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Abstract

Pleiotropically acting eukaryotic corepressors such as retinoblastoma and SIN3 have been found 

to physically interact with many widely expressed “housekeeping” genes. Evidence suggests that 

their roles at these loci are not to provide binary on/off switches, as is observed at many highly 

cell-type specific genes, but rather to serve as governors, directly modulating expression within 

certain bounds, while not shutting down gene expression. This sort of regulation is challenging 

to study, as the differential expression levels can be small. We hypothesize that depending on 

context, corepressors mediate “soft repression,” attenuating expression in a less dramatic but 

physiologically appropriate manner. Emerging data indicate that such regulation is a pervasive 

characteristic of most eukaryotic systems, and may reflect the mechanistic differences between 

repressor action at promoter and enhancer locations. Soft repression may represent an essential 

component of the cybernetic systems underlying metabolic adaptations, enabling modest but 

critical adjustments on a continual basis.
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INTRODUCTION

The first transcriptional regulation characterized in bacterial systems involves repressors 

described to function as on/off switches. Indeed, phage lambda repressor delivers tight 

repression to maintain lysogeny, while the LacI repressor can silence an otherwise highly 

transcribed operon, depending on nutritional status. Interestingly, subsequent studies have 

shown that lacZ expression can be delicately tuned over a wide range, depending on 

graded input from activators and repressors.[1] In eukaryotes, transcriptional repression 

reflects input from a wider set of regulators: inherent chromatin barriers, histone 

modifications that facilitate heterochromatin formation, and combined action of DNA-

binding transcription factors and corepressors that they recruit, including the evolutionarily 

conserved retinoblastoma (Rb) and SIN3 family proteins.

The action of transcriptional repressors and corepressors has played a central role in many 

studies of developmental biology, where such proteins are essential mediators of tissue-

specific gene expression, as well as controllers of cell cycle, and circadian regulation.[2–4] 

Inducible gene expression required for physiological response to environmental fluctuations 

also involves the deactivation of repression complexes, for instance in the upregulation of 

stress-responsive genes.[5] In many systems, the effectiveness of repression is essentially 

complete, and depends on reaching a critical concentration of relevant transcription 

factors, or intensity of signaling pathways that permit the assembly (or disassembly) of 

repression complexes. To achieve a cell-type specific response, target genes are repressed 

below some threshold that ensures establishment and/or maintenance of a specific cell 

state. For instance, Blimp-1/PRDM1 is a tissue-specific repressor whose key role is in 

driving plasma cell differentiation and silencing genes involved in immune response.[6,7] 

Its loss in maternal uterine tissue has been shown to upregulate hundreds of genes that 

are normally silenced.[8] Likewise, the RE-1 silencing transcription factor (REST) is a 

regulator of cell differentiation. REST is ubiquitously expressed in non-neuronal cells for 

the silencing of neuronal genes, while mostly absent from differentiated neurons.[9] Its 

loss in quiescent neural progenitors leads to neural differentiation, suggesting its role is to 

prevent neural differentiation through gene silencing.[10] In contrast to this choice between 

silencing or activity, molecular genetic studies have identified numerous genomic targets 

of repression complexes that may be less dramatically impacted by the presence of such 

regulatory factors. Metazoan transcription factors and their corepressors are typically found 

to physically interact with thousands of genes, yet perturbation experiments frequently show 

only a small subset with significantly altered expression. This disparity is usually ascribed to 

some degree of “off target” interactions, whereby these complexes do not have a significant 

function at some loci.[11] An additional possibility is that there are context-dependent 

interactions, in which the binding to some genes may be essential for regulation only 

in certain cell types, or under specific conditions that may not have been assessed in a 

particular experiment.

A nonexclusive, alternative explanation to the presence of certain physical repressor 

complex interactions is that the type of repression that is biologically significant is of a 

form that is inherently “soft,” that is, altering expression, but not in an absolute on/off 

fashion. Such regulation may be especially important for widely-expressed “housekeeping” 
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genes, where expression rarely, if ever, is silenced. As we have argued with respect to Rb 

corepressors, binding and coordinate regulation of ribosomal protein genes may represent 

just such a case.[12] A second example is that of regulation of genes in methionine 

catabolism by the SIN3 cofactor, where perturbation to SIN3 levels induces approximately 

two-fold changes in relevant pathway genes.[13] Significant for the analysis of such datasets, 

the amount of repression may be subtle, and in some cases, less than the extent typically 

required to clearly differentiate signal from noise.

