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ABSTRACT

Cell reprogramming offers a potential treatment to
many diseases, by regenerating specialized somatic
cells. Despite decades of research, discovering the
transcription factors that promote cell reprogram-
ming has largely been accomplished through trial
and error, a time-consuming and costly method. A
computational model for cell reprogramming, how-
ever, could guide the hypothesis formulation and ex-
perimental validation, to efficiently utilize time and
resources. Current methods often cannot account for
the heterogeneity observed in cell reprogramming, or
they only make short-term predictions, without mod-
elling the entire reprogramming process. Here, we
present scREMOTE, a novel computational model for
cell reprogramming that leverages single cell mul-
tiomics data, enabling a more holistic view of the
regulatory mechanisms at cellular resolution. This is
achieved by first identifying the regulatory potential
of each transcription factor and gene to uncover reg-
ulatory relationships, then a regression model is built
to estimate the effect of transcription factor pertur-
bations. We show that scREMOTE successfully pre-
dicts the long-term effect of overexpressing two key
transcription factors in hair follicle development by
capturing higher-order gene regulations. Together,
this demonstrates that integrating the multimodal
processes governing gene regulation creates a more
accurate model for cell reprogramming with signifi-
cant potential to accelerate research in regenerative
medicine.

INTRODUCTION

Cells generally begin their lives as a pluripotent stem
cell that gradually differentiates into specialized cell fates

over time. Once differentiated, cells usually have regulatory
mechanisms to ensure that the cell maintains a stable state,
reliably performing its required function. Recent advances
in cell reprogramming have fundamentally altered our view
of cell identity. Numerous experiments have established that
overexpression of a few transcription factors (TFs) is suffi-
cient to revert a differentiated cell to a pluripotent state or
another specialized cell type.

These developments in cell reprogramming are significant
for the field of regenerative medicine as it will facilitate the
development of therapies to replenish cells our body can no
longer produce. This opens the potential to regrow, repair
or replace tissues and organs which may be damaged from
age, disease, stress or trauma. For example, type 1 diabetes
is the result of the loss of insulin-producing beta cells in the
pancreas and recent experiments have shown that overex-
pressing the TFs Pdx1 and MafA can reprogram pancre-
atic alpha cells into insulin-producing beta cells, effectively
reversing type 1 diabetes in mice (1,2). Cell reprogramming
has also been considered as a treatment for a wide variety
of other diseases including Parkinson’s disease (3,4), heart
disease (5), spinal cord injury (6), macular degeneration (7),
hearing loss (8), and aplastic anemia (9), among others.

Despite the overwhelming potential for cell reprogram-
ming therapies to alleviate the world’s disease burden, sig-
nificant roadblocks have limited our ability to perform de-
sired cell conversions. Cell reprogramming experiments are
currently very slow and inefficient, taking several weeks and
producing low quantities of the desired cell type (1%; (10)).
Furthermore, reprogramming is often initiated by overex-
pressing a combination of TFs, but there is estimated to
be more than 1,500 human TFs. Many successful combina-
tions were historically determined through a trial and error
approach which is time consuming and expensive, and may
not even find an optimal combination (11).

These limitations for successful cell reprogramming could
be addressed with a computational model to predict the
outcome of a reprogramming experiment, even to some
small degree of accuracy, which could guide the hypothe-
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ses to be experimentally validated. Advances in sequencing
techniques have led to the generation of large multi-omics
data sets that for the first time enable a systematic view into
the regulatory processes in cells. In particular, this has fa-
cilitated the development of several computational meth-
ods for cell reprogramming, taking on a range of differ-
ent approaches. These include differential expression (12–
14), Boolean networks (15–17), dynamical systems (18,19),
and regression (20). However, these methods have signifi-
cant limitations. Firstly, most of them assume that the cell
population is homogeneous and responds to perturbations
in a fixed way. However, cell reprogramming experiments
have resulted in very heterogeneous outcomes with many
cell subpopulations, often dependent on the initial cell state
(21,22). Furthermore, most methods are only able to make
short term predictions of the effect of TF perturbations,
which may not capture the entire cell reprogramming pro-
cess which involves significant changes to the cell’s identity.
This motivates the need for a more holistic computational
model for cell reprogramming.

