  To attempt the development of a molecular classifier identifying P ccRCC among 
low-risk patients and to examine what biological processes might underlie their differential profiles, we inte-
grated the three generated datasets by using mixOmics R package (https://​www.​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​mixOm​ics.​html36,37). Its framework DIABLO enables the integration of multiple datasets from 
the same biological samples for a variety of biological questions. Although some analyses can be performed in a 
supervised manner, the identification of marker features is eventually achieved in unsupervised steps.

Following the supervised ANOVA analysis discussed above, partial least square discriminant analysis (PLS-
DA) of each individual dataset, shown in Fig. 3A, displayed the separation of samples into two groups, as assigned 
by P or NP diagnosis, as expected. To visualize the contribution of each variable to each latent component, we 
used a correlation circle plot (Fig. 3B). All three datasets were highly correlated to each other for component 1, 
as shown by Pearson correlation plots (Fig. 3C). Moreover, an image map of the multiomics molecular signatures 
of each sample clearly clustered them according to their diagnosis (vertical axis, Fig. 3D).

Based on the integrated dataset thus generated, we then used the DIABLO-framework to develop a multi-
modal classifier of early stage ccRCC progression. The tune function was employed to identify a set of features 
with the best predictive performance. A classifier consisting of 10 components, 3 mRNAs, 5 miRNAs and 2 
proteins, evaluated by several rounds of cross-validation, explained the majority of the biological variations 
underlying the separation into P and NP, and assigned all samples to their respective diagnosis group, with an 
AUC = 1, an overall error rate (ER) = 0.081, and a balanced error rate (BER) = 0.103.

The loadings of the set of variables, i.e., the coefficients assigned to each variable to define each component, 
indicating the importance of each variable in the PLS-DA, are shown in Fig. 4A. A detailed list of the features 
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Figure 2.   Different omics analyses result in different pathway signatures. Adjusted p-values of the 10 pathways 
with highest significance in the respective analyses were comparatively evaluated. Statistical significance is 
reached at − log10(adj. p-value) > 1.3 (i.e., adj. p-value < 0.05). We compared the pathway analysis results of 
the ten pathways with the lowest adjusted p-values from: (A) proteomics alone (PROT), (B) mRNA-seq alone 
(MRNA), and (C) multiomics analysis (PROT + MRNA + MIR). The large differences in adjusted p-value 
differences between PROT and MRNA in A and B are consistent with very disparate results for their respective 
pathway signature. (D) Percentages of the biological categories attributed to the 50 most significantly affected 
pathways captured by proteomics, mRNA, and miRNA or their combinations.
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included in the classifier is provided in Fig. 4B, showing the associated statistical values of the groupwise com-
parison and the annotation.

Several components of the classifier have previously been associated to prognosis in ccRCC or other cancer 
types. In particular, the expression of C8G protein is increased in NP low-risk ccRCC. But when examined in 
ccRCC as a whole, irrespective of cancer stage or risk profile, increased expression is actually associated with poor 
prognosis in ccRCC (p-value = 1.2E−7). ThePSMD4 protein, on the other hand, is overexpressed in P tumors and, 
accordingly, associated with unfavorable outcome in unselected ccRCC (p-value = 1.7E−6) (Table 3). AGAP2-
AS1 gene expression was increased in P, as compared to NP low-risk ccRCC, and, accordingly, associated with 
unfavorable prognosis in ccRCC at large (p-value = 2.8E−6). Similarly, DCUN1D2 gene expression, enhanced in P 
“low risk” ccRCC, is also associated with unfavorable outcome in unselected ccRCC. Lastly, BCAM gene expres-
sion, increased in NP ccRCC is devoid of prognostic significance in the TCGA KIRC study (p-value = 0.409).

