
Generalized gametic relationships for flexible analyses of
parent-of-origin effects

Norbert Reinsch *, Manfred Mayer, and Inga Blunk

Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany

*Corresponding author: reinsch@fbn-dummerstorf.de

Abstract

A class of epigenetic inheritance patterns known as genomic imprinting allows alleles to influence the phenotype in a parent-of-origin-
specific manner. Various pedigree-based parent-of-origin analyses of quantitative traits have attempted to determine the share of genetic
variance that is attributable to imprinted loci. In general, these methods require four random gametic effects per pedigree member to ac-
count for all possible types of imprinting in a mixed model. As a result, the system of equations may become excessively large to solve us-
ing all available data. If only the offspring have records, which is frequently the case for complex pedigrees, only two averaged gametic
effects (transmitting abilities) per parent are required (reduced model). However, the parents may have records in some cases. Therefore,
in this study, we explain how employing single gametic effects solely for informative individuals (i.e., phenotyped individuals), and only av-
erage gametic effects otherwise, significantly reduces the complexity compared with classical gametic models. A generalized gametic rela-
tionship matrix is the covariance of this mixture of effects. The matrix can also make the reduced model much more flexible by including
observations from parents. Worked examples are present to illustrate the theory and a realistic body mass data set in mice is used to dem-
onstrate its utility. We show how to set up the inverse of the generalized gametic relationship matrix directly from a pedigree. An open-
source program is used to implement the rules. The application of the same principles to phased marker data leads to a genomic version
of the generalized gametic relationships.
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Introduction
Epigenetic marks of parent-of-origin may lead to the functional
inequivalence of parental alleles with respect to gene expression.
This pattern is known as genomic imprinting. According to previ-
ous reviews (e.g., Lawson et al. 2013), the phenotypic signature of
genomic imprinting at a single locus appears as a trait mean dif-
ference between reciprocal heterozygotes AB and BA (the first al-
lele is paternal). The broader term parent-of-origin effects (POEs)
is often used to emphasize that other underlying mechanisms
such as maternal genetic effects could contribute to the observed
inequivalence (Hager et al. 2008). For complex traits, there is evi-
dence that variants of nonimprinted genes can generate substan-
tial POEs by interacting with imprinted loci (Mott et al. 2014),
despite the small number known for the latter. An imprinting
variance component can serve as a type of joint phenotypic sig-
nature of multiple imprinted loci that could potentially affect a
quantitative trait. This component summarizes the squared trait
differences between reciprocal heterozygotes at all imprinted loci
as a single quantity and it can be estimated by analyzing large
pedigreed populations with suitable mixed models. Recent exam-
ples of this type of study in livestock genetics by Neugebauer et al.
(2010a, 2010b), Tier and Meyer (2012), Blunk et al. (2017a, 2017b),
Okamoto et al. (2019), and Inoue et al. (2020) all considered carcass
traits in cattle. Furthermore, Blunk et al. (2020) investigated type

1 diabetes and rheumatoid arthritis in the field of human genetic

epidemiology.
Some of the studies mentioned above used simplified relation-

ships, including only sire and maternal grandsire information,

mainly due to partially missing pedigree information (Okamoto

et al. 2019) or to ensure that the number of equations was small

when analyzing large volumes of data (Blunk et al. 2017a). In

other studies, the mixed model employed a classical gametic re-

lationship matrix (Tier and Meyer 2012; Blunk et al. 2020) derived

from complete pedigree information for several tens to hundreds

of thousands of individuals. The gametic relationship model is

the most costly variant in terms of the number of equations for a

given pedigree, but it allows imprinting analysis to be conducted

in every case where mixed model analysis of pedigreed data is

possible.
Shortly after its discovery, researchers recognized that the ga-

metic relationship matrix (Smith and Allaire 1985; Schaeffer et al.

