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Abstract: Cryptococcal meningoencephalitis (CM) is a treatable condition, but it leads to exces-
sive morbidity and mortality. We collected 115 non-duplicated Cryptococcus clinical isolates during
2013–2020 in southern Taiwan to perform antifungal susceptibility testing. Multi-locus sequence
typing was performed on 96 strains from patients with CM (n = 47) or cryptococcemia (n = 49). In ad-
dition, the epidemiological and clinical characteristics of patients with CM during 2013–2020 (n = 47)
were compared with those during 2000–2010 (n = 46). During 2013–2020, only one C. neoformans
isolate (0.9%) had a fluconazole minimum inhibitory concentration of >8 µg/mL. Amphotericin B
(AMB), flucytosine (5FC), and voriconazole were highly active against all C. neoformans/C. gattii
isolates. The most common sequence type was ST5. Among these 47 patients with CM, cerebrospinal
fluid cryptococcal antigen (CSF CrAg) titer >1024 was a significant predictor of death (odds ratio,
48.33; 95% CI, 5.17–452.06). A standard induction therapy regimen with AMB and 5FC was used
for all patients during 2013–2020, but only for 2.2% of patients in 2000–2010. The in-hospital CM
mortality rate declined from 39.1% during 2000–2010 to 25.5% during 2013–2020, despite there being
significantly younger patients with less CSF CrAg >1024 during 2000–2010. The study provides
insight into the genetic epidemiology and antifungal susceptibility of Cryptococcus strains in southern
Taiwan. The recommended antifungal drugs, AMB, 5FC, and FCZ, remained active against most of
the Cryptococcus strains. Early diagnosis of patients with CM and adherence to the clinical practice
guidelines cannot be overemphasized to improve the outcomes of patients with CM.

Keywords: cryptococcosis; cryptococcemia; molecular typing; azole; flucytosine; amphotericin
B; mortality

1. Introduction

Cryptococcosis, a potentially fatal mycosis worldwide, is caused by members of the
Cryptococcus neoformans and C. gattii species complexes [1,2]. Although C. neoformans
and C. gattii share many features of a highly evolved, environment-savvy yeast, there
are important species- and strain-specific differences related to geographical distribution,
environmental niches, host preference, and clinical manifestations [1]. Cryptococcosis
encompasses a spectrum that ranges from latent infection through subclinical disseminated
disease to fulminant meningoencephalitis. Even in middle- and high-income countries,
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cryptococcosis-associated mortality remains high [3,4]. Early diagnosis, efficient clinical
support, and proper antifungal therapy are essential factors to reduce the mortality and
adverse impacts of cryptococcosis [5].

Cryptococcal meningoencephalitis (CM) is characterized by higher mortality than
non-central nervous system (CNS) cryptococcosis and substantial long-term neurological
sequelae post-treatment [6]. CM often involves patients with advanced human immunod-
eficiency virus (HIV) disease, malignancy, and immunosuppressive conditions, such as
recipients of solid-organ transplants. It also occurs in immunocompetent hosts [1]. The use
of potent antiretroviral therapy has significantly reduced the incidence of CM in people
living with HIV in developed countries [7]. In clinical practice, the antifungal treatment
of CM involves sequential therapeutic phases, including induction, consolidation, and
maintenance phases. A course of amphotericin B (AMB) with flucytosine (5FC) followed by
fluconazole (FCZ) as consolidation and maintenance is considered as the benchmark in an-
tifungal therapy for CM [8]. Additionally, liposomal amphotericin B (LAmB) is a preferred
alternative to conventional AMB, with similar outcomes and less nephrotoxicity [9], and is
recommended specifically for primary induction in patients at risk of renal dysfunction.

