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Abstract

Ras proteins activate Raf and PI-3 kinases, as well as exchange factors for RalA and RalB 

GTPases. Many previous studies have reported that the Ral signaling cascade contributes 

positively to Ras-mediated oncogenesis. Here, utilizing a bioengineered tissue model of early 

steps in Ras-induced human squamous cell carcinoma of the skin, we found the opposite. 

Conversion of Ras-expressing keratinocytes from a premalignant to malignant state induced by 

decreasing E-cadherin function was associated with and required a knockdown of RalA to a 

similar degree by shRNA expression in these cells decrease in RalA expression. Moreover, direct 

∼2-3 fold knockdown of RalA by shRNA expression in these cells reduced E-cadherin levels and 

also induced progression to a malignant phenotype. Knockdown of the Ral effector, Exo84, 

mimicked the effects of decreasing RalA levels in these engineered tissues. These phenomena can 

be explained by our finding that the stability of E-cadherin in Ras-expressing keratinocytes 

depends upon this RalA signaling cascade. These results imply that an important component of the 

early stages in squamous carcinoma progression may be a modest decrease in RalA gene 

expression that magnifies the effects of decreased E-cadherin expression by promoting its 

degradation.

Introduction

Squamous cell carcinomas (SCC) represent 90% of head and neck cancers and ∼25% of 

skin cancers (Dlugosz et al., 2002). A significant proportion of these cancers contain either 

mutations in Ras genes that lead to constitutively-activated Ras GTPases or amplified levels 

of Ras proteins (Dajee et al., 2003; Pierceall et al., 1991). While activated Ras is known to 

promote tumorigenesis, the molecular basis for its contribution is not completely 

understood. Ras proteins activate at least three downstream signaling cascades mediated by 

Raf kinases, PI-3 kinases, and Ral guanine nucleotide exchange factors (GEFs) that in turn 
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activate RalA and RalB GTPase (Takai et al., 2001). Raf and PI-3 kinases are well-known 

mediators of the tumorigenic effects of oncogenic Ras. However, the role of the Ral-GEF 

branch of the Ras pathway is far less understood. Ral-GEFs activate two very similar Ral 

GTPases, RalA and RalB (Feig, 2003). When activated, Ral proteins can bind to at least four 

effector proteins, the RalBP-1 (Cantor et al., 1995; Jullien-Flores et al., 1995), the exocyst 

subunits Sec5 and Exo84 (Brymora et al., 2001; Moskalenko et al., 2002; Moskalenko et al., 

2003; Polzin et al., 2002; Sugihara et al., 2002), and the transcription factor ZONAB 

(Frankel et al., 2005). Despite their ∼85% identity, RalA and RalB play very different roles 

in cells, presumably due to their distinct subcellular localization (Lim et al., 2005; Shipitsin 

& Feig, 2004) and differences in affinities for effectors (Fenwick et al., 2009; Shipitsin & 

Feig, 2004). For example, we showed that RalA, but not RalB, promotes delivery of 

basolateral membrane proteins to the cell surface, a function consistent with a regulator of 

the exocyst (Shipitsin & Feig, 2004). RalB, but not RalA, activates the atypical IkB kinase 

family member TBK1 through the exocyst subunit Sec5 to regulate the innate immune 

response (Chien et al., 2006). RalB through Sec5 and also appears to be involved in cell 

migration (Rosse et al., 2006) and RalA and RalB influence cytokinesis differently (Cascone 

et al., 2008).

Many previous studies have indicated that Ral-GEFs, RalA and RalB play positive roles in 

transformation of cells containing an oncogenic form of Ras (Bodemann & White, 2008). 

For example, expression of an activated Ral-GEF or RalA mimics (although to a 

significantly reduced degree) Ras in contributing to the oncogenic transformation of primary 

kidney cells (Hamad et al., 2002; Lim et al., 2005). RalA-GTP levels appear to be elevated 

in pancreatic cancer cells, and knockdown of RalA or RalB suppresses metastasis (Lim et 

al., 2006). In other studies, activation of RalA contributed to the growth of tumor cells in 

suspension (Lim et al., 2005). In addition, the tumor suppressor PP2A inhibits RalA 

activation by dephosphorylating its C-terminus (Sablina et al., 2007). RalB suppresses 

apoptosis in tumor cells through activation of the TBK1 kinase (Chien et al., 2006). Finally, 

RalGDS knockout mice display resistance to tumor promoter induced squamous cell 

carcinoma of the skin (Gonzalez-Garcia et al., 2005).

Nevertheless, there are experimental examples showing that Ral GTPases can suppress 

tumorigenesis. For example, expression of active RalB blocked, and inhibition of RalB 

expression enhanced, transformation of primary cells induced by an activated Ral-GEF (Lim 

et al., 2005). Active RalA also blocked migration of bladder cancer cells (Oxford et al., 

2005). Finally, RalA sensitized astrocytomas to TRAIL-induced apoptosis (Panner et al., 

2006).

