
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



CLINICAL INVESTIGATION
Copyright © 2021 Sout
www.amjmedsci.com
Policy Interventions, Social Distancing,
and SARS-CoV-2 Transmission in the

United States: A Retrospective
State-level Analysis

Nickolas Dreher, BA1, Zachary Spiera, BS1, Fiona M. McAuley, BA1,
Lindsey Kuohn, BA1, John R. Durbin, BS1, Naoum Fares Marayati, BA1,

Muhammad Ali, BA1, Adam Y. Li, BS1, Theodore C. Hannah, BA1,
Alex Gometz, DPT2, JT Kostman, PhD3 and Tanvir F. Choudhri, MD1

1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York,
NY, United States; 2Concussion Management of New York, New York, NY, United

States; 3ProtectedBy.AI, Reston, VA, United States
ABSTRACT

Background: Various non-pharmaceutical interventions (NPIs) such as stay-at-home orders and school closures have been
employed to limit the spread of Coronavirus disease (COVID-19). This study measures the impact of social distancing policies
on COVID-19 transmission in US states during the early outbreak phase to assess which policies were most effective.

Methods: To measure transmissibility, we analyze the average effective reproductive number (Rt) in each state the week fol-
lowing its 500th case and doubling time from 500 to 1000 cases. Linear and logistic regressions were performed to assess
the impact of various NPIs while controlling for population density, GDP, and certain health metrics. This analysis was
repeated for deaths with doubling time to 100 deaths with several healthcare infrastructure control variables.

Results: States with stay-at-home orders in place at the time of their 500th case were associated with lower average Rt the
following week compared to states without them (p<0.001) and significantly less likely to have an Rt>1 (OR 0.07, 95% CI
0.01−0.37, p = 0.004). These states also experienced longer doubling time from 500 to 1000 cases (HR 0.35, 95% CI 0.17
−0.72, p = 0.004). States in the highest quartile of average time spent at home were also slower to reach 1000 cases than
those in the lowest quartile (HR 0.18, 95% CI 0.06−0.53, p = 0.002).

Conclusions: Stay-at-home orders had the largest effect of any policy analyzed. Multivariate analyses with cellphone track-
ing data suggest social distancing adherence drives these effects. States that plan to scale back such measures should care-
fully monitor transmission metrics.

Keywords: COVID-19; SARS-CoV-2; Coronavirus; Novel coronavirus; Public policy; Social distancing; Non-pharmaceutical
interventions; Stay-at-home order; School closure; Non-essential business closure; Limitations on mass gatherings. [Am J
Med Sci 2021;361(5):575–584.]
INTRODUCTION
Coronavirus disease 2019 (COVID-19), caused by
severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), was first reported in Wuhan,

China in December 2019.1 It quickly spread globally, and
was characterized as a pandemic by the World Health
Organization (WHO). Local and national governments
worldwide have employed a variety of non-pharmaceuti-
cal interventions (NPIs) to mitigate the impact of this
novel coronavirus. Mandated policies including limita-
tions on mass gatherings, business closures, and stay-
at-home orders aimed to encourage social distancing
and “flatten the curve”.2-4

By April 30, 2020, over 3249,000 COVID-19 cases
had already been confirmed worldwide, with more than
hern Society for Clinical Investigation. Published by Elsev
� www.ssciweb.org
1067,000 cases and 62,000 resulting deaths in the
United States.5 In an effort to contain the virus, broad
shutdowns resulted in severe economic impacts includ-
ing 26 million Americans filing for unemployment within a
5 week period.6 Simultaneously, there is concern that
quarantine puts people at increased risk of domestic vio-
lence and severe psychological suffering, as well as
physical inactivity, weight gain, behavioral addiction dis-
orders, and insufficient sunlight exposure.7−12 It is there-
fore important to quantify the effects of early, proactive
social distancing measures on disease spread in order to
guide future policy decisions which may continue to limit
economic security and healthy lifestyles.