Numerous reports have been published on the Cryptococcus spp. isolates with high
resistance to FCZ [10,11]. FCZ-non-susceptible Cryptococcus spp. isolates have been re-
ported in cases of treatment failure mainly associated with acquired immunodeficiency
syndrome (AIDS) [10,12]. Several factors have been found to affect the susceptibility of
Cryptococcus spp. isolates to antifungal drugs, which include the prolonged use of FCZ as
a suppressive monotherapy, low bioavailability of FCZ in the infected tissue, fungistatic
action of azoles, increased tolerance to FCZ due to replicative aging, low glucose growth
condition and limited nutrients, and intrinsic resistance, such as the hetero-resistance of
C. neoformans and C. gattii to azoles [11,13–15]. The environmental triazole (tebuconazole)
used as an agrochemical pesticide may induce cross-resistance to clinically available azoles
in C. neoformans and C. gattii [16]. Moreover, it is noteworthy that a high frequency of
C. neoformans isolates with non-wild-type (non-WT) susceptibility to AMB has been re-
ported [17,18]. However, routine antifungal susceptibility testing (AST) is not performed
in most microbiological laboratories. With geographical variations, the epidemiological
surveillance of the antifungal resistance of cryptococcal strains is crucial for clinical practice.

In the last few decades, several widely used molecular methods have been used world-
wide to determine the genotypes of clinical, environmental, and veterinary isolates of the
members of the C. neoformans and C. gattii species complexes to investigate their geographi-
cal distribution, molecular epidemiology, and population genetics [19–23]. Understanding
the epidemiological and microbiological characteristics of local Cryptococcus strains and
clinical features of CM is essential for the development of efficient diagnosis and treatment
strategies. The purpose of the present study was to determine the antifungal susceptibil-
ity of clinical strains of C. neoformans and C. gattii collected in southern Taiwan to AMB,
5FC, FCZ, posaconazole (PCZ), and voriconazole (VCZ) using standard methods (Clinical
and Laboratory Standards Institute, CLSI M27-A3 broth microdilution) [24]. Multi-locus
sequence typing (MLST) was carried out on C. neoformans and C. gattii species complex
isolates from patients with cryptococcosis. The clinical and demographic features and
outcomes of patients with CM during 2013–2020 were reviewed and compared with those
in our previous study (2000–2010) [25].

2. Materials and Methods
2.1. Cryptococcus Strains

During 2013–2020, 115 isolates of Cryptococcus strains (109 C. neoformans and 6 C. gattii)
were identified from 115 patients admitted to Kaohsiung Chang Gung Memorial Hospital
(KCGMH) (92 isolates) and Kaohsiung Medical University Hospital (KMUH) (23 isolates),
Southern Taiwan. These isolates were cultured from blood (49), cerebrospinal fluid (CSF)
(47), respiratory specimens (16), and urine specimens (3). The isolated strains were pre-
served at −70 ◦C. The sample processing and identification of isolates were performed by
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matrix-assisted laser desorption/ionization time–of–flight mass spectrometry (Microflex
LT, Bruker Daltonik GmbH, Bremen, Germany).

2.2. Antifungal Susceptibility Testing (AST)

The broth microdilution method was performed according to the recommendations
of the CLSI in the M27-A3 protocol [24]. Antifungal agents were obtained as reagent-
grade powders with high purity (Sigma, Schnelldorf, Germany). Three azoles, including
FCZ, VCZ, and PCZ, AMB, and 5FC were diluted according to the CLSI standards. The
medium used in the assays was Roswell Park Memorial Institute (RPMI) 1640, which had
been buffered with 165 mM MOPS to pH 7.0 (Sigma-Aldrich®). Tests were performed
in sterilized 96-well, flat-bottomed microplates with lids. These were inoculated with
5.0 × 102–2.5 × 103 cells/mL and incubated at 35 ◦C for 72 h without shaking. For the
azoles and 5FC, the minimum inhibitory concentrations (MICs) were recorded as the lowest
concentration that inhibited the fungal growth by 50% compared to the control. The MIC
for AMB was the lowest concentration resulting in an optically clear zone. C. parapsilosis
(ATCC 22019) and C. krusei (ATCC 6258) served as control strains in all test plates. AST
was repeated for all strains at least twice at different times to check the strain stability and
reproducibility of the MIC results.