Nevertheless, hierarchical cluster analysis reported in Fig. 4C indicates that classifier variables, including 
five miRNA markers sufficed to effectively separate P and NP ccRCC. Pearson correlations, reported as circle 
Plot in Fig. 4D showed that some components of the classifier were characterized by strongly correlated or anti-
correlated expression profiles. The relevance network reported in Fig. 4E visualizes the expression correlations 
from Fig. 4D with a r = 0.7 threshold which can help in the biological interpretation of the results. For instance, 
these data suggest an anti-correlation of mir-1291 and C8G, consistent with C8G gene being a target of miR-1291.
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Figure 3.   Multiomics integration. Sparse PLS-DA (sPLS-DA) for RNA, miRNA and protein datasets with 
respective differentially expressed features support the expected separation of sample groups on the first 
component (A). The correlation circle plot (B) displays the correlation between variables (biological features) 
and latent components. Each variable coordinate is defined as the Pearson correlation between the original data 
and a latent component58. The contribution to the definition of each component is visualized as closeness to the 
circle with radius 1, as well as the correlation structure between variables (clusters of variables). The cosine angle 
between any two points represents the correlation (negative, positive or null) between two variables. A global 
overview of the correlation structure for component 1 is shown in (C). A strong correlation is detectable for 
each dataset combination, the strongest being for the combination RNA/microRNA. (D) Clustered Image Map 
(CIM) showing two clusters of samples (rows) and two main clusters of over- and underrepresented features 
from all three data sources. CIM is based on a hierarchical clustering simultaneously operating on the rows and 
columns of the selected variables in the original data, here reported by using Euclidian distance and complete 
linkage.
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Confirmation in external databases.  Identified protein and gene markers appeared to enable effective 
classification of P and NP tumors among low-risk ccRCC, while also reflecting the underlying pathobiology. 
However, we were also interested in their clinical and prognostic significance in ccRCC at large, irrespective of 
putative recurrence risk. The expression of the proteome and mRNA markers of prognostic relevance in puta-
tively low-risk ccRCC (Table 3), was detectable at the protein and gene level in unselected ccRCC from publicly 
available databases (https://​www.​prote​inatl​as.​org38; (https://​xenab​rowser.​net/34).

For a number of markers, in these databases, protein and gene expression levels were of concordant prognostic 
significance. Discordant results were found for others, such as VCAN. Overall, for the top 20 mRNA features, 
see supplementary document S1, 17/20 features exhibited the same prognostic association both for the mRNA of 
the gene and the protein from the same gene, e.g., if a high expression of the mRNA meant a favorable prognosis 
then a high expression of the protein also meant a favorable prognosis. For the top 20 protein features 11/20 
features exhibited the same prognostic associations (Supplementary Document S3, available at https://​figsh​are.​
com/​artic​les/​online_​resou​rce/​Untit​led_​Item/​19086​512).

Prognostic significance of the expression levels of a variety of proteome and mRNA markers in whole ccRCC 
cohorts and in putatively low-risk ccRCC was then explored (Table 3). As an example, overexpression of TIN-
AGL1 protein, detected to higher extents in NP cancers, was also associated with improved prognosis in unse-
lected ccRCC cohorts (p-value = 0.00041). Interestingly, however, in other cases, the prognostic significance of 
the expression levels of a variety of protein markers in unselected ccRCC cohorts and in putatively low-risk 

Figure 4.   Disease progression signature. For the visualization of the molecular signature, the loading plot (A) 
represents the loading weights of each variable on component 1 of the multivariate model. Most important 
variables, according to absolute values of their coefficients) are ordered from bottom to top. Colors indicate 
the class for which the mean expression value is the highest or the lowest for each feature. In (B), the features 
of the model are shown, listed according to the loading plot in (A). In (C), the Clustered Image Map (CIM) 
demonstrates that the expression values of the 10 features of the model yield two clusters of samples (rows) 
and two main clusters of over- and underrepresented features, by employing Euclidian distance and Ward´s 
linkage. (D) Pearson correlation of the expression values of the features, as visualized by a circosplot, with 
cutoff 0.07. Positive correlation in red, negative in blue. The outer lines indicate whether the featured marker is 
expressed to a higher (red line) or lower (blue line) extent in NP, as compared to P. The Relevance network in (E) 
demonstrates the correlation structure between variables shown in (D) (cutoff 0.7), where positive correlation is 
depicted in red and negative correlation in blue. The similarity value between a pair of variables is obtained by 
calculating the sum of the correlations between the original variables and each of the latent components of the 
model.

https://www.proteinatlas.org
https://xenabrowser.net/
https://figshare.com/articles/online_resource/Untitled_Item/19086512
https://figshare.com/articles/online_resource/Untitled_Item/19086512
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ccRCC was markedly discordant. For instance, APOA1 and C8G protein expression was associated with poor 
prognosis in unselected ccRCC tumors, but detectable at higher levels in our NP than P low-risk tumors. These 
data support the presence of a high degree of clinical and biological specificity of well-defined ccRCC cohorts, 
though further examination in other narrowly defined groups is needed.