Here, we present scREMOTE (single cell REprogram-
ming MOdel Through cis-regulatory Elements), a compu-
tational method for cell reprogramming using data from si-
multaneous scRNA-seq and scATAC-seq. These data give
us a more holistic view of the regulatory systems at the cel-
lular level, allowing us to more accurately predict the down-
stream effect of the overexpression of transcription factors.
We achieve this by first calculating a regulation potential,
the ability of a TF to regulate a gene via cis-regulatory el-
ements (CREs). We then build a linear regression model
based on the gene expression and regulation potential, and
demonstrate its applicability in predicting the effect of TF
overexpression in murine hair follicle development. As the
first model of its kind, using simultaneously sequenced mul-
timodal data to model cell reprogramming, we also discuss
the limitations of scREMOTE and avenues for future re-
search.

MATERIALS AND METHODS

scREMOTE: a computational model to infer gene regulation
and cell reprogramming

We present a novel computational model to infer gene reg-
ulation and cell reprogramming that leverages data from
emerging multimodal single cell sequencing technologies.
scREMOTE models four key components of gene regula-
tion (Figure 1 A) as

(1) CRE accessibility, A, where TFs can only bind to re-
gions of the genome that are accessible;

(2) TF motifs, T, where TFs need a matching motif in order
to bind to a CRE;

(3) Chromatin conformation, C, where CREs need to be
able to form a DNA loop with the promoter of the tar-
get gene; and

(4) Gene expression, E, which we expect to vary based on
the previous three factors.

Ideally, we would want to measure all these components
simultaneously in the same cell, but this is far beyond the ca-
pability of current single cell sequencing methods. Instead,

we leverage on a series of recent techniques that are able
to capture both the gene expression and CRE accessibility
in the same cell (23–25). Fortunately, we can reasonably as-
sume that the motifs a TF recognises remain the same be-
tween cells. Further, chromatin conformation will be rela-
tively stable as it is restricted by physical constraints of the
3D genome organization into topologically associated do-
mains (26).

The first step in scREMOTE is to estimate a regulation
potential by integrating data from different modalities to
model the regulation of each TF onto each gene through
each CRE at the single cell level. Here, the regulatory effect
of a TF onto a gene via a single CRE in a cell can be in-
terpreted as the product of the three corresponding scores
in T, A and C. That is for a regulatory potential to be pos-
itive, the CRE must be (1) enriched of the TF’s motif, (2)
accessible, and (3) able to form a DNA loop with the gene’s
promoter. We sum up the regulatory effect from all CREs
to obtain an overall measure of regulation potential of a TF
to a gene in a cell (Figure 1 B). It should be noted that the
resulting array of regulation potentials will be rather sparse,
as there are limited cases where all three conditions are met.
See ‘Regulation potential’ for more details.

The second step of scREMOTE estimates how a cell will
respond to a perturbation in TF expression. We achieve this
by fitting a linear regression model with the cell’s state, rep-
resented by its gene expression, as the response. We incorpo-
rate both the gene expression data and regulation potential
into the predictor of our model (Figure 1 C) to better incor-
porate the multi-level nature of gene regulation. This way,
in order for a coefficient to be significant, the TF requires
both regulation potential and coexpression with the gene.
The advantage of a linear model is that it allows for greater
interpretability, and the estimated coefficients can be used
for predictions (20). See ‘Model fitting and evaluation’ for
more details.

The final step in scREMOTE is to perturb a TF’s expres-
sion (or a combination of TF expressions), representing the
process of TF overexpression, repression, or gene knock-
out. We incorporate the ability for pioneer transcription fac-
tors to open up inaccessible chromatin regions. This is be-
cause they have been strongly associated with the cell fate
decision making process, as it allows more TFs to bind to
the DNA, further regulating gene expression (27–29). Us-
ing the coefficients from the linear model, a change in TF
expression would result in a change in the response, that is
the gene expression. The predicted gene expression values
of TFs can be refit into the model (Figure 1 D), calculat-
ing new values for the overall gene expression, and thus cell
state. This process can iterated, representing the changes
over time, until convergence, resulting in the final repro-
grammed state.