In this report, we expanded our studies using a bioengineered 3D tissue model of Ras-

induced human squamous carcinoma of the skin to reveal a tumor-suppressing role for RalA 

in the early steps in tumorigenesis, which functions by enhancing E-cadherin stability in 

keratinocytes through its effector protein, the exocyst subunit Exo84. Moreover, we found 

that tumor progression in this system that is driven by down-regulation of E-cadherin is 

associated with and requires modest down-regulation of RalA expression.

Sowalsky et al. Page 2

Oncogene. Author manuscript; available in PMC 2010 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Conversion of Ras-expressing keratinocytes from a premalignant to malignant state by 
decreasing E-cadherin expression is associated with and requires the suppression of RalA 
expression

In order to gain new insight into the role of Ral proteins in Ras-induced carcinoma, we 

turned to a well-characterized, engineered tissue model that mimics the initial stages of 

squamous cell carcinoma progression (Garlick, 2007). This organotypic system uses 

immortalized human keratinocytes (HaCaT cells) grown on top of fibroblast-populated 

collagen gels. Expression of oncogenic H-Ras in these cells (referred to as HaCaT-II-4, 

“II-4” cells) induces dysplasia but not invasion into the dermal layer, consistent with 

findings from transgenic mouse studies where active H-Ras was expressed specifically in 

keratinocytes (Bailleul et al., 1990). However, suppression of E-cadherin levels in II-4 cells 

induced by the expression of a dominant-negative form of E-cadherin (H-2Kd-Ecad) (Zhu & 

Watt, 1996) results in a transition to an invasive cell phenotype in vitro, and a switch to a 

high-grade malignant phenotype following transplantation of this tissue to immune-deficient 

mice (Margulis et al., 2005a).

We observed that decreased E-cadherin protein levels in II-4-H-2Kd-Ecad cells was 

associated with a modest (∼60%) decrease in the expression of both RalA and RalB proteins 

(Fig. 1A,B). To test whether a similar phenomenon occurs when E-cadherin levels are 

reduced by down-regulation of E-cadherin mRNA, a more common phenomenon in tumor 

progression, HaCaT-II-4 cells were stably infected with lentivirus expressing either control 

shRNA (“sh-Scram”) or shRNA against E-cadherin (“sh-Ecad”) (Fig. 1D). Cells that 

displayed reductions in E-cadherin levels comparable to those found in II-4-H-2Kd-Ecad 

cells also displayed comparable down-regulation of Ral proteins: ∼2-fold for RalA and ∼3-

fold for RalB (Fig. 1E). Real-time PCR analysis on cDNA derived from H-2Kd-Ecad- and 

sh-Ecad-expressing II-4 cells showed comparable decreases in mRNA of the RALA and 

RALB genes, implying that E-cadherin regulates Ral proteins predominantly at the level of 

transcription (Fig. 1C,F).

To test whether other mechanisms of E-cadherin down-regulation in different cell types lead 

to a similar phenomenon, MSCC-1, a cell line derived from a lymph node metastasis of oral 

squamous cell carcinoma, was compared to an E-cadherin-deficient line, MSCC-1-Inv-1, 

that was derived from it (Kudo et al., 2003). Immunoblotting of lysates from these cells 

revealed that RalA and RalB levels were reduced ∼2-fold and 1.5 fold, respectively, in the 

E-cadherin-lacking MSCC-1-Inv-1 cells (Supplementary Fig. 1A,B). As before, real-time 

PCR demonstrated that this effect on Ral proteins could be explained by a reduction in Ral 

mRNA expression (Supplementary Fig. 1C). Overall, these series of experiments 

demonstrate that Ral levels are tied directly to E-cadherin levels in these transformed cells.

The finding that E-cadherin loss leads to the down-regulation of RalA and RalB raised the 

possibility that these GTPases normally suppress, rather than promote, the transition of Ras-

expressing, non-invasive keratinocytes to a malignant state. It also suggested that removal of 

the tumor-suppressive effect of Ral proteins by a decrease in their expression by ∼50% is 

required for tumor progression to occur in this model system. To test these hypotheses, RalA 
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or RalB levels in invasive II-4-H-2Kd-Ecad cells were restored back to those found in 

parental non-invasive II-4 cells by infection with a wild-type RalA or RalB-expressing 

retrovirus (Fig. 2A). While II-4 cells formed tightly packed colonies where E-cadherin was 

localized to cell-cell borders in 2-D cultures (Fig. 2B panels a,e), II-4 cells expressing 

dominant negative E-cadherin did not, and instead displayed a scattered phenotype 

consistent with their low E-cadherin levels (Fig. 2B panels b,f). Strikingly, II-4-H-2Kd cells 

in which RalA expression was restored to levels found in parental II-4 cells did form tightly 

packed colonies, and displayed E-cadherin at cell-cell borders (Fig. 2B panels c,g). 