Regarding mRNA markers, TCGA data (https://​xenab​rowser.​net) indicated that overexpression of 
ADGRB1 gene, detected in P, as compared with NP tumors, was accordingly associated with decreased survival 
(p-value = 0.000026), in unselected ccRCC. Similar results were found for HBA1 and PLG, see Table 3 for the 

Table 3.   Comparative analysis of the prognostic significance of proteins (A) and genes (B) differentially 
expressed in P and NP low-risk ccRCC, as detected in this multi-omics evaluation and in unselected ccRCC, 
based on data from The Cancer Genome Atlas as evaluated in https://​www.​prote​inatl​as.​org and https://​xenab​
rowser.​net, respectively. The favorable and unfavorable designation relates to how the expression of a molecule 
was associated with a improved of diminished prognosis.

All ccRCC protein overexpression p FC P/NP Low risk ccRCC protein overexpression

(A)

TTR​ Unfavorable 0.0082 − 5.09 Favorable

DTD1 Unfavorable 0.0077 − 3.52 Favorable

HMGB1 Irrelevant 0.15 − 3.15 Favorable

TINAGL1 Favorable 0.00041 − 3.01 Favorable

C8G Unfavorable 1.20E−07 − 2.97 Favorable

SERPING1 Unfavorable 0.006 − 2.85 Favorable

VCAN Unfavorable 0.00052 − 2.66 Favorable

APOA1 Unfavorable 1.70E−08 − 2.61 Favorable

PLG Favorable 6.40E−09 − 2.54 Favorable

A1BG Unfavorable 0.0014 − 2.53 Favorable

HBA1 Favorable 0.0067 − 2.52 Favorable

RPL15 na na − 2.42 Favorable

SEPT-2 Unfavorable 0.0096 − 2.4 Favorable

DSP Favorable 0.00012 4.77 Unfavorable

ITIH1 Unfavorable 0.00077 3.44 Unfavorable

DEFA3 Irrelevant 0.18 3.25 Unfavorable

PTMS Unfavorable 0.014 2.86 Unfavorable

NPC2 Favorable 0.0031 2.57 Unfavorable

ATP6V1G1 Favorable 3.4E−06 2.49 Unfavorable

PTMA Unfavorable 0.0016 2.44 Unfavorable

All ccRCC gene overexpression p FC P/NP Low risk ccRCC gene overexpression

(B)

SLC12A1 Irrelevant 0.343 − 14.31 Favorable

AC146944.1 Irrelevant 0.054 − 11.82 Favorable

IGHA2 Irrelevant 0.142 − 9.18 Favorable

IGLL5 Unfavorable 0.0012 − 9.13 Favorable

SLC9A4 Irrelevant 0.33 − 8.84 Favorable

SV2B Irrelevant 0.342 14.84 Unfavorable

FAM86B2 Irrelevant 0.52 12.92 Unfavorable

NPIPB9 Unfavorable 0.0048 12.16 Unfavorable

ANKRD20A7P Irrelevant 0.219 11.74 Unfavorable

LBP Unfavorable 0.0048 10.86 Unfavorable

ADGRB1 Unfavorable 0.000026 9.56 Unfavorable

ASAH2 Irrelevant 0.292 9.4 Unfavorable

PLK4 Unfavorable 0.0086 9.25 Unfavorable

STAG3 Irrelevant 0.595 9.21 Unfavorable

ZNF321P na na 9,09 Unfavorable

AC135048.4 na na 8.84 Unfavorable

NPIPB1P Irrelevant 0.06 8.81 Unfavorable

SYS1 Irrelevant 0.831 8.46 Unfavorable

RMRP na na 8.18 Unfavorable

SNORD116-18 na na 10.3 Unfavorable

https://xenabrowser.net
https://www.proteinatlas.org
https://xenabrowser.net
https://xenabrowser.net
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full results. However, not all results were concurring. A full list of mRNA markers and their expression in the 
TCGA dataset is provided in Table 3.