As state and local governments fiercely debate costs
and benefits of reopening, it is important to look back at
ier Inc. All rights reserved. 575
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how disease spread was modulated by differing social
distancing policies in the early stages of the epidemic
and which policies were most effective. Previous model-
ing studies have described the importance of social dis-
tancing in mitigating the spread of COVID-19,13−19 and
these findings have been supported by case data.2,20−22

Mandated NPIs have also been associated with reduced
transmission,23 presumably due to subsequent reduc-
tions in community mobility.3 However, little has been
done to characterize the impact of NPIs in states with
poor compliance. Furthermore, efforts to quantify the
effects on transmission have not accounted for different
stages of outbreak, discounting that the effectiveness of
policy changes will likely differ if they are instituted in the
context of 20 cases or 10,000. This study accounts for
the stage of disease spread by selecting a normalized
point on the epidemic curve, analyzing each state in
the week following its 500th case and assessing how dif-
ferent NPIs influence the burgeoning case load early in
outbreaks.
METHODS

Measures
In order to retrospectively analyze metrics of early

disease spread and mortality, case and death data for all
50 states and the District of Columbia were compiled up
to April 30th, 2020 from the Coronavirus Resource Cen-
ter at Johns Hopkins University. Daily state-level esti-
mates of the virus’s effective reproduction number (Rt)
were collected from Rt.live, a widely-followed online
resource that tracks COVID-19 spread and provides real-
time estimates of Rt. Details on their methodology used
to calculate Rt are publicly available online.

To standardize the stage of disease spread and mini-
mize the confounding effect of increased caseload on
disease transmission across states, these analyses were
conducted in the weeks after each state’s 500th case.
The 500-case threshold was chosen to ensure that each
state had a sustained epidemic.

The primary outcomes were average Rt in the weeks
following 500 cases and doubling time from 500 to 1000
cases, both measures of disease transmission. Rt is a
real-time measure of the average number of infections
expected from one case in a susceptible population.

A secondary analysis investigated the effects of NPIs
on doubling time from 50 to 100 deaths and case fatality
rate. Again, the 50 deaths threshold was chosen to
ensure that each state had faced enough COVID-19
spread to experience sustained morbidity. An estimate
of case fatality rate was calculated by simply dividing
deaths by total cases for each state.

In order to better understand effects of NPIs on social
mobility, and the effects of social mobility on disease
spread, social distancing metrics were collected from
the COVID-19 community mobility reports made avail-
able by Google. These reports compare the average time
spent in places of residence based on Google location
576
tracking data compared to the median value, for the cor-
responding day of the week, during the 5-week period
Jan 3−Feb 6, 2020. Averages of these measures were
calculated for the week after stay-at-home order to
assess the impact of NPI on social distancing. Further-
more, average increase in time spent in residential areas
was also calculated for the week before the 500th case
to assess the impact of social distancing on disease
transmission directly.
Covariates
We tested the association between change in Rt and

four unique policies: stay-at-home orders, school clo-
sures, closure of non-essential businesses, and bans on
mass gatherings. Demographic data including popula-
tion density, population size, and GDP were obtained
from publicly available data for each state and territory
and examined as covariates in multivariable models.
State-wide health information, including the percentage
of state residents with diabetes, chronic obstructive pul-
monary disease (COPD), current and ever smokers, and
cardiovascular disease, were included to control for
potential confounding effect. Lastly, the number of hos-
pital beds and physicians per 1000 people were used to
control for state-specific health care capacity. These
measures were assessed as covariates in the secondary
analysis examining case fatality rate.
Statistical analysis
All analyses were complete in R (Version 1.1.442) and

Microsoft Excel. Descriptive statistics are reported using
means (standard deviation [SD]) and median (interquartile
range [IQR]) for normally and non-normally distributed con-
tinuous variables, respectively. The Kruskal Wallis test was
used to determine differences for non-normally distributed
variables. Policy changes were modeled as dichotomous
variables distinguishing states that had implemented each
order 1) prior to the 500th case in primary analyses and 2)
prior to the 50th death in secondary analyses. Univariable
linear regression was used to test the association between
each policy change and the primary outcome, average Rt

after a state’s 500th case. Average Rt after the 500th case
was then dichotomized into values above and below 1 and
evaluated in logistic regression.