Immunoblotting lysates from these cells showed that endogenous levels of E-cadherin are 

similar to those found in parental II-4 cells despite the continued expression of the 

dominant-negative transgene (Fig. 2A). In contrast, re-expressing RalB at levels similar to 

those found in control II-4 cells had no effect on cell scattering, the level of endogenous E-

cadherin expression, or its subcellular localization (Fig. 2B panels d,h). We repeated these 

experiments in cells where E-cadherin levels were reduced (∼5-fold) by shRNA expression 

(Supplementary Fig. 2A) and found the same results. (Supplementary Fig. 2A and B).

Moreover, when cells with restored RalA expression were used to populate the epithelium of 

an engineered tissue (Fig. 2E panel c), their invasive properties were similar to control cells 

and dramatically reduced compared to II-4-H-2Kd-Ecad expressing empty vector or wild-

type RalB (Fig. 2E panels b,d (insert, black arrows)). Quantification of invasion over 

multiple tissue sections illustrated that re-expression of wild-type RalA reduced invasion by 

∼80% (Fig. 2F). Similar results were observed with sh-Ecad-expressing II-4 cells with wild-

type RalA re-expressed (Supplementary Figs. 2E panel c, 2F). Thus, modest down-

regulation of RalA gene expression associated with suppressed E-cadherin function is a 

necessary step for tumor progression by Ras-expressing keratinocytes, presumably because 

RalA normally functions to maintain E-cadherin levels.

How does restoring RalA to levels found in parental II-4 cells restore E-cadherin expression 

and function in these cells? We showed previously that RalA, but not RalB, promotes the 

delivery of E-cadherin from recycling endosomes to the basolateral surface of MDCK cells 

(Shipitsin & Feig, 2004). E-cadherin is known to be removed from the cell surface by 

endocytosis, where it is targeted for degradation or recycling back to the plasma membrane 

(Jeanes et al., 2008). Thus, we hypothesized that active RalA enhances E-cadherin levels by 

promoting its recycling back to the plasma membrane, and thus avoiding the degradation 

pathway (see model in Fig 8). It has been previously reported that H-2Kd-Ecad promotes 

degradation of endogeous E-cadherin (Zhu & Watt, 1996). To test the hypothesis that RalA 

stabilizes E-cadherin at the plasma membrane, E-cadherin turnover rate was assayed by 

treatment of cultures with 10μM cycloheximide (Fig. 2C). As predicted from previous 

studies, compared to II-4 cells (black squares), in which E-cadherin had a half-life of ∼20h, 

E-cadherin in II-4-H-2Kd-Ecad cells (red triangles) had a shortened half-life of ∼4h. Re-

expression of wild-type RalA extended the half-life of endogenous E-cadherin to near 

normal levels (blue circles) while in II-4-H-2Kd-Ecad cells re-expressing wild-type RalB 

(green diamonds) E-cadherin turnover remained accelerated. Dominant-negative E-cadherin 

expression had no effect on endogenous E-cadherin mRNA expression levels, nor did the re-

expression of either wild-type RalA or wild-type RalB (Fig. 2D). RalA re-expression also 

enhanced E-cadherin stability when E-cadherin levels were reduced by shRNA expression 
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(Supplementary Fig. 2C, blue circles), prolonging its half-life from 24 to ∼48h. 

Furthermore, re-expression of either RalA or RalB did not change the expression of E-

cadherin mRNA, which remained reduced by ∼80% due to the expression of sh-Ecad 

(Supplementary Fig. 2D). Overall, these findings support the model described in Fig. 8, 

where down-regulation of RalA expression associated with E-cadherin suppression 

potentiates E-cadherin loss by promoting its turnover in cells.

To test this hypothesis further, we studied E-cadherin-depleted MSCC-1-Inv-1 cells, which 

also display reduced levels of RalA compared to their E-cadherin expressing counterparts, 

MSCC-1 (Supplementary Fig. 1A). Importantly, these cells display no detectable E-cadherin 

protein due to hypermethylation of the E-cadherin promoter (Kudo et al., 2003). Unlike in 

cells that express reduced levels of E-cadherin protein, re-expression of RalA in MSCC-1-

Inv-1 cells back to those found in parental MSCC-1 cells did not restore E-cadherin protein 

expression (Supplementary Fig. 3). This finding supports the hypothesis that RalA regulates 

E-cadherin protein stability but not expression of its gene.

shRNA-mediated down-regulation of RalA expression by ∼60% in Ras-expressing 
keratinocytes reduces E-cadherin levels and induces an invasive phenotype in engineered 
tissues

To test whether direct suppression of RalA expression in Ras-expressing keratinocytes 

enhances their tumor progression in this bioengineered tissue model of SCC, RalA and RalB 

expression levels were directly knocked down in II-4 cells. Stable expression of shRNA 

against each GTPase was generated through lentiviral vector infection, and drug selected 

pools of II-4 cells were obtained. Knockdown efficiency was ∼60% for either RalA “sh-