Validation of selected gene and protein signatures with qRT‑PCR and IHC.  To validate selected 
findings, we performed immunohistochemistry for Desmoplakin (DSP), and qRT-PCR for AGAP2-AS1. DSP 
showed a higher abundance in P compared to NP tumors (Fig. 5A,B). These data were consistent with the prot-
eomic dataset (FC P/NP 4.77, p-value = 2.04E−03) (Fig. 5C). Control images with omitted primary (Fig. 5D) and 
secondary antibody (Fig. 5E) are also provided. In addition, AGAP2-AS1 gene was found to be overexpressed in 
P tumors also by RT-qPCR (p = 0.035, FC (P/NP): 4.09), as previously reported21.

Discussion
Early detection of susceptibility to cancer progression is essential for treatment and surveillance adjustment. Cur-
rently, there is no biomarker indicating if a “low-risk” ccRCC patient will eventually progress towards a higher-
grade cancer. To fill this knowledge gap, we have investigated molecular profiles of ccRCC tissues from patients 
conventionally classified as low-risk, some of which remained progression-free over 10 years postoperatively, 
whereas others progressed to tumor recurrence. Our investigation resulted in a ten-component classifier of low-
risk ccRCC, correctly predicting the progression of low-risk ccRCC years in advance of the advent of progression.

We have generated a multiomics dataset of mass spectroscopy proteomics, RNA-seq and miRNA-seq from 
renal biopsies of clinically closely matched NP and P patients. Each of these datasets displays specific character-
istics, as indicated by the very different nature of differentially expressed markers, and the profiles of apparently 
involved pathways. This was at least in part expectable, possibly due to the presence in our biopsies of soluble 
proteins or receptor ligands, produced in non-malignant tissues, outside tumor location. Moreover, defined 
ccRCC infiltrating cell types, e.g., myeloid cells, are typically characterized by low transcriptional activity39–41. 
A similar discrepancy has also been previously observed by others42.

Importantly, key proteins and mRNA abundances in our cohort matched with TCGA data34, such as TIN-
AGL1, PLG or HBA1 proteins in NP tumors was accordingly associated with improved prognosis in unselected 
ccRCC. Similarly, overexpression of ITIH1, PTMS and PTMA proteins in P tumors was consistent with their 
associated poor prognosis significance in TCGA data from unselected ccRCC, e.g. not selected for stage or risk 
profile. The components of the classifier have also previously been connected to a variety of malignancies (Sup-
plementary document S4).

The prognostic significance of a number of proteins differentially detectable in P compared to NP tumors did 
not fully match that observed in unselected ccRCC, as reported in publicly available databases. Examples include 
TTR and DTD1, unfavorable in unselected but favorable in low-risk ccRCC, or DSP and ATP6V1G1, favorable in 
unselected but unfavorable in low-risk ccRCC. A similar pattern of discordant prognostic significance was also 
detectable in the analysis of transcriptomic data. These data suggest that the clinical relevance of the expression 
of defined markers could be, at least in part, stage/score specific. In this context it is nevertheless remarkable that 
the use of recombinant TINAGL1 has recently been proposed for cancer treatment43.

Figure 5.   Immunohistochemistry (IHC) of Desmoplakin (DSP) and its protein abundance plot. DSP was 
expressed to a higher extend in P (A), compared to NP (B) tumors based on both proteomics data and IHC 
results. IHC results (40 ×) are from a matched sample pair. The image was taken from the most markedly stained 
sections of each slide. (C) depicts the log2 abundance values of DSP in the proteomics dataset. (D) Depicts the 
staining without the primary antibody. (E) Depicts the staining without the secondary antibody.
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Our findings support a significant discrepancy both between different cancer stages, but also between pro-
teomics and transcriptomics data, as there were significant gaps in the overlap between expressed mRNAs and 
proteins. This may suggest that proteins produced outside tumor location may significantly impact on unselected 
ccRCC clinical outcome. Alternatively, discrepancies might be due to long protein half-lives.

Although proteomics data did not fully separate P and NP tumors, they were characterized by a higher 
statistical significance, as compared to mRNA or miRNA data, a feature that has been observed previously in 
multiomics papers42.

In particular, “LXR/RXR and FXR/RXR Activation”, “Acute Phase Response Signaling”, “IL-12 signaling and 
production in macrophages” and “Antigen presentation” pathways were enriched in the proteomics dataset of 
NP compared to P samples.