2.3. Result Interpretation

Epidemiological cut-off values (ECVs) are the MIC/minimal effective concentration
values that segregate the fungal populations into those with and without acquired and/or
mutational resistance based on AST results. The ECV MIC values proposed for C. neoformans
VNI are as follows: AMB 0.5 µg/mL, 5FC 8 µg/mL, FCZ 8 µg/mL, VCZ 0.25 µg/mL, and
PCZ 0.25 µg/mL [26]. The ECVs of C. gattii VGI and VGII were determined according to
the recommendations of Espinel-Ingroff et al. [26]. Strains with MIC values lower than or
equal to the ECVs were classified as wild-type (WT), whereas those with higher values
than the ECVs were non-WT.

2.4. Multi-Locus Sequence Typing (MLST) and Phylogenetic Analysis

MLST for seven genetic loci, including CAP59, GPD1, LAC1, PLB1, SOD1, URA5, and
the IGS1 region, was performed using the International Society of Human and Animal
Mycology consensus MLST scheme for C. neoformans s.l. and C. gattii s.l. The seven loci
were amplified using the primers listed on the website of the Fungal MLST Database
(http://mlst.mycologylab.org, 24 June 2021). Sequences for each locus were assigned an
allele type number. Thereafter, on accessing the MLST database to combine the allele types,
several sequence types (STs) were obtained. Molecular types (i.e., VNI to VNIV for the
C. neoformans species complex and VGI to VGIV for the C. gattii species complex) were
assigned according to their allelic numbers and STs. Phylogenetic analysis depicting the
genetic relationships between isolates based on MLST locus alleles was conducted using
the categorical analysis method, and minimum spanning tree analysis was performed
using BIONUMERICS software (version 7.5, Applied Maths, Kortrijk, Belgium) based on
the ST profiles of strains. To place the C. neoformans VNI population of Taiwan in the
global context, MLST loci alleles from the clinical isolates were aligned with those of other
C. neoformans VNI STs available in the Fungal MLST Database.

2.5. Geographical Distribution of STs

The residential addresses of the cases with CM or cryptococcemia and known STs were
recorded according to districts, followed by mapping using SuperGIS Desktop software
(Supergeo Technologies Inc., Taipei, Taiwan).

http://mlst.mycologylab.org
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2.6. Retrospective Cohort Study

We conducted a retrospective cohort study to obtain information on the clinical charac-
teristics and outcomes of patients with CM during 2013–2020 at KCGMH. The demographic
characteristics, clinical findings, predisposing conditions, time of presentation to diagnosis,
antifungal therapy, surgical intervention, and outcomes were recorded. Additionally, the
characteristics and outcomes of patients with CM during 2000–2010 [25] and 2013–2020
were compared. The study was approved by the Institutional Review Board of Chang
Gung Memorial Hospital (No. 201901403B0D001).

2.7. Statistical Analysis

Descriptive statistical methods were used to summarize the demographic character-
istics, and outcome analysis was based on the inpatient mortality (death during hospital-
ization after CM diagnosis). p-values were calculated by Fisher’s exact test for categorical
variables and Student’s t or Mann–Whitney U tests were used for continuous variables.
Factors with a p-value of <0.1 in univariate analyses were entered into a multiple logistic
regression model to identify independent predictors of in-patient mortality. All statistical
tests were 2-tailed and significance was set at α = 0.05. Analyses were performed using
SPSS 17.0 for Windows (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. In Vitro Antifungal Susceptibility

The MIC ranges, MIC50, MIC90, and geometric mean (GM) of the five antifungal agents
investigated against 109 C. neoformans and 6 C. gattii isolates are summarized in Table 1. The
MIC for FCZ against C. neoformans ranged from 0.25 to 16 µg/mL (GM 2.55 µg/mL). Table 2
shows the distribution of the MIC values of five antifungal agents against C. neoformans and
C. gattii strains. Only one isolate (0.9%) had an FCZ MIC >8 µg/mL. AMB, 5FC, and VCZ
were highly active against all C. neoformans and C. gattii strains. Only one C. neoformans
isolate (0.9%) had PCZ MIC > 0.25 µg/mL. Our results demonstrated that all six C. gattii
strains were uniformly WT to AMB, FCZ, 5FC, and VCZ.

Table 1. In vitro susceptibility of clinical isolates of Cryptococcus neoformans and C. gattii to five
antifungal agents as determined by CLSI broth microdilution.