RalA” or RalB “sh-RalB” II-4 cells (Fig. 3A,B) when compared to control “sh-Scram,” 

which was comparable to the level of protein reduction found when E-cadherin levels were 

suppressed (see Fig. 1A). A second sequence for both RalA and RalB was also tested, with 

similar levels of knockdown (Supplementary Fig. 4A). When these cells were used to 

populate the epithelia of tissues, sh-Scram and sh-RalB showed typical dysplastic, non-

invasive behavior (Fig. 3C panels a,c and Supplementary Fig. 4B panels a,c). Strikingly, 

both types of II-4 cells expressing either one of sh-RalA sequences (Fig. 3C panel b and 

Supplementary Fig. 4B panel b) showed clear invasive behavior, as significant numbers of 

cells (Fig. 3D), usually as clusters, breached the basement membrane to initiate invasion into 

the dermal layer (Fig. 3C panel b, black arrows) in amounts similar to that seen when E-

cadherin function is suppressed (see Fig. 2F). This invasive phenotype was reversed by the 

expression of RNAi-resistant wild-type RalA but not empty vector (Supplementary Fig. 

4C,D). In other systems, knockdown of RalB had the effect of reversing the phenotype of 

RalA knockdown (Chien & White, 2003; Oxford et al., 2005). This was not the case in the 

present study, as knockdown of RalB in sh-RalA cells did not abrogate their invasive 

phenotype (Fig. 3C panel d).

To test whether RalA suppression in keratinocytes is sufficient to promote cell invasion, 

RalA was knocked down ∼65% in parental HaCaT keratinocytes from which Ras-

expressing II-4 cells were derived (Supplementary Fig. 5A). sh-RalA HaCaT cells did not 

display an increase in invasion (Supplementary Fig. 5B panels a-c). Furthermore, when 
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dominant-negative H-2Kd-Ecad was expressed in parental HaCaT cells, no decrease was 

observed in the expression of RalA or RalB proteins (Supplementary Fig. 5C). Thus, Ras 

activity, must be stimulated in order for down-regulation of RalA to promote invasion and 

for loss of E-cadherin to downregulate RalA and RalB.

Suppression of Exo84 expression in Ras-expressing keratinocytes mimics the phenotype 
of RalA knockdown

To test which RalA effector is involved, we utilized lentiviral vectors to knock down the 

well-characterized effectors Exo84, Sec5, and RalBP-1 (Fig. 4A) to similar degrees in Ras-

expressing II-4 cells. When these cells were seeded on contracted collagen gels to generate 

epithelial tissues, only the cells expressing shRNA against Exo84 (“sh-Exo84”) displayed an 

invasive morphology (Fig. 4B panel b). The number of invasive cells (Fig. 4C) was 

comparable to when RalA expression was suppressed by shRNA (see Fig. 3D).

Knockdown of RalA or its effector Exo84 is associated with reduced E-cadherin levels in 
tissues

The results from Figure 2 implied that decreased RalA levels reduce E-cadherin levels. To 

further test this model and the notion that RalA functions through Exo84, 

immunofluorescent analysis of E-cadherin protein was performed on frozen sections from 

these engineered tissues. We observed that in tissues containing sh-RalA or sh-Exo84 

expressing II-4 cells, E-cadherin was weakly expressed at cell-cell borders and was largely 

absent in invading cells (Fig. 5A, white arrows). By peeling the stratified epithelium away 

from the dermal compartment, we were able to directly assay protein and RNA expression in 

the epidermis. E-cadherin protein expression was reduced by ∼50% in both cases (Fig. 

5B,C). Real-time PCR revealed that E-cadherin mRNA expression was not reduced, 

consistent with the model described in Fig. 3 showing that RalA (and Exo84) regulate E-

cadherin by promoting its recycling back to the plasma membrane and thereby targeting it 

away from the degradation pathway.

Interestingly, RalA or Exo84 knock-down II-4 cells did not display decreased E-cadherin 

levels when grown in standard two-dimensional cultures, nor did they display a scattered 

phenotype typical of cells with low E-cadherin (data not shown). Apparently, the 

significance of RalA and Exo84 induction of recycling E-cadherin back to the membrane in 

determining overall E-cadherin levels is higher in a tissue environment than in a typical cell 

culture environment.