To assess the effectiveness of stay-at-home orders
at different points in disease outbreak, we also compared
changes in Rt before and after policy intervention by the
number of confirmed COVID-19 cases at the time this
policy went into effect. Multivariable models were then
built to adjust for demographic, state-wide health, and
health care capacity covariates. Kaplan Meier survival
analysis and the log-rank sum test were used to identify
differences in the time to reach the 1000th case. The
average% time spent at home was separated into quar-
tiles and the highest and lowest quartiles were com-
pared. Cox proportional hazards regression was then
used to test the association between covariates the risk
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for reaching 1000 cases. Visual inspection and calcula-
tion of the scaled Schonfield residuals were used to con-
firm the proportional hazard assumption. All analyses
were then repeated for case fatality rate and time to
100th death. Multivariable models were built by selecting
covariates with p<0.1 in univariable analyses, backwards
eliminating covariates with p>0.1, and removing collinear
variables identified by a variance inflation factor >5.
RESULTS
As of April 30th, 2020, 48 states and the District of

Columbia had reached 500 cases and were included in
the analysis. Alaska and Montana were excluded
because they had not yet reached 500 confirmed
COVID-19 cases. Of these states, 15 had stay-at-home
orders enacted prior to the date of their 500th case
(Table 1). These locations had a significantly smaller
median population compared to states without this
policy implemented before reaching 500 cases
(1826,156 vs. 5967,435, p = 0.0071). There were no sta-
tistically significant differences between states with or
without a stay-at-home order in population density, hos-
pital beds per 1000 people, physicians per 1000 people,
percent current smokers, percent with COPD, percent
with diabetes, or percent with cardiovascular disease.
NPI effects on disease spread
Average Rt for all included territories the week prior to

implementing stay-at-home orders (Rt=1.256) compared
to the week following (Rt=1.088) was reduced �13.3%
(absolute change = �0.1673, SD=0.070). States with stay-
at-home orders preceding the date of their 500th case
Table 1. Summary of included states and territories (N = 49).

Variable (Median [IQR]) All states and District
of Columbia

N = 49

States wi
orde

Population 4,645,184
[1,952,570 to 7,797,095] [3,149

Population density 112.82
[56.93 to 228.02] [5

Hospital beds per 1000 people 2.50
[2.10 to 3.10]

Physicians per 1000 people 2.74
[2.41 to 3.14]

% Current smokers 17.00
[14.60 to 19.30] [1

% COPD 6.70
[5.60 to 8.30]

% Diabetes 11.00
[9.90 to 12.50] [

% Cardiovascular Disease 4.30
[3.70 to 5.00]

Bolding represents signifigant demographic differences between state groupings.
Abbreviations: IQR = interquartile range, COPD = chronic obstructive pulmonary dise

* = p<0.05.

Copyright © 2021 Southern Society for Clinical Investigation. Published by Elsev
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were negatively associated with average Rt (ß=�0.15,
95% CI �0.23 to �0.07, p<0.001, Table 2, Fig. 1). Educa-
tional facilities closure (ß=�0.17, 95% CI �0.30 to �0.05,
p = 0.0081), non-essential business closure (ß=�0.13,
95% CI �0.21 to �0.05, p = 0.0026), and average% time
spent at home the week before (ß=�0.02, 95% CI �0.02
to �0.01, p<0.001) were also associated with a significant
reduction in Rt compared to states without these policies
the week following 500 cases. Analysis was repeated with
an additional week delay (from days 8 to 14 after 500
cases), which yielded similar results (Table 2).