Regulation potential

For a typical cell i, we can represent the regulatory potential,
Ri , a gene × TF matrix by

Ri = CAi T (1)

where Ai is a CRE × CRE matrix with the CRE acces-
sibility scores for the ith cell along the diagonal, and ze-
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Figure 1. Schematic of scREMOTE. (A) The data inputs to scREMOTE. 1. CRE accessibility, a CRE × cell matrix, 2. TF motifs, a CRE × TF matrix, 3.
Chromatin conformation, a gene × CRE matrix and 4. Gene expression, a gene × cell matrix, where the TFs are a subset of the genes. (B) Calculation of
binding potential. The matrix Ai is created by placing the CRE accessibility scores for the ith cell along the diagonal, and zeroes elsewhere. This has the
effect of summing the regulatory potential over all CREs. (C) Calculation of fitted coefficients. (D) In silico overexpression of TF x.

roes elsewhere. C and T can be either binary (represent-
ing the presence) or continuous (representing the degree)
of chromatin conformation and TF motif enrichment re-
spectively, where the continuous matrix would provide a
more refined result when such information is available. This
has the effect of summing the regulatory potential over all
CREs. Calculating this for all cells, we end up with a gene
× TF × cell array which we call R containing the regulation
potential of all transcription factors to each gene in each
cell.

To verify that our calculated regulation potential is cap-
turing true regulatory relationships, we compared our cal-
culated values to known TF-gene regulations from the fol-
lowing databases: TRRUST (30), hTFtarget (31), TFBSDB
(32), RegNetwork (33) and MSigDB (34,35). As we filtered
the data to the 1000 most highly expressed genes (see Data
for details), we subsetted each data set to only those in
our filtered list. We also consider a Combined database,

which takes the union of interactions from the 5 other
databases.

As our regulation potential is at a single cell resolution,
we took the average over all cells to obtain a gene × TF ma-
trix to compare it to these databases. If the regulation po-
tential is accurate, we expect that the TF-gene regulations
from the databases should have a greater regulation poten-
tial than a random subset of TF-gene regulations. By re-
sampling 1 million random subsets of the same size as each
database, we compute an empirical p-value as the proba-
bility that the mean regulation potential from a random
sample is greater than the mean regulation potential of the
database interactions. This is similar to the method used
by Garcia-Alonso and colleagues, where gene expression is
used as a reference to benchmark TF regulation databases
(36). Here, our evaluation is in the reverse direction, using
the databases as a ground truth to validate the regulation
potential.
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Model fitting and evaluation

For an individual gene j, we propose the following model to
predict its expression.

y j = α j 1 + (R j � X)β j + ε j , (2)

where y j is the gene expression of gene j, X is the gene ex-
pression of the TFs, and R j is the regulation potential corre-
sponding to gene j, �j and β j are the regression coefficients,
ε j is residual noise, and � represents the Hadamard prod-
uct (element-wise multiplication). Note that R j can be inter-
preted as a slice corresponding to gene j, with dimensions
TF × cell of the full regulation potential matrix R which
has dimensions gene × TF × cell (Figure 1 B). This way, R j
can be interpreted as reweighting the gene expression values
and the coefficients β j represent the direct effect on gene j’s
expression when perturbing a TF.