Cryptococcus
Species, No. of Isolates, Antifungal Agent

MIC (µg/mL)

Broth Dilution

GM MIC50/MIC90 Range

C. neoformans, N = 109
Amphotericin B 0.09 0.06/0.25 0.03–0.5

Flucytosine 1.31 1/2 0.5–4
Fluconazole 2.55 2/4 0.25–16

Posaconazole 0.04 0.03/0.25 0.015–0.5
Voriconazole 0.05 0.06/0.12 0.015/0.25

C. gattii, N = 6
Amphotericin B 0.10 0.06/0.25 0.06–0.25

Flucytosine 1.12 1/4 0.25–4
Fluconazole 1.78 1/8 0.5–8

Posaconazole 0.10 0.06/0.5 0.015–0.5
Voriconazole 0.07 0.12/0.25 0.015–0.25

Abbreviations: GM, geometric mean; MIC, minimal inhibitory concentration; N, number. MIC50 and MIC90,
MICs at which 50% and 90% of the isolates were inhibited.



J. Fungi 2022, 8, 287 5 of 11

Table 2. Distribution of the MIC values using CLSI broth microdilution for clinical strains of Crypto-
coccus neoformans and C. gattii.

Species
(No. of Isolates)

Antifungal Agent
N of Isolates with MIC (µg/mL) of the Tested Antifungal Agents

0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16

C. neoformans
(N = 109)

Amphotericin B 13 44 36 14 2
Flucytosine 11 50 42 6
Fluconazole 1 4 9 44 45 5 1

Posaconazole 33 26 23 11 15 1
Voriconazole 6 30 62 9 2

C. gattii
(N = 6)

Amphotericin B 3 2 1
Flucytosine 1 3 1 1
Fluconazole 2 1 2 1

Posaconazole 1 1 1 1 2
Voriconazole 2 3 1

Abbreviations: MIC, minimal inhibitory concentration; N, number.

3.2. Molecular and Sequence Types

MLST was performed on 96 strains (90 C. neoformans and 6 C. gattii). The strains
were classified into four groups based on the results as follows: 89 strains (92.7%) of
C. neoformans were identified as genotype VNI and one (1.0%) as genotype VNII; and four
strains (4.2%) of C. gattii were identified as genotype VGII and two (2.1%) as genotype
VGI. MLST analysis identified eight different STs of C. neoformans and three STs of C. gattii.
A total of 79 strains (82.3%) belonged to ST5, five (5.2%) to ST4, one (1.0%) to ST337, one
to ST6, one to ST31, one to ST187, one to ST339, and one to ST41 (VNII; Figure 1). Of the
six C. gattii strains, three (3.1%) belonged to ST7, two to ST106, and one to ST274. High
diversity of C. neoformans STs (five different STs) was found in the strains isolated in the
year 2020, and all eight STs were identified in the Kaohsiung–Pingtung region (Southern
Taiwan) (Supplementary Figure S1).
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3.3. Phylogenetic Analysis

For C. neoformans VNI, the dominant ST in Taiwan (ST5) was distributed worldwide,
as it was isolated from China, the United States, Latin America, and European countries.
The second common ST4 was reported from Asian and African countries. Of the other
STs identified in this study, ST337 was also isolated from China, ST6 and ST31 were
prevalent in Asian countries, ST339 was found in Vietnam, and ST187 was found in Uganda
(Supplementary Figure S2).

3.4. Clinical Cohorts

During 2013–2020, 47 patients received a diagnosis of CM at KCGMH. All of them
received standard induction therapy with AMB combined with 5FC. The in-hospital mor-
tality was 25.5%. The duration of follow-up is shown in Supplementary Figure S3. The
demographic characteristics, CSF cryptococcal antigen (CrAg) titers, and immunosuppres-
sive conditions of survivors and non-survivors are summarized in Table 3. In univariate
analysis, patients who survived CM were younger (mean age, survival vs. non-survival,
58 ± 18 versus 73 ± 12; p < 0.01) and less likely to have CSF CrAg titers > 1024 (17.1% vs.
83.3%; p < 0.01), and had a shorter duration from presentation to diagnosis (6.6 ± 7.1 days
vs. 12.0 ± 11.5 days, p = 0.06). Patients with known immunocompromised status did not
show a higher mortality rate compared to those without known immunocompromised
status (p = 0.11). In the multivariable models, CSF CrAg titers > 1024 remained significantly
associated with mortality (adjusted odds ratio, 48.33; 95% CI, 5.17–452.06).