Policies were enacted in different orders and with
varying degrees of overlap. For example, about half of
states enacted school closures as the first step in dis-
ease prevention, while other states decided to lead with
limitations on mass gatherings (Table 3). A few enacted
both of these policies at the same time, while no states
moved directly to stay-at-home orders or business clo-
sures. Overall, there was a spread of policy timing with a
slight clustering of school closures and limitations on
mass gatherings enacted earlier in pandemic and busi-
ness closures and stay-at-home orders later (Table 3).

In multivariable analyses, average percent time spent
at home during the week before remained a significant
predictor of reduction in Rt (ß=�0.01, 95% CI �0.02 to
�0.01, p = 0.0012) when adjusting for stay-at-home
orders. However, when evaluating the Rt with a one-week
delay after the 500th case, average percent time spent at
home was no longer associated (ß=�0.01, 95% CI �0.01
to �0.00, p = 0.068). Other covariates, including school
closures, limitations on mass gatherings, non-essential
business closure, population density, and population size
were not found to be associated with Rt when evaluated
thout stay-at-home
r at 500 cases
N = 34

States with stay-at-home
order at 500 cases

N = 15

p

5,967,435
,705 to 9,767,915]

1,826,156
[1,358,518 to 4,400,391]

<0.0071*

110.44
7.11 to 225.63]

113.96
[56.48 to 253.72]

0.83

2.55
[2.10 to 3.18]

2.10
[1.95 to 2.60]

0.088

2.55
[2.10 to 3.18]

3.08
[2.62 to 3.29]

0.13

17.15
4.80 to 19.18]

16.10
[14.70 to 19.30]

0.91

6.50
[5.38 to 8.28]

6.90
[5.95 to 8.30]

0.68

10.90
9.75 to 12.57]

11.00
[10.25 to 12.35]

0.77

4.30
[3.80 to 5.07]

3.90
[3.65 to 5.00]

0.75

ase.
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Table 2. Linear and logistic regressions assessing the impact of non-pharmaceutical interventions on Rt following 500 cases.

Covariate b (95% CI) p OR (95% CI) p

Week immediately following 500th Case (days +1 to +7)
Stay-at-home order �0.15 (�0.23 to �0.07) <0.001* 0.07 (0.01 to 0.37) 0.0032*
Limitation on mass gatherings �0.08 (�0.20 to 0.04) 0.16 Limited sample size
Educational facilities closure �0.17 (�0.30 to �0.05) 0.0081* Limited sample size
Non-essential business closure �0.13 (�0.21 to �0.05) 0.0026* 0.09 (0.01 to 0.43) 0.0050*
Average% time spent at home in the week before �0.02 (�0.02 to �0.01) <0.001* 0.82 (0.64 to 0.99) 0.069
One-week delay from 500th case (days +8 to +14)
Stay-at-home order �0.09 (�0.15 to �0.04) 0.0017* 0.16 (0.04 to 0.58) 0.011*
Limitation on mass gatherings �0.05 (�0.13 to 0.03) 0.27 0.18 (0.01 to 1.15) 0.11
Educational facilities closure �0.12 (�0.21 to �0.04) 0.0060* Limited sample size
Non-essential business closure �0.05 (�0.13 to 0.03) 0.0042* 0.21 (0.05 to 0.72) 0.023*
Average% time spent at home in the week before �0.01 (�0.01 to �0.00) 0.0051* 0.82 (0.67 to 0.95) 0.022*

Bolding represents signifigant demographic differences between state groupings.
* = p<0.05.

Table 3. Relative timing of non-pharmaceutical policy interventions.

First policy implemented
(# of states)

Average days
after first order

Average days before
stay-at-home order

Stay-at-home order 0 12.1 0
Limitation on mass gatherings 27 3.16 9.44
Educational facilities closure 28 2.18 10.4
Non-essential business closure 0 9.76 1.85

Table 4. Cox proportional hazards regression for time to event
analysis.