Here, we discuss studies of Rb and SIN3, two essential and conserved corepressor protein 

families, providing a picture of the diverse targets with which these transcriptional regulators 

are physically and functionally associated. We propose that soft repression is a major 

contributor to gene regulatory control and plays a key role in metabolic adaptation. The 

unique soft transcriptional responses of some genes to corepressor regulation may result 

from the complexity of signaling at the respective promoters, or from the different effects of 

repressor complexes acting at promoters versus enhancers. Importantly, we suggest that the 

action of these corepressors may represent a wider, unappreciated phenomenon impacting 

a great number of eukaryotic regulatory factors and pathways. Further investigation will 

uncover the significance of this second, less dramatic form of transcriptional regulation.

The hypothesis formalized:

Canonical models for the action of transcriptional repressor proteins often emphasize the 

possibilities for tight control through on/off action, enabling exquisite tissue-specificity and 

physiological control. A number of genomic studies, however, have increasingly pointed 

to a pleiotropic “soft repression” mechanism of action on widely expressed genes, whose 

modulation may be subtle. Using two well-studied corepressor families, Retinoblastoma 

and SIN3, we hypothesize that some promoter proximal corepressors function to modestly 

attenuate gene expression in a biologically meaningful way-a mechanism that may be 

especially prominent on genes featuring multiple regulatory inputs.

Testing the hypothesis:

To better understand soft repression, we propose the application of diverse technologies: 

(1) using high throughput RNA-sequencing methods with deeper sequencing and greater 

number of biological replicates to increase resolution and discern the difference between 

noise and soft repression; (2) single cell transcriptomic studies, which will circumvent 

discrepancies that might arise from heterogeneous cell populations; (3) nuclear run-

on-based technologies such as GRO-seq, to allow for the assessment of immediate 

transcriptional impacts of corepressor perturbation; (4) targeting the corepressor directly 

to single gene promoters to perturb a specific circuit and avoid pleiotropic effects from 

global manipulations of the repressor; (5) a thorough computational consideration of soft-

repression in interpreting population- and species-level cis-regulatory variation. We urge 

gene expression researchers to consider soft repression as a significant and biologically 

relevant form of transcriptional regulation in future studies and test the hypothesis using 

these proposed methods.
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THE RETINOBLASTOMA TUMOR SUPPRESSOR PROTEIN MEDIATES BOTH 

HARD AND SOFT REPRESSION

The retinoblastoma tumor suppressor protein (Rb) is a conserved transcriptional corepressor 

present in most eukaryotes including plants, animals, and microbes. The study of the RB1 
gene stems from research by Knudson, who linked mutations in the gene to retinoblastoma, 

an eye cancer presenting in early childhood.[14] Since then, its role in cancer, development, 

and normal physiology has been extensively studied in a variety of systems. Most eukaryotes 

express a single Rb protein, but the gene has been duplicated in select lineages including 

in vertebrates and Drosophila. In humans, the Rb family comprises Rb, p107, and p130, 

which exhibit partially overlapping as well as non-redundant functions in development 

and cancer.[15] Similarly in Drosophila, paralogs Rbf1 and Rbf2 represent an ancient 

duplication event, where Rbf1 appears to have more roles in cell cycle regulation, while 

Rbf2 may interact with and regulate an extensive set of genes linked to growth control and 

metabolism, including ribosomal protein genes.[16] Below, we summarize basic properties of 

these proteins with a focus on work from Drosophila; vertebrate paralogs of Rb have been 

similarly examined in countless studies in the context of development and disease.

Rb proteins regulate genes by binding to E2F family transcription factors found on 

promoters. E2F factors have a canonical role in the regulation of cell cycle genes that 

are transiently induced during the cell cycle. In Drosophila G1, Rb binds to the E2F-DP 

heterodimer and blocks E2F from activating expression of downstream genes such as cycA, 
cdc2, and DNApola, which are required for S phase entry.[17] Rb-mediated repression is 

relieved later in G1 as Rb is inhibited via phosphorylation, and the cell enters S phase. 

Similar regulation appears to apply to promoters active later in the cell cycle, such as cycB. 
This cell-cycle regulatory role by Rb proteins is highly conserved in eukaryotes.[18] Initial 

characterization of Rb function derived from its cancer-associated phenotype, and led to cell 

cycle regulation as a central area of study. However, genome-level studies soon revealed a 

plethora of other regulatory roles.