However, we found that in practice, the R j matrix was
extremely sparse, which could be attributed to the fact that
each of the component matrices T, A, and C are already
sparse due to the nature of sequencing techniques used. This
causes the coefficients in (2) to have large bias in the fit-
ted coefficients. To alleviate this issue, we consider adding a
small constant to each entry in R j , similar to a pseudocount
or fudge factor. This has the effect that when R j values are
all not available (i.e., 0), for a particular TF, the regression
will rely on the available gene expression values only. How-
ever, if R j values are available, i.e., not all 0 for a particular
TF, then they will be incorporated into the regression. This
gives us a new model

y j = α j 1n×1 + [
(w1n×t + (1 − w)R j ) � X

]
β j + ε j , (3)

where $w$ is a parameter that can be used to weight the in-
fluence of R j when available. We choose to set $w$ = 0.1.
We saw that when $w$ is small, there is minimal difference
between different choices of $w$. This model was found to
be the most effective when applied to experimental data, in-
corporating the regulation potential when available.

We compare our results to the Coexpression Model de-
fined by:

y j = α j 1 + Xβ j + ε j , (4)

which only uses gene expression data. When fitting the
model in equation 3 and 4, we use ordinary least squares
regression, using the lm() function in R (37). However, to
address the situation of a TF regulating itself, that is when
the response variable y j is a TF, we set all the elements for
the corresponding column in X to 0, as otherwise it would
be perfectly equal to the response. We then change the fitted
coefficient for the TF from 0 to 1, to encourage the TF ex-
pression level to stay constant when all other TF levels are
constant, and so that external perturbations are fully cap-
tured by the model.

In silico perturbation with scREMOTE. To predict the ef-
fect of perturbing a TF (or a combination of TFs), we can
perturb the values of X, for example, by adding a constant to
all values in the column corresponding to an overexpressed
TF. The resulting changes in y j represent the perturbed gene
expression. To model the downstream effect of this pertur-
bation, this process can be iterated, where the new values

of the TF can be substituted into X, which produces a new
prediction for gene expression. This iterative process can be
repeated for any number of time steps or until convergence.
We chose to perform our simulations for 15 time steps, as
this was generally enough iterations for perturbations to
converge.

To incorporate the ability for pioneer transcription fac-
tors to open up inaccessible chromatin regions, we first con-
sider the enhancer targets of the overexpressed TF. These
are defined to be the CRE’s with a score in the position
weight matrix above a certain threshold, which we chose
to be 0.2. We then increase the accessibility of these target
CREs by adding a constant to the corresponding values in
R j , and update the regulation potential, R j in equation (3),
before the perturbation.

To ensure the predicted gene expression values are bio-
logically plausible, we can impose a minimum and/or max-
imum expression value. Here, any predicted expression be-
low the minimum is replaced with the minimum value, and
any predicted expression above the maximum is replaced
with the maximum value. In practice, the minimum value
will be 0, but the maximum would be harder to define
since it would depend on the gene, cell type and sequenc-
ing depth. Some suggested ad hoc approaches for selecting
a maximum could be the highest count observed in the en-
tire data, or a few standard deviations above the mean for
each gene. In our example, we imposed a minimum value
of 0 and no maximum value, as predicted values seemed
reasonable.

Marker gene analysis. Marker genes can be identified us-
ing a range of techniques, both supervised (38) and unsu-
pervised (39,40). Since cell type labels are provided by Ma
and colleagues, we choose to determine gene markers by us-
ing moderated t-tests implemented in the limma package
(41) in R. By performing differential expression analysis be-
tween the IRS and Hair Shaft cells, we took the top three
marker genes for each cell type ranked by p-value, but ex-
cluded Gata3 and Runx1 as they will be artificially overex-
pressed. We also consider the Spearman’s rank correlation
of the average expression for the 500 most highly expressed
genes between the reprogrammed cells and the two target
gene expressions. We should expect that a successful repro-
gramming model will cause the markers of the target cell
type to increase in expression, and have a higher correlation
with the target cell type.

Data

Chromatin conformation. The full mouse dataset was
downloaded from the 4D Genome Database (42) on
21/10/2020. All coordinates were realigned from the mm9
genome to the mm10 genome using the LiftOver tool pro-
vided by the Human Genome Browser at UCSC (43). This
list of chromatin interactions is filtered down to those which
include gene promoters, determined as any interactions
within 500bp of the transcription start site of a gene. Gene
coordinates were downloaded from the Mouse Genome In-
formatics (MGI) website (44).