Time to 1000th Case

Covariate Hazard ratio (95% CI) p

Stay-at-home order 0.32 (0.16 to 0.66) 0.0022
Educational facilities closure 0.62 (0.25 to 1.63) 0.33
Non-essential business closure 0.50 (0.25 to 1.10) 0.055
Limitation on mass gatherings 0.63 (0.28 to 1.42) 0.27

Dreher et al
alongside average time spent at home and therefore were
not included in the multivariable model.

We then dichotomized Rt into values above and below
1 and repeated the analysis with a univariable logistic
regression model. In this analysis, implementing a stay-at-
home order was associated with a 93% decrease in the
odds of having a positive Rt in the week immediately fol-
lowing the 500th case (OR 0.07, 95% CI 0.01 to 0.37,
p = 0.0032). The following week also experienced an 84%
decrease in the odds of having an average Rt greater than
1 (OR 0.16, 95% CI 0.04 to 0.58, p = 0.011).

In Kaplan Meier analyses, implementation of a stay-
at-home order prior to the date of 500 cases was associ-
ated with a decreased probability of reaching 1000 cases
within 5 days (log rank sum, p = 0.02). Similarly, in cox
proportional hazards regression, stay-at-home orders
correlated with an increase in time to reach 1000 cases
(OR 0.32, CI 0.16 to 0.66, p = 0.0022, Table 4, Fig. 2).
States in the highest quartile of average percent time
spent at home were also slower to reach 1000 cases (log
rank sum, p<0.001, HR 0.15, 95% CI 0.05 to 0.47,
p<0.001). Other distancing measures did not affect the
time from 500 to 1000 cases.
Average% time spent at
home (Q4 vs. Q1)

0.15 (0.05 to 0.47) <0.001*

Bolding represents signifigant demographic differences between state
groupings.
Abbreviations: Q4 = fourth quartile, Q1 = first quartile,.

* = p<0.05.
NPI effects on deaths
In linear regression, this study found that none of the

included policies (stay-at-home orders, school closures,
bans on mass gatherings, or closure of non-essential
578
businesses) were associated with a decrease in case
fatality rate (CFR). In Kaplan Meier event analysis, stay-
at-home orders were non-significant in predicting time
from 50 deaths to 100 deaths (Fig. 3).
NPI interaction with social distancing
After the implementation of state-wide stay-at-home

orders, the average amount of time spent at home
increased by 29.2% relative to the week prior to the
order. This translates to an average absolute increase of
4.18% in time spent at home in the week following a
stay-at-home order when compared to the previous
THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES
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FIGURE 1. Average Rt during the week following the 500th case by each U.S. state.

Statewide Social Distancing Policies and COVID-19
week (Fig. 4). School closures, non-essential business
closures, and limitations on mass gatherings led to abso-
lute increases of 10.2%, 5.3%, and 8.1%, respectively.

Social distancing adherence varied from state to
state even in the wake of similar policy interventions, and
this difference in response was influenced by several fac-
tors. Of interest, in the week following stay-at-home
orders there was less time spent at home in states that
voted for the Republican ticket in the 2016 presidential
election, 16.9% vs 20.1% (p<0.001, Table 5). These rep-
resented absolute changes from the week prior to the
order of +3.25% and +5.08% for Republican-voting (red)
vs Democrat-voting (blue) states, respectively. This did
not translate to a significant difference in the change in
Rt from the week prior, but there was a disparity between
the total Rt for red and blue states the week following
the stay-at-home order of 1.04 vs 1.14, respectively
(p = 0.0077) (Table 5).
DISCUSSION
This study analyzes state-level transmission rates of