Transcriptomics studies have uncovered diverse classes of genes that are differentially 

expressed after Rb loss or overexpression. Pioneering studies using cultured Drosophila 

S2 cells showed that Rbf1 knockdown affected canonical cell cycle, DNA replication, and 

DNA repair genes, but also a host of non-cell cycle-related genes.[19] Interestingly, specific 

promoters tested in transfection assays were differentially sensitive to the Rb paralogs - 

most, but not all, cell cycle genes being more sensitive to repression by Rbf1.[16,20,21] 

In contrast, Rbf2 has preferential action on certain ribosomal protein promoters, with 

which it is prominently associated in vivo, although the extent of regulation is much more 

modest than that seen for cell cycle genes.[12,16] Knockdown studies in human fibroblasts 

similarly illustrate that loss of each human Rb family member misregulates diverse classes 

of genes.[22] Rb knockdown led to upregulation of DNA replication, DNA metabolism, and 

cell cycle genes; p107 knockdown led to downregulation of genes involved in oxidative 

phosphorylation, electron transport, and NADH dehydrogenase activity; genes involved 

with organelles were upregulated after p130 knockdown. Although the regulation was not 

shown to be direct in all cases, these data indicate unique roles of Rb proteins related 
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to cell metabolic processes. More recently, Rb loss was implicated in reprogramming of 

glucose tolerance, oxidative metabolism, glutathione synthesis, glutamine catabolism, and 

nucleotide metabolism in Drosophila.[23] We, and others, have found that the extent to which 

these target genes are repressed by Rb varies. From cell culture assays performed in our 

laboratory, we suggest that significant and potent decreases in expression of certain genes 

such PCNA represent hard repression, in which the gene is turned off for a period of time, 

while more moderate decreases observed, as is the case with InR, represent what we term 

soft repression (Figure 1).

Overall, comparison of genes directly bound by Rb family proteins in diverse organisms 

suggests that at least a portion of targeting is widely conserved, extending beyond the 

canonical cell cycle category. For instance, the human p130 protein is especially enriched 

on mitochondrial and cytoplasmic ribosomal protein promoters, similar to the pattern for 

Rbf1/2 in Drosophila, suggesting that this class of genes may represent a common target.
[12,22] While Rb family members are typically found proximal to the transcriptional start 

site, human Rb proteins have also been found to localize to gene enhancers, and DNA repeat 

elements like LINEs and SINEs, where they recruit cofactors to change histone marks.[24,25] 

Still, Rb proteins are preferentially localized to promoter proximal regions, perhaps due to 

reliance on recruitment by E2F transcription factors, which are also generally located near 

the transcriptional start site.[12] Overall, emerging research indicates that retinoblastoma 

proteins exhibit highly conserved functional roles, which may include both hard and soft 

repression on distinct targets.

THE SIN3 COREPRESSOR REGULATES GENES INVOLVED IN ESSENTIAL CELLULAR 
PROCESSES

SIN3 is a broadly acting transcriptional regulator conserved from yeast to humans. 

Pioneering genetic studies identified this factor as a key regulator of mating type switching 

in Saccharomyces cerevisiae.[26,27] The SIN3 protein itself does not possess enzymatic 

activity but rather acts as a scaffold that interacts with other factors including histone 

deacetylases and histone demethylases.[28] Some eukaryotes, such as budding yeast and C. 
elegans, possess a single SIN3 gene, as does Drosophila (Sin3A), where alternative splicing 

produces multiple protein isoforms. Diversity is achieved in Schizosaccharomyces pombe 
and vertebrate species through multiple SIN3 paralogs, including the mammalian SIN3A 
and SIN3B genes. Mutations and altered expression of these mammalian paralogs are 

found in diseases such as breast cancer, pancreatic cancer, and Witteveen-Kolk syndrome, a 

neurodegenerative disorder.[29–31]

Early genome-wide transcriptomic analyses from multiple species revealed that SIN3 acts 

both as a corepressor and as a coactivator of transcription.[32–34] SIN3 was found to regulate 

genes involved in many different cellular processes, including cell cycle, metabolism, DNA 

replication, and stress response. Regulatory roles of the factor are evolutionarily conserved; 

for instance, SIN3 regulates cell cycle progression in organisms from yeast to mammals. In 