1989) is useful for isolating fractions of the genetic variance in

quantitative traits caused by genomically imprinted loci. In the

early stages of pedigree-based imprinting analysis, animal mod-

els were augmented by an additional vector of paternal (alterna-

tively, maternal) gametic effects, which was usually modeled as

uncorrelated with any other effect. In standard practice, the vec-

tor’s variance was represented as the product of a gametic
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relationship matrix and a variance component caused by poly-
morphisms at loci with only paternal (maternal) gene activity.
These models were pioneered by De Vries et al. (1994) and used
for more than a decade. However, they can account only for a sin-
gle type of classical imprinting, where either the maternal or pa-
ternal alleles are fully silenced. A proposal by Hill and Keightly
(1988) to consider both types of imprinting simultaneously was
not implemented in any pedigree-based analyses of empirical
data. Furthermore, there was uncertainty regarding the methods
used to account for the effects of partially imprinted loci, where
both alleles are active, but at different strengths depending on
their parental origins.

A model for parent-of-origin analysis was subsequently devel-
oped (Neugebauer et al. 2010a, 2010b) and it is comprehensive in the
sense that it accounts for all types of imprinting, i.e., full or partial,
and maternal or paternal (Blunk and Reinsch 2014). This so-called
reduced imprinting model relates observations from nonparents (final
progeny, e.g., animals used for meat) to the transmitting abilities
(half of the breeding values) of their parents. There are two corre-
lated genetic effects per parent comprising the transmitting ability
as sire and transmitting ability as dam, which reflect an animal’s
genetic effect on its offspring under a paternal or maternal imprint-
ing pattern. These two genetic effects are different in the presence
of genomically imprinted loci. The variance in these differences is
referred to as the imprinting variance because it summarizes the
contributions from all types of possible imprinted loci. A numerator
relationship matrix is necessary for parents only because the final
progeny with observations, but without offspring, do not appear in
the underlying pedigree and the resulting relationship matrix. The
null hypothesis comprising the absence of polymorphic imprinted
loci with an effect on the trait under investigation (i.e., a zero im-
printing variance) can be tested with a restricted maximum likeli-
hood (REML) ratio test (RLRT).

Alternatively, a comprehensive gametic model can be used to
estimate the same set of genetic covariances, including the im-
printing variance (Tier and Meyer 2012; Meyer and Tier 2012),
where one must estimate four gametic effects per individual, i.e.,
two as sire and two as dam, and the relationships include the fi-
nal progeny with observations. The gametic model allows for
records from parents, which is an advantage compared with the
reduced imprinting model. Furthermore, it is possible to extend this
model with maternal genetic effects.

According to the principle applied, this maternal genetic com-
ponent of the variance is a particular challenge because it is diffi-
cult to separate from the imprinting variance. Okamoto et al.
(2019) showed that the resulting imprinting variance estimated
with a model variant that uses information only for the sire and
maternal grandsire (Blunk et al. 2017a; Okamoto et al. 2019) can
also be interpreted as maternal genetic variance. Similarly, for
the reduced imprinting model, it is possible to show that the im-
printing variance and maternal genetic variance cannot be disen-
tangled when both are present, and thus it is only possible to
infer a composite component of variance (for a theoretical deriva-
tion, see Appendix A4).

The utilization of measured genotypes in genomic best linear
unbiased prediction (gBLUP) models that include imprinting
effects was outlined by Nishio and Satoh (2015). The first of the
two variants of the proposed model (GBLUP-I1) contains an im-
printing effect at all markers, which is modeled as independent
of the actions of all markers as un-imprinted Mendelian loci. An
additive genetic effect summarizes the latter per marker. The
second model (GBLUP-I2) considers a paternal and maternal ga-
metic effect with zero mutual correlation. Although not

considered by Nishio and Satoh (2015), it is clearly possible to

change this into a comprehensive model by abandoning the as-

sumption of a zero correlation and by replacing pedigree-derived

gametic relationships with a genomic counterpart of equal size

and structure. In cases where not all pedigreed individuals are

genotyped, this would then allow combined analysis of the geno-

typed and un-genotyped individuals in a single-step approach

(Legarra et al. 2009; Aguilar et al. 2010; Christensen and Lund

2010). By contrast, it is not possible to easily extend the first

model (GBLUP-I1) to a pedigree-derived counterpart.
The disadvantage of the gametic model is the large number of

equations (Smith and Allaire 1985) used to represent the random

genetic effects, particularly when estimating the variance com-

ponents. A pedigree with a size of approximately half a million is

a technical barrier for REML estimation in animal models using

the currently available software packages (Shor et al. 2019). With

a gametic parent-of-origin model, only a quarter of individuals

require the same number of equations. Therefore, the question

arises whether an option is available where models retain the

flexibility of the gametic model while allowing for a considerably

smaller number of equations for random genetic effects, and it

must be as close as possible to the reduced imprinting model.
As a solution, we propose a generalization of the gametic model