COVID-19 after each state’s 500th case, grouping them
according to policies implemented prior to their date of
500 cases, in order to determine the effectiveness of
various social distancing measures in controlling dis-
ease spread in the early outbreak phase. In states that
implemented a stay-at-home order prior to reaching 500
cases, we observe a significant decrease in the effective
viral transmission rate and an increase in the time to
reach 1000 cases. Subsequent multivariable analyses
indicate that this effect may have been driven by a
state-wide increase in the amount of time spent at
home. We found no association between distancing
efforts and case fatality rate or doubling time from 50 to
100 deaths.
Copyright © 2021 Southern Society for Clinical Investigation. Published by Elsev
www.amjmedsci.com � www.ssciweb.org
Context and contribution
As cases have accumulated around the world, it has

become increasingly possible to retrospectively assess
the impact of early-implemented NPIs on measured out-
comes, comparing the effectiveness of different policies
and confirming the scale of their impact. Many previous
research studies and news sources characterizing disease
burden have relied on the metrics of cumulative case and
death counts; however, these metrics are unidirectional
and do not account for bidirectional changes in the rate of
viral transmission over time, a much more powerful metric
for predicting an epidemic’s trajectory. In this study, we
examine effective reproduction number (Rt) as the primary
metric of disease burden, which describes the virus’s
transmission potential in real-time and can thus account
for the impact of contextual changes in policy and behav-
ior on disease spread. Further, this Rt metric has been
used widely in popular media to report the rate of disease
spread in different areas.28−36 Developed and publicized
by Instagram’s co-founder Kevin Systrom, Rt.live has the
potential to greatly impact public opinion and shape
behaviors, such as willingness to adhere to social distanc-
ing guidelines. Understanding effective reproductive num-
ber is therefore critical both to guiding legislators and
promoting buy-in to the policies implemented.

In one comparison of 20 countries, Banholzer et al.
found public venue closures to be the most effective NPI
in reducing new cases, followed by public gathering bans,
non-essential business closures, and international travel
restrictions, with school closures decreasing case count
minimally. Interestingly, they found ‘lockdowns’ to be
among the least effective policies in mitigating disease
spread.2 Analysis at the city level in China has also associ-
ated comprehensive social distancing measures with pre-
venting disease spread.23,24 In Wuhan, a reduction in Rt

was shown to chronologically follow implementation of
ier Inc. All rights reserved. 579
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FIGURE 2. Hazards curve demonstrating the probability of reaching 1000 cases separated by (A) states with and without a stay-at-home order
prior to the 500th case, (B) the highest vs. lowest quartile of percent time spent at home based on Google mobility data for all states, and (C) the
highest vs. lowest quartile of percent time spent at home amongst states that had a stay-at-home order prior to the 500th case.

Dreher et al
traffic restrictions, home confinement, centralized quaran-
tine, and other social distancing measures.23 Such retro-
spective analyses of NPI impact on disease spread, to
date, have primarily compared disease metrics before and
after policy implementation,2,20,21,23−27 but these analyses
may not fully account for the confounding effects of dis-
ease prevalence and public response. This study controls
for the stage of disease spread by selecting a normalized
point on the epidemic curve, 500 cases, and assesses
how different NPIs influence the swelling case load while
also controlling for population density.

The United States presents unique challenges in epi-
demiological management due to its governmental
emphasis on state and local autonomy. As such, an anal-
ysis of the pandemic’s impact in the U.S. should account
for potentially different trajectories across states and at
580
the local level. Ebell & Bagwell-Adams compared differ-
ences in social distancing measures employed by coun-
ties in the state of Georgia. They demonstrated that
Clarke County, which implemented a shelter-in-place
policy two weeks before it was adopted at the state level,
had increased case doubling time compared to sur-
rounding counties and the state as a whole.22 Siedner
et al. performed a time-series analysis to compare dis-
ease spread before and after statewide social distancing
policies were put in place, and found that decreases in
epidemic growth occurred four days after implementa-
tion of each state’s first social distancing policy.37 How-
ever, in this section of their analysis the authors did not
differentiate between alternate social distancing meas-
ures. Additionally, once an initial policy was in place,
they found no significant effect of further enacting
THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES
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FIGURE 4. Time spent in residential areas

FIGURE 3. Hazard curve showing the probability of reaching 100
deaths separated by states with and without a stay-at-home (SAH)
order prior to the 50th death.