Table 3. Demographic and clinical characteristics of 47 patients with cryptococcal meningoencephalitis.

All Survivors Non-Survivors p-Value

Total No. (%) 47 (100) 35 (74.5) 12 (25.5)
Age (mean ± SD), years 62 ± 18 58 ± 18 73 ± 12 <0.01

Female sex 14 (29.8) 9 (25.7) 5 (41.7) 0.47
Time to diagnosis from

presentation (mean ± SD), days 8.0 ± 8.6 6.6 ± 7.1 12.0 ± 11.5 0.06

CSF CrAg titer > 1024 16 (34) 6 (17.1) 10 (83.3) <0.01
Cryptococcemia 14 (29.8) 8 (22.9) 6 (50.0) 0.14

C. gattii 6 (12.8) 6 (17.1) 0 0.32
HIV infection 4 (8.5) 4 (11.4) 0 0.56

Hematologic disease/malignancy 7 (14.9) 5 (14.3) 2 (16.7) >0.99
Liver cirrhosis 4 (8.5) 2 (5.7) 2 (16.7) 0.27

Solid-organ transplantation 2 (4.3) 2 (5.7) 0 >0.99
Solid-organ malignancy 8 (17.0) 5 (14.3) 3 (25.0) 0.40

Autoimmune disease 5 (10.6) 3 (8.6) 2 (16.7) 0.59
Known immunocompromised

status 26 (55.3) 17 (48.6) 9 (75.0) 0.11

Abbreviations: CrAg, cryptococcal antigen; CSF, cerebrospinal fluid; HIV, human immunodeficiency virus; SD,
standard deviation.

Twenty-seven (57.4%) patients were treated with LAmB, including 8 (17.0%) who
initiated LAmB and 19 (40.4%) who were switched from AMB due to adverse effects
(median AMB treatment duration before switching to LAmB, 8 days [IQR, 4–14]). A total
of 16 patients (34.0%) underwent surgical intervention to control increased intracranial
pressure or hydrocephalus, including four external ventricular drainages (EVDs) alone,
seven ventriculoperitoneal shunting (VP shunting), and five EVDs followed by VP shunting.
Of the patients who survived CM, the mean duration of induction therapy was 27.4 ± 11.7,
days and that of consolidation and maintenance therapies was 262.6 ± 249.0 days.

CSF CrAg titers were determined more than once in 34 of 47 (72.0%) patients with
CM (Figure 2). Although CSF CrAg titers declined with time, six patients had positive
CSF antigen titers that lasted for 3 months or longer after diagnosis. We further observed a
higher mortality rate in patients with elevated or unchanged CrAg titers during treatment
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within 6 weeks after diagnosis than those with declining CrAg titers (5/11 (45.5%) and
1/23 (3.7%), respectively; p < 0.01).
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Figure 2. Evolution of CSF CrAg titers in 34 patients who had more than 1 determination of CrAg
titers according to the day of diagnosis. CSF CrAg titer > 1024 is presented as 2048. CSF, cerebrospinal
fluid; CrAg, cryptococcal antigen.

During 2000–2010 [25], 46 patients were diagnosed with CM at the same hospital.
Table 4 presents comparisons of the demographic and clinical characteristics of patients
with CM during the two study periods (2000–2010 vs. 2013–2020). The in-hospital mortality
was higher during 2000–2010 (39.1%) than 2013–2000 (25.5%) (p = 0.16). Compared to those
in 2013–2020, the patients with CM in 2000–2010 were significantly younger (mean age,
51 ± 19 vs. 62 ± 18; p < 0.01) and less likely to have CSF CrAg titer >1024 (21.7% vs. 34.0%,
p = 0.16). During 2000–2010, only 2.2% of the patients received standard induction therapy,
50.0% received AMB with FCZ, 37.0% received AMB alone, and 10.9% received FCZ alone.