. Interestingly, LXR agonists have been shown to inhibit the proliferation of renal cancer cells45 and steer 
macrophage polarization towards an anti-inflammatory profile46. In renal cancers at large, acute phase reactants 
predict poor survival, although less accurately than clinical stage51, and C-reactive protein (CRP), represents a 
clinically significant unfavorable prognostic factor in a variety of urological cancers52–54. Importantly, by integrat-
ing HLA ligand omics, transcriptomics, genetic and epigenetic data, candidate ccRCC antigens have successfully 
been identified55. Therefore our data consistently support an important role of LXR and of macrophages in the 
inhibition of ccRCC progression and warrant additional experimental studies to clarify involved molecular 
mechanisms.

Pathways associated with mRNA data were also identified but they were of minor statistical significance. 
Expectably, “Molecular mechanisms of cancer” pathway genes were overrepresented in P tumors. Most interest-
ingly, however, a concordant enrichment of “B cell receptor signaling”, “B cell development” and “GABA Receptor 
Signaling” pathways was observed in P low-risk ccRCC. Indeed, B cells have most recently been reported to 
produce GABA56, which, in turn, promotes macrophage polarization towards an immunosuppressive functional 
profile. Taken together, these data might suggest that conditioning of the immune system, and, in particular, of 
macrophage activation, might play a major role in the clinical outcome of low-risk ccRCC.

The absence of a sufficient number of publicly available datasets comparing ccRCC P to NP, particularly in 
putatively low-risk tumors, and not just “ccRCC” to “healthy” tissue, underlines a need for specific studies like the 
one presented here. Most interestingly, despite a lack of clinical or macroscopic differences between the patient 
groups included in our analysis, we unraveled specificities, at the molecular level, mirroring, in part, published 
tumor biology advances. Notably we report here only one out of many possible panel classifiers, based on its 
relatively low number of components, rendering it more easily amenable to a clinical application. Remarkably, 
distinct components of this classifier were connected to each other. As an example, miR-1291 has previously been 
shown to target C8G57, and the two markers are strongly negatively correlated in our dataset.

The most important limitation of our study is represented by the small sample size, although we have included 
all available patients from our institutions over 17 years. However, low-risk ccRCC progressors are exceedingly 
rare, constituting only approximately 1.8% of the patient population and requiring almost a decade of follow-up 
for their identification16.

Another potential limitation is represented by a large use of un-adjusted p-values, since analysis of -omics 
data usually requires statistical adjustments of baseline p-values to account for multiple testing and false positive 
results. In our case, due to the close matching of the samples, such adjustments were impossible, and resulted 
in a loss of significance, with the exception of canonical pathways enrichment in proteomics data, even though 
the results were validated externally or with other methods, thus supporting a real biological difference between 
P and NP ccRCC. Moreover, similar limitations have been reported previously in closely matched cohorts16. In 
order to account for this, we have performed several validation experiments and analyses on the TCGA data, all 
of which accounted for multiple testing when applicable.

Nevertheless, our study also has several strengths mostly based on the close matching of included patients. 
For each P, we included two matched NP with similar Leibovich score, age, sex, Fuhrmann grade, tumor stage 
and -size, similar creatinine levels and similarly performed surgical removal of tumors. The thorough matching 
of subjects reduced unwanted biological and demographic variations, e.g., age differences between the groups, 
which might have otherwise introduced important bias. Therefore, our findings provide new insights into the 
progression of putatively low-risk ccRCC and could contribute, as baseline data, to future studies further vali-
dating the model, and potentially leading to adjusted treatments for low-risk progressors, or to development of 
novel therapeutic regimens.
Conclusion
A combination of omics datasets can be useful for the identification of pathways and molecular signatures 
associated with progression of low-risk ccRCC. Our work suggests that LXR, FXR and macrophage activation 
pathways could be critically involved in the inhibition of the progression of low-risk ccRCC. Furthermore, a 
10-component classifier could support an early identification of apparently low-risk ccRCC patients more likely 
to show disease progression, and thus assist in earlier treatment adjustments.

Data availability
The mRNA data is available through the GEO repository, accession number GSE171955, as is the miRNA data, 
accession number GSE207557. The proteomics data are available through the GITHUB repository, under the 
title ‘’A-multiomics-disease-progression-signature-of-low-risk-ccRCC’’. Supplemental data is available through 
figshare; https://​figsh​are.​com/​artic​les/​online_​resou​rce/​Untit​led_​Item/​19086​512.
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