with a much smaller redefined vector of genetic effects obtained

by linear transformation of the original gametic effects. We refer

to the corresponding relationship matrix as a generalized gametic

relationship matrix and present rules for its rapid inversion from

the pedigree. As a result, the size of the gametic model becomes

more manageable while retaining all of its advantages. We also

show how the same type of transformation can be applied to

measured genotypes to obtain conformable genomic and

pedigree-derived versions of the new relationship matrix. In the

following, we theoretically derive the generalization of the ga-

metic model. Worked examples (available in the Supplementary

material) are provided as illustrations for all of the models de-

scribed. Finally, pedigreed mouse data are employed to demon-

strate the utility of the generalized gametic model and to allow for

conclusions regarding the influence of POEs on body mass.

Materials and methods
Theory
Generalized gametic relationships:
In gametic models under Mendelian inheritance, each individual i is

represented by the additive genetic effects of its paternal gamete

gi;1 and maternal gamete gi;2 (Schaeffer et al. 1989). These effects

are usually arranged in a pairwise manner in a vector g of length 2t,

which is twice the number t of individuals in the pedigree. The

equation for a phenotypic observation yi of individual i is:

yi ¼ li þ gi;1 þ gi;2 þ ei;

where li ¼ x0 ib is a place-holder for any combination of explana-

tory variables in vector x0 i with fixed effects b, and the residual ei.

Thus, the gametic model splits the additive genetic value (breed-

ing value) bi of individual i into paternally derived and maternally

derived parts: bi ¼ gi;1 þ gi;2.
The basic idea of reducing the equations in gametic models by

a considerable number involves replacing the two gametic effects

of a subset of u individuals by their pairwise average:
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1
2
ðgi;1 þ gi;2Þ ¼ ai;

which is known as the transmitting ability (half the breeding
value) of individual i.

All gametic effects in the vector g can be arranged such that
the gametic effects of all u individuals precede the gametic
effects of those v that are bound in order to retain their distinct
gametic effects for imprinting analysis, as explained in the next
paragraph. The corresponding subdivision of g is:

g ¼ gu
gv

� �
:

The subvectors gu and gv have lengths of 2u and 2v, respec-
tively. The covariances of all gametic effects in g are the elements
of the 2t� 2t gametic relationship matrix G (Schaeffer et al. 1989),
which can be partitioned into sections that correspond to the
relationships between the gametic effects in gu and gv.

Var
gu
gv

� �
¼ Guu Guv

G0uv Gvv

� �
¼ G

The required average gametic effects can be obtained by a lin-
ear transformation, which is defined by a matrix K0 such that:

K0g ¼ K0u 01

02 Iv

� �
gu
gv

� �
¼ au

gv

� �
¼ a:

This operation replaces the gametic effects of all individuals
in gu by their transmitting abilities in au. The upper-left partition
K0u of the transformation matrix K0 has dimensions of u� 2u, and
it is defined as the Kronecker product of a u� u identity matrix Iu

and a row vector with two elements equal to 1
2:

K0u ¼ Iu �
1
2

1
2

� �
:

Furthermore, K0 comprises a 2v� 2v identity matrix Iv and two
null matrices, 01 and 02, with dimensions of u� 2v and 2v� 2u,
respectively.

The covariance matrix of the transformed vector of gametic
effects a then becomes:

Var
au

gv

� �
¼ K0GK ¼ G;

which is called a generalized gametic relationship matrix in the
following. In the context of imprinting analyses, a natural choice
involves retaining the gametic effects of all individuals with their
own phenotypes in vector gv and representing all their ancestors
without records by their transmitting abilities as au. The subdivi-
sions of G are then:

G ¼ K0uGuuKu K0uGuvIv

IvG0uvKu IvGvvIv

� �
¼

1
2

Au Suv

S0uv Gvv

2
4

3
5:

The upper-left part 1
2 Au is equal to the coancestry matrix (half

the numerator relationship matrix) of all ancestors without their
own records, while Gvv reflects the relationships between the ga-
metic effects of all individuals with their own observations.