All chromatin regions which had an interaction with
a promoter were considered a CRE. These regions were
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sorted into bins of length 1000bp which is now taken as our
CRE list. We then construct C, as a binary matrix indicating
a recorded connection between a CRE and a gene. Usually
the chromatin conformation would be measured as a score
representing the strength of the connection. However, as we
are using a database, the data comes from many different ex-
periments which would not be comparable. Our final matrix
C is a gene × CRE matrix.

TF motifs. The affinity for a TF to bind to a CRE could
be estimated using TF motif enrichment or ChIP-seq data.
We chose to estimate T using TF motif enrichment, as TF
motif data is readily available on the JASPAR database (45),
whereas ChIP-seq databases can often be sparse and noisy
(13). We note that only TFs present in these databases would
be used in the analysis. If one wishes to include a particular
TF (perhaps one that may be important for cell fate deter-
mination) which is not in the database, a baseline TF bind-
ing affinity or an estimate from ChIP-seq data may be used
instead.

In our example, TF motifs were downloaded from the
JASPAR database (8th release, 2020) (45) on 25/07/2020,
using the full vertebrates position frequency matrices.
From the CRE coordinates identified previously, the ge-
nomic sequences of our CREs were obtained using the
BSgenome.Mmusculus.UCSC.mm10 package on Bio-
conductor. TF motif enrichment was performed on each
sequence using the AME function in the MEME Suite col-
lection (46) with default settings. Only TFs that were highly
enriched (marked as true positives) were kept, and their Po-
sition Weight Matrix score was normalized by dividing by
the maximum value, so all values are between 0 and 1. This
is then used as the corresponding value in T, a CRE × TF
matrix.

scRNA-seq and scATAC-seq. The simultaneous scRNA-
seq and scATAC-seq data with cell type labels from the
SHARE-seq protocol was obtained from the authors upon
request (S. Ma, personal communication, 23 September,
2020) (23). This data set is now available from GEO (Ac-
cession number: GSE140203). Due to the sparsity of the
gene expression data, we only used the 1000 most highly ex-
pressed genes which were then log (x + 1) transformed. Our
gene expression matrix is a gene × cell matrix.

The scATAC-seq data was then realigned to match our
new CRE list in 1000bp bins. As the bin cutoffs did not
match exactly, any observed scATAC-seq measurement that
overlapped with our 1000bp CREs was considered as a
count. Applying this criteria to all our CREs gives us A,
a CRE × cell matrix.

We subsetted the data to only contain the cell types of in-
terest: Hair Shaft (cuticle/cortex) cells, IRS cells, and two
populations of TACs which were combined. Due to a large
imbalance in the numbers of each cell type, we subsam-
pled the the larger cell types so that they all have the same
size. We repeated the in-silico cell reprogramming using a
range of different subsamples, and observed similar results
(Supplementary Figures S1, S2). All preprocessing steps
and analysis were done in R and the code is available at
https://github.com/SydneyBioX/scREMOTE.

Visualization

PCA is the dimension reduction technique in this study for
the visualization of all simulation results as we believe it
is more appropriate than other sophisticated dimension re-
duction techniques like tSNE or UMAP commonly used in
single cell research (47). This is because PCA enables the
projection of simulated data onto the same embedding as
the original data, which can be used to track the changes
over time. Other methods like tSNE or UMAP do not allow
additional points to be projected into the embedding, unless
the entire embedding is recalculated at each time point, but
this would cause all cells to change positions, which cannot
track the effect over time as in Supplementary Figures S1–
S2. As expected, we found that PC1 is strongly correlated
with the total read count in each cell (Figure 2 B), and it
does not help to distinguish between different cell clusters
(Figure 2 A). However, the combination of PC2 and PC3
shows a clear separation between the TAC, IRS and Hair
Shaft clusters (Figure 2 C) so we use this for all visualiza-
tions.