RalA and Exo84 knockdown mimic E-cadherin suppression by allowing Ras-transformed 
keratinocytes in 3D tissues to form a highly invasive, aggressive malignant SCC after in 
vivo transplantation

We have previously shown that when Ras-expressing II-4 cells in fabricated 3D tissues are 

transplanted onto the dorsal fascia of nude mice, the transplants form hyperkeratotic surface 

lesions with low-grade, well-differentiated invasive keratin “pearls,” while cells with 

reduced E-cadherin function form large nodular and erythematous tumors with aggressively-

invasive, high-grade, malignant carcinoma (Margulis et al., 2005a). When tissues comprised 

of RalA or Exo84 knockdown II-4 cells were transplanted to an in vivo microenvironment, 
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they showed properties similar to transplanted tissues populated with E-cadherin-suppressed 

II-4 cells (Fig. 6, panels b,d), forming large nodular tumors. H&E analysis of tumor sections 

revealed tumor cells that had infiltrated the stroma with little evidence of morphologic 

differentiation (Fig. 6 panels f,h,j,l). This loss of differentiation was associated with tumor 

cell proliferation throughout the tumor mass as well as at the leading edge of the invasive 

front (Fig. 6 panels n,p). Thus, knockdown of RalA or Exo84 not only leads to suppressed 

levels of E-cadherin and enhanced invasive properties in these cells, but it also permits Ras-

transformed cells to form aggressive carcinomas after invasion into the dermis. In contrast, 

transplanted tissues comprised of sh-Scram or sh-RalB cells formed small surface lesions 

(Fig. 6 panels a,c) harboring well-differentiated tumor islands (Fig. 6 panels e,g,i,k). 

Proliferating cells, identified by Ki-67 immunohistochemistry, were restricted to the basal 

cells at the edges of the tumor islands (Fig. 6 panels m,o). Overall, these findings imply that 

RalA functions through Exo84 to suppress not only Ras-induced cell invasion into the 

dermal compartment of engineered skin but also progression to aggressive cancer in vivo.

RalA is downregulated in head and neck squamous cell carcinoma

The experiments described here have associated the early progression of SCC with the 

down-regulation of RalA. We sought to determine whether down-regulation of RalA occurs 

in the pathogenesis of SCC. A survey of the microarray database Oncomine (Rhodes et al., 

2004) revealed data comparing RalA expression in a variety of cancer types with 

comparable normal tissues (Fig. 7). Consistent with several previously-reported results 

suggesting RalA plays a positive role in tumorigenesis, RalA was up-regulated in breast, 

bladder, brain and prostate cancer. While data for SCC of the skin was not present in this 

database, RalA was significantly (p < 1×10-6) down-regulated (∼30%) in head and neck 

squamous cell carcinoma (HNSCC) compared to normal oral mucosa. Analysis of the 

differentiation status of each tumor and relative RalA expression in a contingency table 

(Table 1) by Fisher's exact test gave p = 0.0157 strongly associated RalA down-regulation 

with poorly-differentiating SCC tumors (Ginos et al., 2004). RalB was reduced to a smaller 

degree in HNSCC but in contrast to RaA it was also reduced in some other tumor types 

analyzed (Supplementary Fig. 6).

Discussion

This study reveals that RalA suppresses early steps in Ras-induced tumor progression in an 

engineered human tissue model of squamous cell carcinoma of stratified squamous epithelia 

by promoting the stability of a well-characterized suppressor of tumor cell invasion, the cell-

cell adhesion receptor E-cadherin. RalA performs this function through its effector Exo84, a 

component of the exocyst complex. Adding to the importance of this finding is the related 

discovery that RalA gene expression is tied to E-cadherin levels in squamous carcinoma 

cells. Therefore, an important component of early carcinoma progression driven by 

oncogenic events that reduce E-cadherin gene expression may be the concomitant decrease 

of RalA levels. This magnifies abrogation of E-cadherin expression and function by 

suppressing its recycling back to the plasma membrane through Exo84, thereby enhancing 

its degradation (see model in Fig. 8).

Sowalsky et al. Page 7

Oncogene. Author manuscript; available in PMC 2010 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These conclusions are based on our observation that preventing the decrease in RalA gene 

expression, which accompanies E-cadherin down-regulation in Ras-expressing 

keratinocytes, elevates E-cadherin levels by decreasing its turnover rate. This, in turn, blocks 

the invasive properties of these cells in engineered tissues thus preventing the initiation of 

SCC. In addition, direct down-regulation of RalA or Exo84 through appropriate shRNA 

expression decreases E-cadherin levels. This converts Ras-expressing keratinocytes from 

pre-malignancy to malignancy, which enables them to invade into the dermis and generate 

high-grade invasive carcinomas after these engineered human tissues are transplanted onto 

the dorsal fascia of nude mice. Finally, the potential translational impact of these findings is 

further supported by screening a human cancer gene expression database, which revealed 

that RalA expression is specifically reduced in head and neck SCCs and strongly associated 

RalA down-regulation with poorly-differentiating tumors.

In this system, RalA signaling opposes other Ras effector pathways, since Raf and PI-3 

kinase signaling have been shown to enhance progression of SCC (Pons & Quintanilla, 

2006). One explanation for this antagonism appears to be their opposing effects on E-

cadherin. Both Erk and PI-3K have been shown to drive E-cadherin from the membrane 

resulting in its degradation (Potempa & Ridley, 1998), while RalA does the opposite. How 

RalA suppresses E-cadherin degradation is not entirely clear. However, we have shown 

previously that active RalA functions in a way consistent with positive regulation of the 

exocyst, as it enhances the rate of delivery of vesicles carrying E-cadherin from the 

perinuclear recycling endosome specifically to the basolateral surface of MDCK epithelial 

cells (Shipitsin & Feig, 2004). Enhancing the recycling of proteins back to the plasma 

membrane through RalA effects on the exocyst could stabilize E-cadherin by targeting 

vesicles carrying it away from the degradation pathway (see Fig. 8). Our finding that RalA 

stabilizes E-cadherin in keratinocytes through the exocyst component Exo84 supports this 

model.