Table 5. Social distancing and Rt the week following stay-at-home order com
voting states.

Voted Republican

Portion of time spent at home 16.9%
D Portion of time spent at home (% change) +3.25% (23.8
Rt 1.04
D Rt (% change) �0.17 (14.0%

*= p<0.05.

Copyright © 2021 Southern Society for Clinical Investigation. Published by Elsev
www.amjmedsci.com � www.ssciweb.org
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statewide lockdowns.37 In this study, we compare the
effects of different policies, finding stay-at-home orders
to be most effective in reducing transmission.

Lasry et al. used cell phone data from SafeGraph to
assess the relationship between various social distanc-
ing policies and percentage of mobile devices leaving
home in four major U.S. cities.3 They found that combi-
nations of multiple social distancing policies, including
limits on gatherings and school closures, significantly
reduced mobility. Stay-at-home orders further reduced
movement in their study as well.3 By including cell phone
tracking data made publicly available by Google, this
study directly assesses the connection between mobility
and virus transmission at the state level. In agreement
with Lasry et al., we demonstrate that stay-at-home
orders significantly increase the amount of time people
spend at home.3 Further, our multivariable linear regres-
sion analysis, which demonstrates that relative percent
time spent at home was the most significant modulator
of Rt, indicates that the primary driving factor in reducing
viral transmission was limiting mobility. In conjunction,
these results provide evidence that NPIs can be useful in
before and after stay-at-home order.

pared to the week before the order in Republican-voting vs. Democrat-

in 2016 Voted Democrat in 2016 P

20.1% <0.001*
%) +5.08% (33.8%) 0.032*

1.14 0.0077*
) �0.17 (12.6%) 0.804

ier Inc. All rights reserved. 581
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controlling early COVID-19 outbreaks by effectively
reducing social mobility.
Differing effects of NPIs
Our analysis demonstrates that stay-at-home

order, the strictest policy included in our models, had
the most significant effect on disease spread. This
measure both reduced transmission rate and increased
doubling time from 500 to 1000 cases within states.
Comparatively, mass gathering restrictions had the
least effect on reducing Rt. As states across the U.S.
continue to disagree on policy approaches to contain-
ing the virus and, in particular, opening schools in the
fall, our results suggest that mass gathering restric-
tions or school closure alone may have a weaker effect
in maintaining Rt<1. Careful monitoring of Rt values in
these states may be necessary to proactively identify
and control recurrent outbreaks.

To assess the effectiveness of stay-at-home orders
at different points in disease outbreak, we also compared
states by number of confirmed COVID-19 cases at the
time this policy went into effect. We found that reduction
in average Rt the week following stay-at-home order was
consistent across variation in number of cases at the
time of policy implementation. States benefited from
similar reduction in Rt regardless of how many confirmed
cases they had before their orders went into effect. How-
ever, this finding does not imply that timing of stay-at-
home order is unimportant, since high Rt in the weeks
prior will contribute to greater overall caseload. Further-
more, when looking at Rt averages for the week of April
23rd to April 30th, states that had yet to implement a
state-wide stay-at-home order had amongst the highest
values in the country, accounting for four of the eight
states with an average Rt>1, suggesting that they had
not yet successfully contained the virus.

Interestingly, in the week following enactment of stay-
at-home orders, states that voted blue in the 2016 U.S.
presidential election demonstrated a greater increase in
social distancing relative to red states, possibly reflecting
greater adherence to government policies. This difference
in social distancing was not associated with a difference
in Rt reduction between red and blue states, and in fact
the overall Rt was higher in blue states despite better
adherence to social distancing policies. This adjunct anal-
ysis it is not intended to establish voting patterns as a
definitive driver of these differences, rather, it illuminates
the common notion that there are underlying factors that
modulate the effectiveness of NPIs. These results may be
confounded by a number of other variables including the
relative timing of outbreaks, geographic distributions, and
various cultural factors, which should be explored further.