Table 4. Comparisons of demographic and clinical characteristics of two cohorts with cryptococcal
meningoencephalitis.

2013–2020
Cohort

2000–2010
Cohort p-Value

Total No. 47 46
Age (mean ± SD), years 62 ± 18 51 ± 19 <0.01

Female sex 14 (29.8) 14 (30.4) >0.99
Time to diagnosis from presentation

(mean ± SD), days 8.0 ± 8.6 7.1 ± 10.2 0.66

Inpatient mortality 12 (25.5) 18 (39.1) 0.16
CSF CrAg titer > 1024 16 (34) 10 (21.7) 0.17

Cryptococcemia 14 (29.8) 12 (26.1) 0.69
C. gattii 6 (12.8) 4 (8.7) 0.74

HIV infection 4 (8.5) 6 (13.0) 0.52
Hematologic disease/malignancy 7 (14.9) 4 (8.7) 0.36

Liver cirrhosis 4 (8.5) 5 (10.9) 0.74
Solid-organ transplantation 2 (4.3) 1 (2.2) >0.99

Solid-organ malignancy 8 (17.0) 6 (13.0) 0.59
Autoimmune disease 5 (10.6) 1 (2.2) 0.20

Standard induction therapy 47 (100) 1 (2.2) <0.01
Abbreviations: CrAg, cryptococcal antigen; CSF, cerebrospinal fluid; HIV, human immunodeficiency virus; SD,
standard deviation.
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4. Discussion

In the present study, we found that the clinical C. neoformans and C. gattii isolates
obtained during 2013–2020 were susceptible to AMB, 5FC, and FCZ. The emergence of
Cryptococcus strains with resistance or elevated MICs of antifungals above the ECVs is
of great concern. According to a report that summarized 21 studies with 11,049 clinical
Cryptococcus isolates, 11.4% of the isolates had FCZ MICs > 8 µg/mL; however, a substantial
geographical difference was observed (non-WT range, 0–76.3%) [11]. A systemic review
of 29 studies from 1988 to 2017 reported baseline FCZ resistance in 12% of Cryptococcus
isolates, approximately 10% for incident isolates, and 24% for relapses, though definitions of
resistance were different among the studies. Resistance to FCZ appears to be an important
issue in Cryptococcus isolates from patients with relapses [10]. According to studies from
China, provinces with a higher prevalence (61.9%) of HIV-related cryptococcosis reported
higher non-WT rates to AMB and FCZ in Cryptococcus strains compared to those with lower
prevalence (4.5%) [18,27]. In the report of a multicenter retrospective study of patients with
proven cryptococcosis in Taiwan during 1997–2010 [28], only 0.5% (1/216) of Cryptococcus
clinical isolates belonged to FCZ non-WT strains. In the study conducted in a region with
lower prevalence (9/115, 7.8%) of HIV-related cryptococcosis, FCZ remained active against
Cryptococcus isolates.

Cryptococcosis in southern Taiwan is mainly caused by C. neoformans, and more than
80% of the strains belong to ST5, the predominant ST in China (>90% of the strains belong
to ST5) [29]. In Vietnam, strains belonging to ST5 caused cryptococcal meningitis in 35%
(34/98) and 82% (31/38) of patients with and without HIV infection, respectively [30].
In contrast, ST93 was the most frequently identified ST in clinical isolates in Brazil [31].
Additionally, the highest diversity of C. neoformans STs was found in 2020 (five different
STs). According to a study, 98.1% (206/210) of the clinical isolates from Taiwan showed
the VNI genotype of C. neoformans and only 1.9% (4/210) were VNII [28]. Another variant
ST41 (VNII genotype, also identified in Japan [32], South Africa, and the United States)
was identified from an HIV-positive patient. The distribution of genotypes across various
geographical locations may be related to weather and pigeons, animals, plants, and human
activities [18]. In this study, around 10% of CM cases were caused by C. gattii during
2000–2010 and 2013–2020 at KCGMH. Lin et al. reported that, although no environmental
C. gattii isolates were found in Pingtung, ST630 was commonly identified in Kaohsiung [19].
However, no ST630 clinical isolates were found in Taiwan, according to Lin et al. and the
current study. Only one patient from Pingtung City was infected with C. gattii ST106.