While suppression of RalA expression causes down-regulation of E-cadherin and tumor 

progression in oncogenic Ras-expressing HaCaT-II-4 keratinocytes, it does not do so in 

parental HaCaT cells. This implies that RalA tumor-suppressing activity becomes 

increasingly important as forces suppressing E-cadherin expression become significant 

during tumor progression. Because RalA displays its tumor-suppressing function at the level 

of protein stabilization, the recycling function of RalA may no longer be significant in tumor 

cells that have little or no E-cadherin. This idea is supported by our finding that while RalA 

levels are reduced in highly invasive oral squamous carcinoma cells that lack any detectable 

E-cadherin protein, E-cadherin levels were not elevated when RalA expression was restored.

Our experiments supporting the idea that Exo84 is the mediator of the tumor-suppressing 

function of RalA has interesting implications since this represents the first demonstration 

that a component of the exocyst complex can function to suppress tumor progression. 

Second, the exocyst complex has been implicated in many cell functions including delivery 

of membrane proteins specifically to the basolateral membrane (Hsu et al., 2004), secretion 

of proteins out of the cell (Sugita, 2008), cell migration (Rosse et al., 2006) and cytokinesis 

(Chen et al., 2006). There is growing evidence that distinct subcomplexes of the eight 

known exocyst subunits mediate these distinct processes (Moskalenko et al., 2003). Here we 
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show that although it is known that both Sec5 and Exo84 exocyst subunits are downstream 

effectors of active Ral proteins, knockdown of Exo84, but not Sec5, phenocopies RalA 

knockdown. This finding implies that RalA signals through an exocyst subcomplex that 

includes Exo84, but not Sec5, to regulate E-cadherin membrane delivery and tumor 

progression. Interestingly, RalB was previously shown to signal through Sec5, but not 

Exo84 to activate the TBK1 kinase and suppress apoptosis to support tumor progression 

(Chien et al., 2006).

Why does RalA play a suppressing role in tumor progression in this tissue model system of 

human squamous carcinoma, while it has been found to play a tumor-promoting role in other 

cancer models? One possibility is that RalA plays different roles in different tumor cell 

types or different stages of tumor progression. For example, a suppressing role for RalA 

may be important in squamous carcinomas. This explanation is supported by our analysis of 

the Oncomine human cancer gene expression database, which shows that RalA expression is 

reduced in oral SCCs, and another report that found RalA is reduced in lung SCC (Smith et 

al., 2007). In contrast, our analysis of Oncomine revealed that RalA levels are elevated in 

other cancer types including bladder, prostate and brain cancer. Others have also found 

elevated RalA levels in liver and pancreatic cancer (Smith et al., 2007). Also, the assay 

system we have used in this study follows Ral function in early stages of tumor 

development, whereas in many other reports RalA expression was manipulated in already 

established tumor cell lines such as pancreatic cancer cells.

A related issue is that our studies using engineered human tissues reveal that RalA is 

particularly important in suppressing tumor progression through its positive effects on E-

cadherin function particularly when E-cadherin levels are limiting. Others have found tumor 

promoting activity for RalA in soft agar growth assays or in tumor forming assays after 

injection into mice, where E-cadherin levels may not be as important (Lim et al., 2005; Lim 

et al., 2006). Finally, we have observed a tumor-promoting consequence of a modest ∼2-3 

fold decrease in RalA expression, a drop that occurs naturally when E-cadherin levels fall 

during tumor progression. Previous studies have shown tumor inhibition in response more 

complete RalA ablation. The molecular basis for these differences could be that RalA uses 

different effector proteins under these different conditions.

However, these explanations do not account for the results from a previous study showing 

that Ras-induced squamous carcinoma is reduced in knockout mice lacking an activator of 

Ral GTPases, RalGDS (Gonzalez-Garcia et al., 2005). However, we recently found that 

RalGDS has a Ral-independent scaffold function that promotes Akt activation by growth 

factors (Hao et al., 2008). This raises the possibility that the failure to generate carcinomas 

in mice depleted of RalGDS was due to an absence of Akt-mediated survival signaling, 

rather than Ras-mediated Ral activation. In addition, the knockout mice lacked RalGDS in 

all cells, not solely in keratinocytes, and it is not clear which specific cell populations are 

responsible for inhibiting tumor progression in these mice.