RESULTS

Regulation potential captures transcription factor to gene
regulations

To demonstrate the applicability of scREMOTE, we investi-
gate the hair follicle developmental system, as it is a natural
differentiation system in the adult skin and has been pro-
filed with simultaneous scRNA-seq and scATAC-seq (23).
Furthermore, the ability to reprogram hair cells in the inner
ear could be used as a cure to permanent hearing loss (48).
We chose to estimate T using TF motif enrichment and we
estimated C using data from the 4D Genome Database (42).
See Materials and Methods for more details.

We first verify that our calculated regulation potential is
capturing true regulatory relationships, by comparing our
calculated values to known TF-gene regulations. There are
a variety of databases that record known and predicted reg-
ulations, such as TRRUST (30), hTFtarget (31), TFBSDB
(32), RegNetwork (33) and MSigDB (34,35). As expected,
we find that the TF-gene regulations from these databases
have a greater regulation potential than random subsets of
TF-gene pairs. By resampling 1 million random subsets for
each database, we see that all databases are significantly en-
riched with interactions containing a high regulation po-
tential, implying that our regulation potential captures true
regulatory TF-gene relationships (Table 1).

scREMOTE predicts the outcome of cell reprogramming ex-
periments

We now show how scREMOTE can be used to perform
an in silico TF overexpression experiment. In the hair folli-
cle developmental system, Transit-Amplifying Cells (TACs)
differentiate into either the Inner Root Sheath (IRS) or Hair
Shaft lineages. Gata3 has long been identified as a repro-
gramming TF for the IRS lineage (49,50) and also Runx1
for the Hair Shaft lineage (51–53). Thus, we expect that an
accurate model will predict that an overexpression of Gata3
will reprogram the TACs towards the IRS cells (Figure 3

https://github.com/SydneyBioX/scREMOTE
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Figure 2. Data visualization with PCA. (A) Plot with PC1 and PC2, colored by cell type. (B) Plot with PC1 and PC2, colored by read count. (C) Plot with
PC2 and PC3, colored by cell type. (D) Plot with PC2 and PC3, colored by read count.

Table 1. Results of testing regulation potential with TF-gene regulation
databases. The empirical p-value is calculated to be the probability that
the mean regulation potential from a random sample (of the same size as
the database) of TF-gene pairs is greater than those from the database

Database
Number of
Regulations

Empirical
p-value

TRRUST 43 0.03
hTFtarget 10294 <1 × 10− 6

TFBSDB 5253 <1 × 10− 6

RegNetwork 729 3.9 × 10− 5

MSigDB 695 <1 × 10− 6

Combined 14112 <1 × 10− 6

A), and that an overexpression of Runx1 will reprogram the
TACs towards the Hair Shaft cells (Figure 3 B). If the per-
turbed cells converge to a different cluster, the reprogram-
ming may have been unsuccessful, or the model may not
have captured all the regulatory dynamics in the cell. To
demonstrate the value of multimodal data in scREMOTE,
we compare it to an equivalent model which only uses gene
expression, which we call the Coexpression Model, as it
would only detect linear coexpression patterns.

Figure 3 reveals the prediction of both scREMOTE and
the Coexpression Model for overexpressing Gata3 (Figure 3
C) and Runx1 (Figure 3 D) in the TACs. We can see that
when Gata3 is overexpressed, both scREMOTE and the
Coexpression Model make accurate short term predictions
(early and middle time points), perturbing the cells towards
the IRS cell fate. However, we see that only scREMOTE
produces an accurate long term prediction (late time point).
Likewise, when Runx1 is overexpressed, we can see that both
models make accurate short term predictions, perturbing
the cells towards the Hair Shaft cell fate. But again, we see
that only scREMOTE produces an accurate long term pre-
diction. We believe that this is because scREMOTE is, to
some extent, capturing the regulatory dynamics driving cell
reprogramming whereas the Coexpression Model is limited
by the highly correlated nature of gene expression. Anima-
tions of the entire reprogramming process can be found in
Supplementary Figures S1– S2. We see that in some cases,
reprogrammed cells converge to the expected cell cluster,
however occasionally, the cells are perturbed in the right
direction, but a distinct cluster is formed. We believe that
this is because scREMOTE has not captured the entire reg-
ulatory dynamics, involving undetected TFs and genes, and
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Figure 3. Perturbation of TFs in hair follicle development. (A) Expected result of Gata3 overexpression. (B) Expected result of Runx1 overexpression.
(C) Simulated result of Gata3 overexpression with both scREMOTE and Coexpression Model. (D) Simulated result of Runx1 overexpression with both
scREMOTE and Coexpression Model.