Finally, Suv contains the covariances between the transmitting
abilities and gametic effects. We consider a small example in-
volving four individuals (IDs). There are three transmitting abili-
ties for individuals 1, 2, and 3, with corresponding pairwise
elements of 1

2 in the transformation matrix K0 and two gametic
effects, where the elements in K0 are one. The resulting general-
ized gametic relationship matrix G has dimensions of 5�5:

ID sire dam
1 0 0
2 0 0
3 1 2
4 1 3

K0 ¼

1
2

1
2

0 0 0 0 0 0

0 0
1
2

1
2

0 0 0 0

0 0 0 0
1
2

1
2

0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

2
6666666664

3
7777777775

G ¼

1
2

0
1
4

1
2

1
4

0
1
2

1
4

0
1
4

1
4

1
4

1
2

1
4

1
2

1
2

0
1
4

1
1
4

1
4

1
4

1
2

1
4

1

2
66666666666664

3
77777777777775

:

Generalized gametic relationships in a gametic model:
Based on the descriptions above, the equation for an observation
yi in a model that uses generalized gametic relationships and
considers POEs remains the same as that in the classical gametic
model:

yi ¼ li þ gs
i;1 þ gd

i;2 þ ei;

where the superscripts s and d indicate the paternal (gs
i;1) and ma-

ternal (gd
i;1) expression patterns of the candidate’s gametes of pa-

ternal and maternal descent (indicated by subscripts 1 and 2),
respectively. Gametes of the same parental descent, but opposite
mode of expression (gd

i;1 and gs
i;2), are not directly related to any

observation, but they can be estimated through their covariances
with other effects. It is possible to average each pair of gametic
effects with the same expression pattern from any individual
without records, thereby obtaining the transmission abilities as
sire as

i ¼ 1
2 ðgs

i;1
þ gs

i;2
Þ and dam ad

i ¼ 1
2 ðgd

i;1
þ gd

i;2
Þ.

A mixed model that considers POEs and uses the generalized
relationship matrix then becomes:

Y ¼ Xb1Zsas þ Zdad þ e;

where Y is a vector of observations, b comprises the fixed effects,
and X is the corresponding incidence matrix. The assumed co-
variance of random effects is:

Var
as

ad
e

2
4

3
5 ¼ Gr2

s Grsd 0
Grsd Gr2

d 0
0 0 Ir2

e

2
64

3
75:

This generalized gametic model contains the size-reduced trans-
formed gametic effect vectors as and ad, which are the counter-
parts of the full-size gametic effect vectors gs and gd,
respectively, and each has a length of 2t. Consequently, the

N. Reinsch, M. Mayer, and I. Blunk | 3



model uses the corresponding relationship matrix G instead of

the classical gametic relationships of G: The vector of genetic

effects under a paternal (maternal) mode of expression as (ad) for

genetic effects has an associated gametic variance component r2
s

(r2
d) and the covariance between the expression patterns is rsd.

Thus, the imprinting variance (Neugebauer et al. 2010a, 2010b) is:

r2
i ¼ r2

s þ r2
d � 2rsd, which is equivalent to the variance in the dif-

ferences between gametic effects under alternative modes of ex-

pression. Furthermore, the incidence matrices Zs and Zd link

observations to the random gametic effects in as and ad, respec-

tively, whereas no observation is linked to any of the transmitting

abilities in the latter vectors. As a result, any incidence matrix

Za ¼ ½0u Zv � that links observations to gametic effects in the

generalized vector of genetic effects a0 ¼ ½a0u g0v � can be consid-

ered a converted incidence matrix Zg ¼ ½02u Zv � from a classical

gametic model that links the observations to the gametic effects

in g0 ¼ ½g0u g0v �:

Za ¼ ZgK0:

This transformation retains all columns in the partition Zv,

i.e., one per gametic effect of individuals with phenotypes, and

the number of null columns in 0u of Za collapses to half of that of

02u in Zg. In the same manner, both incidence matrices Zs and Zd

from the previous model equation are converted versions of their

counterparts in the classical gametic model, which forms the basis

for the proof of equivalence for the classical and generalized ga-

metic models involving G (see Appendix A1). For a worked exam-

ple based on a small data set analyzed with the generalized

gametic model, see part 1 of the Supplementary material.