Finally, one of the most surprising conclusions from this study is that a modest (∼60%) 

reduction in RalA gene expression induced by E-cadherin suppression is a necessary step for 

early tumor progression of Ras-expressing keratinocytes in this model system. Reduction of 
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RalA magnifies the effect of tumorigenic forces that suppress E-cadherin expression by 

enhancing its degradation. Interestingly, the expression of the RalA effector involved in this 

process, Exo84, is not regulated by E-cadherin, implying that RalA is the key sensor for E-

cadherin levels in this cascade. Since RalA is regulated at the level of gene expression, an 

interesting possibility is that RalA expression can be reversed later in tumor progression, 

such as during metastasis, where RalA has been shown to play a positive role (Lim et al., 

2006).

Materials and Methods

Three-dimensional cell culture

Three-dimensional tissues were prepared as previously described (Carlson et al., 2008). 

Briefly, human foreskin fibroblasts were mixed with Bovine Type I collagen (2.5×104 

cells/ml) and allowed to contract for seven days in deep-well polycarbonate tissue culture 

inserts (Organogenesis, Canton, MA). 5×105 keratinocytes were seeded on contracted 

collagen gels and grown submerged for three days in low-calcium epidermal growth 

medium. Cultures were then maintained for two days in normal-calcium epidermal growth 

medium and subsequently fed only from the bottom for seven days.

Protein Turnover Assays

Subconfluent monolayer cultures were treated with 10μm cycloheximide (Sigma) or vehicle 

for 0-24h. Plates were washed and lysed as described above before being subjected to 

immunoblot analysis.

Quantification of invasion

For each tissue generated, invasive cells were counted and averaged from approximately 150 

microscope fields (≥5 serial sections from ≥2 different depths). Averages shown represent 

≥3 independent experiments ±S.D. P values, where shown, are calculated by the Mann-

Whitney test.

Data Analysis

Data represented in graphs and analyzed by Mann-Whitney, Student's t, and Fisher's exact 

tests were performed using GraphPad Prism 4.0 for Windows.

Tissue transplantation

All animal experiments were performed according to a protocol approved by the Tufts 

University Institutional Animal Care and Use Committee as described (Greenberg et al., 

2005). Briefly, a 1.3cm dorsal skin section was removed from 5 nude mice per cell line. 

Three-dimensional tissues were grown as described above and transplanted onto fascia at the 

site of skin excision. Bandages were removed after 2 weeks and mice were sacrificed eight 

weeks after transplantation. Skin tumors were excised, trimmed, and processed as described 

(Margulis et al., 2005b).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Loss of E-cadherin function induces down-regulation of RalA and RalB in HaCaT 
keratinocytes
Western blot analysis of HaCaT, Ras-expressing HaCaT-II-4, and HaCaT-II-4 cells 

expressing the dominant-negative E-cadherin transgene H-2Kd-Ecad (A). Total Erk is shown 

as a loading control. RalA and RalB protein (B) or mRNA (C) expression were measured in 

the linear range by densitometry or real-time PCR, respectively. (D) Western blot analysis of 

HaCaT-II-4 and HaCaT-II-4 cells expressing shRNA against E-cadherin. Total Erk is shown 
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as a loading control. RalA and RalB protein (E) or mRNA (F) expression were measured in 

the linear range by densitometry or real-time PCR, respectively.
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Figure 2. Suppression of RalA expression is necessary for the migratory and invasive properties 
associated with the loss of E-cadherin function
(A) Western blot analysis of Ras-expressing HaCaT-II-4 cells expressing empty vector or 

H-2Kd-Ecad transgene infected with retroviruses encoding wild-type RalA or RalB. Total 

Erk is shown as a loading control. (B) Phase-contrast and immunofluorescent micrographs 

showing colony morphology and E-cadherin membrane localization in HaCaT-II-4 (a, e), 
HaCaT-II-4-H-2Kd-Ecad (b, f), HaCaT-II-4-H-2Kd-Ecad-RalAwt (c, g), and HaCaT-II-4-

H-2Kd-Ecad-RalBwt (d, h) cells. Bar: 100μm. (C) The indicated cell lines were incubated 

with 10μM cycloheximide for the indicated amount of time (n≥3). Endogenous E-cadherin 

protein expression was analyzed by Western blot and quantified by densitometry. (D) E-

cadherin mRNA expression in the indicated cell lines was analyzed by real-time PCR. (E) 
Cells from the indicated lines were grown on fibroblast-populated organotypic collagen gels 

and tissues were stained with H&E. Bar: 100μm. Invading cells in representative images are 

shown with arrows and quantified from >100 microscope fields in >20 sections from 

multiple experiments (F). * p < 0.05 for H-2Kd-Ecad/RalAwt compared to H-2Kd-Ecad/

Bleo using Mann-Whitney test.
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Figure 3. Suppression of RalA expression by shRNA induces invasive properties in 3D tissues
(A) Western blot analysis of Ras-expressing HaCaT-II-4 cells expressing shRNA against 