other factors like microRNAs and DNA methylation. This
means that the predicted cell cluster may not match the true
cell cluster as seen in the data.

Computationally reprogrammed cells show markers of cell
identity

To verify the fidelity of the scREMOTE predicted cell state
to the true target cell state, we tracked the expression of sev-
eral marker genes over time. Here, we should expect that
successful reprogramming will have the markers of the tar-
get cell type increase in expression and the markers of the
opposing cell type to potentially decrease in expression.

In the overexpression of Gata3 (Figure 4 A), we see that
the IRS markers all increase in expression but the hair shaft
marker Lef1 decreases, and the other hair shaft markers
Trps1 and Kcnh1 increase to a small extent. We also show
that the average gene expression of the reprogrammed cells
have a higher Spearman’s rank correlation with the IRS cells
compared to the Hair Shaft cells (� = 0.63 vs � = 0.36).
Similarly, in the overexpression of Runx1 (Figure 4 B), we
see that all Hair Shaft markers increase in expression and all
IRS markers decrease in expression and reprogrammed cells
have a higher Spearman’s rank correlation with the Hair
Shaft cells compared to the IRS cells (� = 0.35 vs � = 0.26).
This demonstrates that the predicted cell state from scRE-
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Figure 4. Tracking marker genes. (A) Marker genes during Gata3 overexpression. Genes colored in green represent IRS markers and genes colored in blue
represent Hair Shaft markers. (B) Marker genes during Runx1 overexpression.

MOTE has an elevated expression of marker genes, verify-
ing the validity of the simulated cell reprogramming.

Interestingly, in the Runx1 overexpression, we observe
a reversal in the expression of the IRS markers Plxna2
and Pcdh7 which decrease and then increase, and also for
the Hair Shaft marker Trps1 which decreases and then in-
creases. This suggests that scREMOTE is able to capture, to
some extent, higher order gene regulations where the down-
stream targets of Runx1 are causing a reversal in the trend,
allowing scREMOTE to make accurate long term predic-
tions. In contrast, the Coexpression Model is only able to
predict the immediate effects of the perturbation, which
may not capture the downstream effects that result in suc-
cessful cell conversion.

Further, we tested the ability of scREMOTE to model
the overexpression of a combination of TFs, Runx1 and
Lef1. We consider this as Lef1 has been implicated to be
a driver of the Hair Shaft cell fate (23). However, we found
that there was a minor difference in the outcome compared
to the overexpression of Runx1 alone (Supplementary Fig-
ure S4). We suspect that this may be due to the overexpres-
sion of Runx1 already leading to the upregulation of Lef1
(Figure 4 B), which is consistent with experimental litera-
ture (52,54).

DISCUSSION

Understanding the regulatory dynamics in a cell is a com-
plex yet important challenge, especially in the context of cell
reprogramming, which results in large changes to the cell’s
identity. Here, we present scREMOTE, a model for long-
term predictions of TF perturbations at the single cell level
that extends on existing algorithms (20). Integrating simul-
taneous scRNA-seq and scATAC-seq data provides a more
comprehensive view of the regulatory dynamics occurring
in each cell. By aggregating the regulatory effect through
each CRE, a regulation potential is calculated between each
TF and gene. We then combined the regulatory potential
and TF expression to construct a linear model for gene ex-
pression. By iteratively updating gene expression, we are
able to predict the long term effects of TF perturbation. We
demonstrated scREMOTE on experimental data, revealing
that it can successfully model the cell reprogramming pro-
cess, and capture higher order levels of gene regulation.