The levels of CrAg titer provide good prognostic information. Initial high titers
(≥1:1024) demonstrate a high burden of yeasts in the host, poor host immunity, and a high
probability of therapeutic failure [33]. We noticed that an initial CSF CrAg titer > 1024
remained an independent risk factor of mortality when all patients received standard
induction therapy. Despite being an excellent diagnostic test and a predictor of prognosis,
the use of the CrAg test is presumed inaccurate in decision-making during antifungal
treatment. Therefore, the use of serial polysaccharide antigen titers is not recommended to
develop treatment guidelines [34]. However, more studies are required to understand the
dynamics of clearance and prognostic utility in different disease states [6]. We observed
that constant CrAg titers during treatment increased in-hospital mortality significantly.

We found that the mortality rate had declined from 2000–2010 to 2013–2020, despite
the fact that patients with CM treated during 2013–2020 were older and had higher CSF
CrAg titers (>1024) than those during 2000–2010. However, the difference in the mortality
rates of patients with CM during the two periods was not statistically significant, as the
case numbers were small for the two cohorts and 50% (6/12) of the mortality occurred
within 14 days of hospitalization in the 2013–2020 cohort (Supplementary Figure S3).
While cryptococcosis can be present in both immunocompromised and immunocompetent
subjects, the immunocompromised status of patients with CM was not a risk factor of
death in the present study. Late presentation and delayed diagnosis of patients with CM
could be an important factor related to subsequent poor neurological outcomes [5]. We also
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observed that the duration between presentation to diagnosis was longer in patients with
CM who died than in those who survived. All patients with CM during 2013–2020 received
standard induction therapy according to the Infectious Diseases Society of America (IDSA)
documented guidelines on the management of cryptococcal disease [35]; however, only
2.2% of the patients with CM received this treatment during 2000–2010 (p < 0.001). The
results suggested that the inclusion of 5FC in the induction therapy had an impact on the
mortality of CM. AMB used to be the first-line treatment in non-organ-transplant patients
without renal function impairment [36]. Nevertheless, it was observed that 40% of the
patients with CM required switching to LAmB due to adverse effects and intolerance.
In resource-available areas, the liposomal product has become the preferred polyene [1],
though comparative studies with 5FC combined with lipid formulations of AMB as opposed
to AMB remain scarce.

Despite various key findings, this study has several limitations. We collected and
analyzed Cryptococcus isolates and patients with CM from southern Taiwan. Multicenter
studies are necessary to understand the microbial and clinical epidemiological characteris-
tics of the whole country. Moreover, we described only in-hospital mortality as a clinical
outcome, and the long-term neurological sequelae could not be assessed due to the intrinsic
limitations of the retrospective study. The outcomes after discharge were not known for
some patients due to the unavailability of description in medical records or loss to follow-
up. The case numbers of the two cohorts of patients with CM were small, which might
preclude us from observing statistically significant differences in the overall mortality rates,
though the mortality rate in the 2013–2020 cohort was numerically lower than that in the
2000–2010 cohort. While adherence to the clinical treatment guidelines [35] in initiating
standard induction therapy for CM could have contributed to the lower mortality observed
in this study, we were not able to examine the impact of clinical experience and evolution of
management of CM on the outcomes of the later cohort. However, early mortality remained
high in our included patients with CM, probably related to poor host condition and late
presentation of the patients with CM during the two study periods.

5. Conclusions

This study provides insight into the genetic epidemiology and antifungal suscepti-
bility of Cryptococcus strains in southern Taiwan. The recommended antifungal drugs,
AMB, 5FC, and FCZ, remained active against most of the Cryptococcus strains. The most
common sequence type was ST5. Early diagnosis of patients with CM and adherence to
clinical practice guidelines cannot be overemphasized to improve the outcomes of patients
with CM.
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