RalA, RalB, or both RalA and RalB. Total Erk is shown as a loading control. (B) 
Quantification of RalA or RalB knockdown compared to control determined by 

densitometry in the linear range. (C) Scrambled (a), RalA knockdown (b), RalB knockdown 

(c), or RalA/RalB double-knockdown (d) HaCaT-II-4 cells were grown on collagen gels and 

tissues were stained with H&E. Bar: 100μm. Invading cells in representative images are 

shown with arrows and quantified from >100 microscope fields in >20 sections from 

multiple experiments (D). * p < 0.05 for sh-RalA and sh-RalA/B compared to sh-Scram 

using Mann-Whitney test.
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Figure 4. Suppression of the Ral effector Exo84 expression by shRNA induces invasive 
properties of HaCaT II-4 cells in 3D tissues
(A) Western blot analysis of Ras-expressing HaCaT-II-4 cells expressing scrambled shRNA 

or shRNA against Exo84, Sec5, or RalBP-1. Total Erk is shown as a loading control. (B) 
Scrambled (a), Exo84 knockdown (b), Sec5 knockdown (c), or RalBP-1 knockdown (d) 
HaCaT-II-4 cells were used to populate tissues as described and stained with H&E. Bar: 

100μm. Invading cells in representative images are shown with arrows and quantified from 

>100 microscope fields in >20 sections from multiple experiments (C) and two different 

shRNA sequences. * p < 0.01 for sh-Exo84 compared to sh-Scram using Mann-Whitney 

test.
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Figure 5. Acquisition of invasive properties of II-4 cells upon RalA or Exo84 knockdown is 
associated with a decrease in E-cadherin protein expression
(A) Scrambled (a), RalA knockdown (b), RalB knockdown (c), RalA/RalB double-

knockdown (d), Exo84 knockdown (e), Sec5 knockdown (f), or RalBP-1 knockdown (g) 
HaCaT-II-4 cells were used to populate tissues and frozen sections were subjected to 

immunofluorescent analysis with anti-E-cadherin antibody (red). DAPI was used to 

counterstain the nuclei. Invading cells in representative images are shown with arrows. (B) 
Western blot analysis of homogenized epithelium from tissues shown in (A). Total Erk is 

shown as a loading control. E-cadherin expression protein (C) and mRNA (D) were 

measured in the linear range by densitometry or real-time PCR, respectively. * p < 0.05 for 

sh-RalA, shRalA/B, and sh-Exo84 compared to sh-Scram using Mann-Whitney test.
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Figure 6. Suppression of RalA or Exo84 complements oncogenic Ras for the conversion to high-
grade malignant carcinoma
Scrambled (a, e, i, m), RalA knockdown (b, f, j, n), RalB knockdown (c, g, k, o) or Exo84 

knockdown (d, h, l, p) HaCaT-II-4 cells were used to generate bioengineered tissues that 

were transplanted to the dorsa of nude mice. n=5 for each cohort. (a-d) Clinical appearance 

of surface tumor after 8 weeks. (e-l) Representative image of H&E staining from sections at 

4× and 20× magnifications. (m-p) Ki-67 immunohistochemistry on serial sections of tissue. 

Bar: 100μm.
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Figure 7. RalA is downregulated in head and neck squamous cell carcinoma
Survey of Oncomine microarray database for RalA expression in normal and diseased 

tissues. Data is represented as a box-and-whiskers plot with the box representing the 1st and 

3rd quartiles and the whiskers denoting the data range. Center bar denotes median. 

Significance cutoff is p < 1×10-4 for each cancer type compared to normal. ProAdCa: 

Prostate adenocarcinoma (normal, n=8; cancer n=27). HNSCC: Head and neck squamous 

cell carcinoma (normal, n=13; cancer n=41). GliMu: Glioblastoma multiforme (normal, 

n=23; cancer n=77; normal, n=7; cancer n=25;). OlDen: Oligodendroglioma (normal, n=23; 

cancer n=50). AstCy: Astrocytoma (normal, n=23; cancer n=26). BlaCa: Bladder carcinoma 

(normal, n=48; cancer n=109). BreCa: Breast Carcinoma (normal, n=7; cancer n=41).
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Figure 8. Model of RalA regulation of E-cadherin function during tumorigenesis
RalA suppresses Ras-induced tumor progression by promoting delivery and recycling of E-

cadherin to the plasma membrane (solid arrows). In contrast, other Ras effectors, such as 

Raf, and PI-3 K enhance tumorigenesis by promoting removal of E-cadherin from the 

membrane and its subsequent degradation (hatched arrows).
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Table 1
Contingency table of RalA expression and carcinoma differentiation diagnosis

Microarray data was sorted by differentiation status (poor vs. better than poor) and sub-classified based on 

RalA expression relative to the median for the entire sample set. p = 0.157 by Fisher's exact test.

Tumor Differentiation
RalA Expression

Total
Above Median Below Median

Poor 1 7 8

Mod/Poor, Mod Well 21 12 33

Total 22 19 41
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