scREMOTE, like any computational model, is based on
a set of assumptions that, to varying degrees, reflect the un-
derlying biology. Here, we approximate the regulatory ef-
fect of each TF to be linear and additive, whereas in re-
ality, TFs often work in combinations and in complex re-
lationships (55). Although, in our current implementation,
we used ordinary least squares linear regression, the scRE-
MOTE framework could be easily extended to include regu-
larization like LASSO if there are too many TFs, or if multi-
collinearity is a concern. Furthermore, it could be extended
to more advanced models, such as deep learning models
like a multi-layer perceptron, possibly capturing non-linear
relationships. The choice of these extended models will be
motivated by the specific data structure. However, in our il-
lustration, we found that after filtering, only 35 TFs were
considered highly expressed. These TFs were not strongly
correlated with each other (Supplementary Figure S3), and
thus regularization is unlikely to have a significant impact
for our data.

Multimodal single cell sequencing technologies are still in
their infancy so there is very limited data to evaluate scRE-
MOTE under a practical setting. For our validation, we re-
quired a source cell type that could be reprogrammed into
at least one (but ideally more) target cell types which show
clear separation when visualized with PCA, where the re-
programming is driven by different key TFs that are suffi-
ciently expressed. Despite this limitation of our ability to
validate the scREMOTE workflow more widely, we believe
that the currently available data gives us a convincing ex-
ample to support the applicability of scREMOTE. In par-
ticular, it will be challenging to evaluate the performance
of scREMOTE in its ability to model lowly expressed TFs,
which may be very important for cell reprogramming. This
challenge is due to the bias in the estimated coefficients as a
consequence of most high throughput sequencing technolo-
gies which leads to a high proportion of dropouts (56). To
date, the single cell research community has employed a va-
riety of imputation methods to provide a partial solution to
this issue, but there is no consensus on the most appropriate
or optimal approach (57). Going forward, with the constant
improvement in these sequencing technologies and their in-
creasing accessibility (24,58), we expect that in the future,
cell reprogramming predictions from scREMOTE will be-
come more applicable and extensions to the algorithm can
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be developed to produce more accurate and generalizable
results.

The chromatin conformation data would ideally be mea-
sured in the same cells as the other modalities, however
this is not feasible with current sequencing protocols. Also,
chromosome conformation capture techniques like Hi-C
are currently expensive to run with multiple complex exper-
imental steps (59), and so it is difficult to obtain this type of
data. Further complicating this component is that Hi-C has
very low resolution (up to 10kb) (60) making it difficult to
use for the precision required to model CRE-gene interac-
tions. We bypassed these issues by using a database of mea-
sured interactions (42) from a range of chromatin confor-
mation techniques which we used as a baseline measure for
the chromatin conformation in all cells. As chromatin cap-
ture technologies improve and become cheaper, we will be
able to collect more Hi-C data, extending the applicability
of scREMOTE.

The TF motifs data is dependent on publicly available
databases which are currently incomplete, for example the
JASPAR database currently contains 592 profiles for mouse
TFs out of an estimated 1640 (45). This limits the applica-
bility of scREMOTE to model TFs which may be important
for cell fate determination but whose binding profile has not
yet been characterized. However, with the regular update of
these databases (45), scREMOTE will have continued ex-
pansion of the number of TFs that could be incorporated.

In summary, our method is the first to our knowledge
that simulates cell reprogramming experiments by modeling
gene regulatory systems at the single cell level through the
integration of matched scRNA-seq and scATAC-seq data.
The ability of scREMOTE to model the biological mech-
anisms behind cell reprogramming at the single cell level
would lead to its increased applicability over earlier meth-
ods. As the first model of its kind, we see large potential for
the algorithm to be extended and improved, as data quality
and availability increases. We hope that this will contribute
to our understanding of the role of gene regulation in cell
identity and accelerate research in regenerative medicine by
allowing researchers to screen candidate combinations in
silico before doing wet lab validation.
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