Drosophila S2 cells, reduction of Sin3A results in a change in expression of a number of 

cell cycle regulators, including a decrease in the level of string, required for the G2 to M 

transition, which halts the progression of cell cycle.[33,35] This same step in the cell cycle is 
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affected by knockout of mSin3a in mouse embryonic fibroblasts.[34,36] The SIN3B paralog 

is not required for cell proliferation but rather interacts with the DREAM complex to repress 

essential genes and enable maintenance of quiescence.[37,38]

Studies from Drosophila show that genes of housekeeping pathways are also bound and 

regulated by Sin3A. Sin3A influences mitochondrial function by regulating the expression 

of multiple nuclear-encoded mitochondrial genes that encode electron transport chain 

subunits.[33,39] By regulating expression of mitochondrial genes, as well as genes and 

metabolites of the glutathione pathway, Sin3A influences overall fitness and response 

to oxidative stress.[33,40,41] Expression of enzymes involved in energy production are 

also regulated by the Sin3A complex.[33,39] Sin3A knockdown in Drosophila S2 cells 

affects the gene expression and metabolite levels of several glycolytic and TCA cycle 

intermediates.[33,41] The reduction of Sin3A also affects expression of genes encoding 

enzymes of methionine metabolism and leads to a decrease in levels of the methyl donor 

S-adenosylmethionine (SAM).[13] These findings indicate that an important function of the 

Sin3A complex is to regulate expression of genes encoding enzymes of metabolic pathways 

to maintain cellular homeostasis.

SIN3 also regulates response to stress in both fly and mammalian models.[40,42] The 

knockdown of Sin3A in Drosophila leads to reduction in expression of genes encoding 

proteins required for glutathione synthesis as well as increased susceptibility to oxidative 

stress, a sensitivity that is rescued by glutathione supplementation.[40] A study in 

mammalian cancer cell lines showed that SIN3B is important in the stress response 

to treatment with different DNA-damaging agents.[42] Following treatment, there is an 

increase in expression of SIN3B at the transcript and protein level, which is p53-dependent. 

Additionally, when Sin3B is knocked down during damage, p53 target stress response genes 

are affected, linking SIN3B to the p53-mediated response to DNA damage.

As noted for Rb family proteins, ChIP studies from worms, flies, and mice show that 

SIN3 is generally localized to promoter proximal sequences of target genes, and not at 

distal enhancers.[43–45] Consistent with this pattern, SIN3 and other components of the 

complex immunoprecipitate with H3K4me3, a promoter-associated mark.[46] In addition to 

recruitment to the promoter, SIN3 has been reported, in mouse and yeast cells, to localize 

to gene bodies of some active genes through association with a complex of proteins distinct 

from those found at promoters. The Rpd3S complex in yeast, which contains Sin3, the Rpd3 

HDAC, and two additional factors, is recruited through interactions of complex subunits 

with histone H3K36me3.[47,48] The predominant role of Rpd3S is to facilitate deacetylation 

of nucleosomes after the passage of RNA polymerase II, suppressing cryptic initiation along 

the gene body.[47,48] In the mouse, the Sin3B isoform, along with HDAC1 and homologs 

of the other two yeast Rpd3S complex members, is found enriched at sites downstream of 

the promoter of select housekeeping genes.[49] Knockdown of Sin3B leads to an increase 

in RNA polymerase II levels in the gene body and approximately two-fold activation of 

GAPDH and RPL13α expression. The mechanism of action of SIN3 in gene regulation 

along gene bodies is likely distinct from that of SIN3 localized to the promoter proximal 

region. As a scaffold, SIN3 interacts with a number of protein partners. Localization is 

likely to reflect recruitment by different sequence-specific DNA binding transcription factors 
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and through recognition of specific combinations of histone modifications by chromatin 

binding domains within proteins of theSIN3 complex.[50] SIN3 and associated proteins of 

the complex bind a diverse set of targets to modulate the expression of genes to impact 

multiple biological processes. In summary, targets of SIN3 regulation represent a wide 

variety of cellular functions. One report noted the silencing of cell cycle related genes by 

Sin3 acting with E2F4 and RBP2 in differentiated mouse myoblasts; however, the regulatory 

effects of SIN3 have generally not been reported to include outright silencing of most target 

genes, pointing to a modulating role rather than an outright on/off switch.[51]

GLOBAL REGULATION THROUGH SOFT REPRESSION

From a global perspective, Rb and SIN3 share several characteristics, including their 

preferential association with promoter proximal sequences, their widespread expression, 

and the diversity of physically and functionally targeted genes. These corepressors differ 

in that Rb family proteins are regulated by conserved cyclin kinases that affect Rb-E2F 

association, thus dynamically modulating repression activity, whereas a similar control of 

SIN3 proteins has not been observed. However, a variety of post-translational modifications 

do affect SIN3 proteins, and may exert similar regulation.[52] In addition, expression of 

distinct SIN3 isoforms may adjust SIN3 activity over longer developmental times.