Our analysis finds no significant correlation between
mobility or social distancing policy and time from 50 to 100
deaths. This lack of association may be a result of studying
outcomes early on in each state’s disease outbreak. Future
studies that look at death rates later on may find that social
582
distancing measures help prevent overflow of healthcare
systems, and therefore reduce fatality.
Limitations
Our study has several important limitations to con-

sider. First, our state-level analysis may miss variation at
the county level. Certain counties may have benefited
from more localized control due to social distancing
measures implemented before state-wide mandates.
Similarly, county-level variation in COVID-19 cases,
resulting deaths, population density, and other demo-
graphic factors were not accounted for. Future analyses
should consider county-level data to account for these
local variations.

Our mobility results are further limited by potential
flaws in Google’s publicly available phone data, which
this study relies on for mobility analyses. As noted by
Lasry et al., data that tracks phones, not people, are sub-
ject to distortion by individuals with multiple devices and
people leaving home without their phones.3 Further,
these data do not differentiate between individuals who
leave home but remain distanced from others and people
who ignore social distancing guidelines altogether while
in public. Finally, our analysis focused exclusively on
social distancing policies, and did not account for other
transmission-preventing NPIs that states may have
employed such as requiring masks.

Different NPIs were sometimes enacted simulta-
neously or soon after one another. The effects of less
extreme measures may be masked due to interdepen-
dence with other policies, or artificially enhanced due to
chronological association with more extreme initiatives.
This is particularly true for business closures, which gener-
ally occurred nearest in time to stay-at-home orders. Also,
we found that educational facility closures and limitations
on mass gatherings often preceded business closures
and stay-at-home orders, making the latter policies more
difficult to assess in isolation. While our multivariate analy-
sis controls for the effect of co-existing policies, these
nuances in chronology complicate the findings.

Though rates of testing have been noted to vary
widely between states and serve as a potentially con-
founding variable, the model used to calculate Rt values
analyzed here corrects for state-wide differences in test-
ing. The Rt model also accounts for variation in serial
interval and delay between symptom onset and a posi-
tive test result; however, it does not account for any
period in which individuals are infectious but asymptom-
atic, which mounting evidence suggests is an important
factor in SARS-CoV-2 dynamics. As such, future analy-
ses of Rt should be calibrated with this in mind.

Our results suggest that statewide social distancing
policies, and in particular stay-at-home orders, reduced
disease spread in the early stage of the COVID-19 out-
break, but the present data does not indicate whether or
not these measures are effective long term. Recent stud-
ies have demonstrated that stay-at-home mandates
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limited social mobility and COVID-19 transmission in the
U.S. beyond the timeframe of this study, through May
and June.38−41 However, it remains unclear whether or
not adherence to stay-at-home mandates is sustainable
long term, or at what point beyond the initial outbreak
the costs of these policies begin to outweigh the
benefits.40

Implications
Reducing COVID-19 spread and alleviating overbur-

dened healthcare systems has become an international
priority, and, in the absence of available pharmaceutical
options, understanding the efficacy of policy interven-
tions is paramount. Disease modeling has indicated that
social distancing is a critical measure to achieve this
goal, but studies validating these findings with case data
can increase buy-in from policy makers and the public.
This study indicates that stay-at-home orders, limitations
on mass gatherings, educational facility closures, and
non-essential businesses closures are all effective meas-
ures at reducing transmission rates, thereby “flattening
the curve,” with stay-at-home orders having the largest
effect. Of note, adherence to social distancing appears
to be the driving force behind the effectiveness of these
policies, as states with stay-at-home orders but relatively
poor adherence experienced doubling times more similar
to those without such policies. By more rigorously char-
acterizing the state-level strategies that have proved
most effective at reducing disease burden, this study
aims to provide stakeholders with a more standardized,
data-driven framework to guide future policy decisions.
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