Another common characteristic of these two corepressors, which has been less appreciated, 

comes from examination of target gene responsiveness to perturbation of Rb or SIN3 

proteins. From examination of transcriptomic data, it is apparent that a large portion of 

their regulons consist of widely active genes, which are subject to fine-tuned regulation. 

To draw a distinction with a typical silencing action commonly associated with repressors, 

we call this regulatory activity soft repression, and describe it as the action of repressors/

corepressors to modulate or fine-tune gene expression without effectively silencing the 

promoter. This regulatory action differs from the usual understanding of transcriptional 

repressors that function as an on/off switch, which for Rb has been demonstrated on 

cell cycle genes.[53] As discussed below, a closer analysis of these two highly conserved 

corepressors, Rb and SIN3, indicates that soft repression may be a common, yet 

underappreciated activity of transcriptional regulators in general.

We performed a comparative examination of published ChIP-seq and transcriptomic data 

for Rb and SIN3, which supports this new classification of repression mechanisms. We 

first considered to what extent global regulatory roles of each of these corepressors may 

be evolutionarily conserved, and compared promoter occupancy of orthologous genes in 

Drosophila and mammals. Over 50% of all of the genes bound by SIN3A in the mouse that 

possess a fly ortholog were similarly bound by Sin3A in the fly (Figure 2A). A smaller, 

but still substantial, fraction of genes bound in human cells by Rb with an ortholog in 

the fly are bound by Rbf1 and/or Rbf2. The overlap in directly bound targets indicates 

that both Rb and SIN3 may have conserved roles, although binding does not always 

predict function. Therefore, to consider functional effects, we combined the ChIP-seq 

data with available microarray or RNA-seq data from worms, flies, and the mammalian 

systems (Table 1). We identified functional classes of genes significantly enriched in these 

lists of direct, repressed targets (Figure 2B). We found that knockdown of Sin3A in 
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Drosophila and mouse embryonic stem cells leads to misregulation of genes involved in 

multiple overlapping processes such as transcriptional regulation, cell cycle, and aging.[43,44] 

Similarly, in the fly and human cells, regulatory effects of retinoblastoma proteins involved 

common classes of genes, including transcriptional regulation, cell cycle, and aging, and 

also included classes not seen to be regulated by SIN3 such as insulin signaling and DNA 

repair.[22,54,Mouawad et al. in prep]

Interestingly, most of the direct, repressed genes showed modest but significant changes 

in expression after perturbation of Rb or SIN3 (Figure 2C). For example, for both Rbf1 

and Sin3A in Drosophila, over 80% of affected genes fell within the lowest category 

of less than or equal to a two-fold change in expression level (log2-fold change, 0.2–

1). The knockdown of the Rb worm homolog, lin-35, caused a larger range in gene 

expression changes, 50% having greater than log2-fold change of 1. The prevalence of 

modestly impacted genes suggests that the effects have a biological basis, and that soft 

repression is observable in these transcriptomic measurements. We note that the bias towards 

small fold changes may also be the result of incomplete removal of Rb and SIN3 in 

perturbation experiments, or indirect genetic effects (although we only consider direct 

ChIP-seq target genes in this analysis). Overall, however, the observed levels of modulation 

are far from complete silencing of transcription, but do fall well within the levels that 

are associated with significant biological effects, such as the two-fold changes associated 

with haploinsufficiency or changes in dosage compensation, both of which can have major 

consequences. Together, the frequency of soft repression-like effects, along with evidence 

of evolutionary conservation of physical and functional targeting, suggests that this type of 

regulation constitutes an important role for both SIN3 and Rb proteins.

Considered on a genome-wide scale, the regulatory action of Rb and SIN3 appears to be 

largely dedicated to fine-tuning gene activity, although in the case of Rb family proteins, the 

cell cycle effects have a disproportionate impact on described phenotypes. What evidence 

would support the important, even predominant, role for soft repression for SIN3 and Rb 

proteins? First and foremost, SIN3, which apparently is largely restricted to soft repression, 

is essential in many organisms.[34,36,37,60,61] For Rb, the case is more complex, because 

standard genetic approaches do not differentiate the impacts of misregulated gene expression 

involving hard and soft effects. The most compelling evidence comes from Drosophila, 

where gene duplication and subfunctionalization has apparently partly divided the cell cycle 

and soft regulatory tasks between Rbf1 and Rbf2. Rbf2—which has many targets within 

the soft targeting category—is dispensable for development but never lost over longer 

evolutionary time, likely due to pleiotropic effects.[16,20] Secondly, regulation of a variety of 

pathways that have been examined in detail show the significant phenotypic consequences of 

these less than all-or-nothing effects. For Drosophila Sin3A, RNAi knockdown upregulates 

multiple methionine catabolism genes by approximately two-fold.[13] This difference in 

expression is associated with a change in the level of the key methionine donor SAM, 

and an increase in H3K4me3, a histone modification linked to gene expression. In the 

mouse, conditional knockout of Sin3a in forebrain excitatory neurons results in a small 

yet reproducible (20–25%) increase in expression of Homer1 and cyclin-dependent kinase 

Cdk5, two genes encoding factors involved in memory consolidation, associated with an 

increase in hippocampal activity.[62]
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In the case of Rb regulation, one of the most attractive sets of genes for further investigation 

of soft repression are the over 100 ribosomal protein promoters that are extensively targeted 

by Rb family members. Ribosomal protein promoters are widely active, thus considered 

housekeeping in nature, yet respond sensitively to changes in nutrient availability, as well 

as signals in development and disease.[63–65] The two-fold or less modulation of expression 

of these genes exerts pleiotropic effects on cellular growth, as evidenced by the minute 
phenotypes caused by haploinsufficiency.[66] While the contribution of Rb proteins to 

overall expression of these genes still needs to be established, a soft repression level 

of control is likely to impact cellular growth in a significant way. We propose that this 

collection of small but reproducible changes contributes to Rb and SIN3 acting as essential 

global transcriptional regulators that modulate gene expression, rather than fully repress 

their target genes, to produce measurable biological outcomes.

THE WHERE AND HOW OF SOFT REPRESSION

Based on gene ontology analysis, targets of soft repression may disproportionately represent 

housekeeping genes, although this term can be misleading, as it does not mean that the genes 

are constitutively active in an unregulated manner. To characterize the types of expression 

patterns observed for Rb and SIN3 target genes, we examined extant gene expression 

data using modENCODE data accessed through Fly-Base. Focusing on conserved target 

genes from mammals and flies, we found the majority of these genes to be expressed at 

all developmental stages, but not in all tissue types. This suggests that these corepressors 

regulate genes that are widely expressed throughout development, and they potentially 

modulate their expression in particular contexts. A unifying characteristic of these genes is 

that despite the presence of the corepressor, they continue to be expressed. To determine 

whether these target genes are considered stably expressed, we used the tau metric as 

a computation of gene expression variability.[67,68] A tau value of 0 is given to a gene 

that is expressed at the same level across the developmental time points and tissue types 

assayed. A tau value of 1 indicates the gene’s expression is specific to one stage or one 

tissue type. Using a cutoff of 0.25 as the definition for a “stable gene,” we found that over 

50% of conserved Rb or SIN3 targets are considered stable genes throughout development, 

while only about 25% are stable throughout the tissue types assayed. A hypergeometric test 

indicates that the stable genes are significantly over-represented within the bound gene sets 

for both Rb and SIN3. Perhaps a typical promoter that is regulated by soft repression is one 

that is widely expressed and stable throughout developmental stages.

How is it that Rb and SIN3 complexes can be involved in soft repression, when the general 

types of associated factors - transcription factors and chromatin modifiers such as HDACs - 

are also involved in more dramatic on/off transcriptional regulation? Our model posits that 

genes that are fully repressed, perhaps through constitutive and facultative heterochromatin 

or subject to dominant regulation of distal enhancers, are not subject to control by soft 

repression (Figure 3A, B). In contrast, the large majority of Rb and SIN3 binding occurs 

near the transcription start site, rather than at distal enhancers. We speculate that soft 

repression activity may be exerted strictly from promoter proximal positions, and that 

specific properties of the promoter region can predispose the regulation to be partial, rather 

than all-or-nothing (Figure 3C, D). For instance, localization of a repression complex at 
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a promoter may be better suited for partial interference with transcriptional initiation or 

release, if the biochemical mechanisms invoked (e.g., deacetylation of histone tails, an 

activity associated with both Rb and SIN3 associated factors) modestly impact nucleosome 

loading or density. A somewhat inhibited rate of binding or release of RNA polymerase 

II may then result, possibly changing kinetic constants without blocking essential steps 

in promoter firing. By contrast, a hard repression effect, such as seen on the PCNA 
promoter, may result from inhibition of the E2F transcriptional activation domain, blocking 

key interactions with the Mediator or TFIID. It is possible that deployment of similar 

chromatin modifiers to distal regions may interfere with transcription factor binding and 

enhancer-promoter looping, resulting in an all-or-nothing effect (Figure 3A, B). Notably, the 

same biochemical pathways may be involved in hard or soft regulation, and the architecture 

of the regulatory region would be decisive in dictating the outcome. An alternative and 

non-exclusive possibility is that soft repression reflects an inherent balance of competitive 

interactions with the basal machinery, and promoters that feature multiple inputs from 

other regulatory factors and elements would not be prone to complete silencing (Figure 

1B). In summary, it is likely that the context of the regulatory regions in which Rb 

and SIN3 corepressors operate have a decisive impact on the ability of these factors to 

play modulating, rather than on/off roles. Further biochemical and molecular biological 

investigations will be required to elucidate the mechanisms in play. Such studies will likely 

yield important insights into the dynamic regulation of many constitutively active genes key 

to metabolism and disease.

SOFT REPRESSION—A GENERAL PROPERTY OF TRANSCRIPTIONAL 

CONTROL?

Our studies of soft repression in the context of SIN3 and Rb proteins stemmed from 

consideration of the many physical targets from genes in shared pathways, which did not 

exhibit dramatic transcriptional responses, but appeared to explain pleiotropic phenotypes. 

How general might such regulation be? The physical occupancy of other components of 

transcriptional regulatory machinery provides clues that continuous repressive activities 

may be a common feature of many housekeeping promoters. Some of the first genome-

wide studies of histone deacetylases revealed that these enzymes, central for repression, 

are commonly associated with active promoters, in a pattern similar to that of activation-

associated histone acetyltransferases.[69] This study did not address the functionality of 

HDAC at these active loci, although the occupancy positively correlated with gene activity, 

and the loss of HDAC expression allowed ectopic acetylation of silent transcriptional start 

sites. One role for HDAC1 at active loci was recently demonstrated to be in the release of 

paused RNA polymerase II to promote the elongation phase of transcription.[70] As both Rb 

and SIN3 physically interact with HDAC1, a major mechanism through which these factors 

exert soft repression could be through regulation of the transition to productive elongation.

An additional aspect of promoter proximal soft repression is that the genes involved may 

feature multiple regulatory inputs, so that loss of any single regulatory control feature 

results in a small change in expression. Indeed, many positive and negative regulators 

of transcription have been found to co-associate with areas of active gene transcription. 
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Using DAM-ID to characterize chromatin association of factors, the van Steensel group 

performed a genome-wide binding analysis of 53 Drosophila chromatin associated proteins.
[71] Certain repressive chromatin marks and factors (e.g., factors of the Polycomb complex) 

did co-cluster with inactive regions; however, Sin3A and HDAC1 were found to generally 

colocalize to two subtypes of euchromatin that contain the majority of active genes, and are 

enriched in binding of components of the general transcription machinery. This study was 

conducted in cultured cells, where one can expect that most cells are in a similar state of 

developmental identity. For other types of ChIP-seq analyses of transcriptional regulators 

that used complex tissues or whole organisms, the co-occurrence of transcriptional 

repressors with areas of active gene expression may also be a reflection of the heterogeneity 

of cell types. Thus, to discern whether particular repressors and corepressors may be actively 

and continuously engaging in modulation of gene expression from specific promoters, it is 

important to know whether subpopulations of cells are present. Clearly, for widely-active 

housekeeping-type genes, this concern is of lesser importance. Overall, functional studies - 

from genetic to genomic - are needed to determine whether the promiscuous association of 

many factors with certain segments of the genome represents a complex regulatory playing 

field, or just the noise of binding as countless factors seek their functional targets.

CONCLUSIONS AND OUTLOOK

From a consideration of SIN3 and Rb, we suggest that many repressors may exert soft 

repression. There may not be a sharp division between hard and soft repression, but rather a 

continuum of regulatory action, dependent on promoter architecture, regulatory inputs, and 

modifications to the corepressors. A focus on soft repression is critical for three reasons: 

First, this subtle regulation reveals critical direct biological effects, overlooked if stringent 

quantitative cut-offs are applied. Second, SIN3 and other factors may predominantly act 

this way, so understanding these factors requires measuring such soft effects. Third, 

global, systems-level network studies depend on accurate descriptions of genes (nodes) and 

regulatory interactions (edges), and knowledge of regulation via soft repression will enhance 

the power of these models.

We see four challenges for progress: First, the magnitude of soft repression makes it hard to 

spot, since transcriptomic analyses typically focus on more robust effects. Beyond more and 

deeper sequencing, we need complementary approaches to test the functional importance of 

potential direct regulation, including high-throughput methods to subtly perturb promoters 

and repressors and corepressors. Second, pleiotropic effects from misregulation of soft 

repressors make it difficult to differentiate primary and secondary responses. Approaches 

that specifically decouple a soft repressor from a target locus in the context of a wild-

type cell will be helpful. Third, cell-to-cell variation may complicate distinguishing noise 

from mild effects. Single cell transcriptomic studies could address this limitation. Finally, 

a thorough consideration of regulatory variation at the population and species level 

should be employed to discern possible soft repression effects. Perhaps specific promoter 

proximal SNPs associated with complex traits impact soft repression. We propose that gene 

expression research formally consider the impacts of soft repression in myriad settings, to 

better uncover the basis of gene regulation in development and disease.
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FIGURE 1. 
Comparison of hard versus soft repression. (A) Rb can function as a potent repressor on 

certain genes such as the cell cycle-related PCNA by blocking the E2F transactivation 

domain and inducing a repressed chromatin state. (B) In contrast, on other genes such 

as InR, Rb functions in concert with other factors that may have to balance each other’s 

activities, leading to more moderate repression of the gene
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FIGURE 2. 
Conserved, direct targets of SIN3 and Rb exhibit soft, but significant repression. (A) SIN3 

and Rb bind to a substantial number of the same genes in both the fly and mammalian 

systems, which indicates conservation of genome-wide binding by these corepressors. To 

determine this, we used the BioMart data mining tool and analyzed the intersection of fly 

and mammalian ChIP-seq datasets.[55] Mouse genes for which orthologs can be identified in 

the fly were overlapped with fly genes bound by SIN3. Similarly, human genes for which 

orthologs can be identified in the fly were overlapped with fly genes bound by Rb. (B) Chart 

indicates GO categories misregulated after overexpression or knockdown of SIN3 or Rb in 

fly and mammalian systems. (C) Pie charts indicate the log2-fold change of direct, repressed 
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genes after Rb or SIN3 manipulations in worm, fly, and mammalian models. Totals listed 

are the number of genes misregulated for each organism and corepressor. Data obtained 

from[22,43–45,54,56,Mouawad et al. in prep]
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FIGURE 3. 
Contrasting models for transcriptional repression: enhancer based hard repression (A, B) and 

promoter based soft repression (C, D). (A) At enhancers, activators and repressors work in a 

binary fashion, turning gene expression on and off in response to availability of binding sites 

and interaction with distal gene promoters. When an activator binds an available enhancer, 

it can turn on gene expression through chromatin looping. (B) If an enhancer is occluded 

through nucleosome remodeling and chromatin compaction, activator access is inhibited and 

the gene is turned off. (C) At promoters, soft repressors can fine-tune expression from the 

proximity to the transcriptional start site, sometimes through interaction with transcription 

factors (TF) bound to DNA. There is an interplay between activators and repressors, which 

compete for DNA recruitment to impact the chromatin environment and modulate gene 

expression. On the left, a promoter proximal TF interacts with cofactors such as histone 

acetyltransferases (HAT) to turn on expression of gene X, while on the right, (D) the soft 

repressor complex, which many times includes a histone deacetylase (HDAC) in the case of 

Rb and SIN3, is more potent than the activator. The complex deacetylates nearby histone 

tails and dials down expression of gene X, but does not completely turn it off.
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