Reduced gametic model:
The reduced imprinting model initially described by Neugebauer

et al. (2010a, 2010b) relates each observation from a final progeny

i to the transmitting abilities as sire as
si and dam ad

di for the

parents si (sire of i) and di (dam of i), respectively. For a single ob-

servation yi, we have the equation:

yi ¼ li þ as
si þ ad

di þ ri; (1)

where the residual ri is a sum of the Mendelian sampling effects

of both parents (msi and mdi) and the measurement noise (ei). The

latter is identical to the residual of the gametic model. Thus, we

have:

ri ¼ msi þmdi þ ei:

Its variance is a function of the inbreeding coefficients Fsi and

Fdi for the parents of i:

varðriÞ ¼
1
2
ð1� FsiÞr2

s þ
1
2
ð1� FdiÞr2

d þ r2
e :

After rewriting the transmitting abilities of the parents as the aver-

ages of the respective gametic effects, i.e., as
si ¼ 1

2 ðgs
1;si þ gs

2;siÞ and

ad
di ¼ 1

2 ðgd
1;di þ gd

2;diÞ, we obtain an equation in terms of gametic effects:

yi ¼ li þ
1
2
ðgs

1;si þ gs
2;siÞ þ

1
2
ðgd

1;di þ gd
2;diÞ þ ri: (2)

Then, the covariance of the gametic effects is:

Var
gs
gd

� �
¼ r2

s rsd
rsd r2

d

" #
� G ¼ Gr2

s Grsd
Grsd Gr2

d

" #
;

where the relationship matrix G of the gametic effects that define

the transmitting abilities involved includes only the parents and

their ancestors. The advantage of this reduced gametic model com-

pared with the previously published version that uses only trans-

mitting abilities and their relationship matrix 1
2 A is that it allows

us to easily integrate observations from parents by linking them

to the respective gametic effects. Hence, for observations of any

parent i, the observation equation becomes:

yi ¼ li þ gs
1;i þ gd

2;i þ ei: (3)

Part 1 of Supplementary A presents a worked example based

on a small data set analyzed with the reduced gametic model.

Generalized reduced gametic model:
The disadvantage of the reduced gametic model is that it employs

twice the number of equations compared with a version obtained

using 1
2 A. However, for all individuals without their own records,

it is possible to reduce the number of equations for random ge-

netic effects by representing the individuals through their trans-

mitting abilities (average gametic effects), while retaining

separate gametic effects for all parents with phenotypes, i.e., the

vectors of gametic effects gsand gd are replaced by appropriately

transformed counterparts as and ad, respectively. Consequently,

the covariance matrix of random genetic effects in a parsimoni-

ous generalized reduced gametic model that allows for parents with

phenotypes is:

Var
as

ad

� �
¼ Gr2

s Grsd
Grsd Gr2

d

" #
:

Furthermore, we need a diagonal matrix W of weights equal

to wi ¼ 1 for observations from parents to which observation

equation (3) applies, and:

wi ¼
1
2 ð1� FsiÞr2

s þ 1
2 ð1� FdiÞr2

d þ r2
e

r2
e

" #�1

for the final progeny, where parents without their own records

are represented by the transmitting abilities or both parents have

a record and are represented by gametic effects [the equations

are (1) and (2), respectively]. The same weight applies to mixed

types of representations that arise in cases where one parent of

the final progeny has a record whereas the other does not. The

corresponding equations for observations yi of the final progeny

are:

yi ¼ li þ as
si þ

1
2
ðgd

1;di þ gd
2;diÞ þ ri (4)

and

yi ¼ li þ
1
2
ðgs

1;si þ gs
2;siÞ þ ad

di þ ri: (5)

For the generalized reduced gametic model, a detailed worked ex-

ample based on a small data set is also presented in the

Supplementary Part S1.
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General model for parent-of-origin analyses:
A general comprehensive model for parent-of-origin analyses is
based on the generalized gametic relationship matrix. Special
cases of the generalized gametic relationship matrix G are the
classical gametic relationship matrix G ¼ G in the gametic model
and G ¼ 1

2 A in the reduced imprinting model. Correspondingly, the
matrix W of weights can be an identity matrix that fits the classi-
cal gametic model, or a matrix of weights that differ from one like
those in the reduced model for records of the final progeny. A gen-
eral model can be specified for parent-of-origin analyses contain-
ing these two basic types of comprehensive imprinting models as
well as models with any combination of gametic effects and
transmitting abilities that can be obtained using our transforma-
tion matrix K0. In matrix notation, the general model is:

Y ¼ Xbþ Zsas þ Zdad þ e;

where e is a vector of residuals, i.e., ei ¼ ei for records from indi-
viduals represented by two gametic effects or ei ¼ ri for observa-
tions from final progeny linked to the genetic effects of their
parents. The respective weights are:

wi ¼ 1

and

wi ¼
1
2 ð1� FsiÞr2

s þ 1
2 ð1� FdiÞr2

d þ r2
e

r2
e

" #�1

:

Random genetic effects and residuals have the assumed co-
variance:

Var
as

ad
e

2
4

3
5 ¼ Gr2

s Grsd 0
Grsd Gr2

d 0
0 0 Wr2

e

2
64

3
75:

The resulting mixed model equations are:

X0W�1X X0W�1Zs X0W�1Zd

Z0sW�1X Z0sW�1Zs þ G
�1

a1 Z0sW�1Zd þ G
�1

a2

Z0dW�1X Z0dW�1Zs þ G
�1

a2 Z0dW�1Zd þ G
�1

a3

2
6664

3
7775

b

as

ad

2
64

3
75 ¼

X0W�1y

Z0sW�1y

Z0dW�1y

2
664

3
775;

with

a1 a2

a2 a3

� �
¼ r2

e
r2

s rsd
rsd r2

d

" #�1

:

The general model allows for any combination of observation
equations (1) to (5) to provide a large degree of flexibility in
parent-of-origin analyses. One may choose a model variant to
minimize the number of equations for random genetic effects by
using as many reduced observation equations as possible, but at
the cost of recomputing the weights when estimating the compo-
nents of variance. Alternatively, one may avoid the repeated
recomputation of weights by representing all individuals with an
observation using gametic effects. The underlying reason for this
flexibility is that for the given data (observations, fixed effects,

and pedigree), each possible general imprinting model has as an

equivalent unique classical gametic model (as shown in
Appendices A2 and A3). Consequently, any two general models

that share the same equivalent classical model are also equiva-

lent, and can replace each other, especially when estimating the

components of variance.

Direct inversion of the generalized gametic relationship
matrix:
Setting up the inverse generalized gametic relationship matrix is
crucial for any large-scale application. One can derive rules for

direct inversion by factoring the inverse G
�1

into inverses of a

matrix T0 and a diagonal matrix D of inverse Mendelian sampling

variances:

G
�1 ¼ ðT0Þ�1D�1T�1:

This is a known principle based on the direct inversion of the

numerator relationship matrix (Henderson 1976; Quaas 1976)

and the classical gametic relationship matrix (Schaeffer et al.

1989). The matrix ðT0Þ�1 is lower triangular, as shown in
Supplementary Figure S2.1. The underlying pedigree for this ex-

ample (see Supplementary Part S2) comprises 12 individuals.

Single transmitting abilities represent nine individuals and a pair

of two gametic effects denotes each of the remaining three. The

last column of the pedigree file indicates these two alternative

types of representations by values of one and two, respectively.
Consequently, the dimensions of the inverse of the example are

15� 15 and each of the 15 rows of ðT0Þ�1pertains to one of these

effects. However, for the direct inversion, it is necessary to assess

the types of genetic effects for all individuals and also for their

parents. An individual’s transmitting ability may be derived from

two unknown parents (a-00) or a single unknown parent, where

the known parent may be represented by a transmitting ability
(a-0a, a-a0) or two gametic effects (a-0gg, a-gg0). Two known

parents may be represented as any combination of transmitting

abilities or gametic effects (a-aa, a-agg, a-gga, a-gggg). Similarly,

a gametic effect may be derived from an unknown parent (g-0),

or a known parent denoted by either a transmitting ability or two

gametic effects (g-a, g-gg). These 12 cases need to be distin-
guished for the direct inversion of the generalized gametic rela-

tionship matrix. Each of these cases appears at least once in the

example pedigree. The last column of Supplementary Figure S2.1

indicates the respective case for each effect that relates to a par-

ticular row of the lower-triangular matrix. It should be noted that

the six cases comprising a-0gg, a-gg0, a-agg, a-gga, a-gggg, and
g-a are specific to the generalized gametic relationship matrix be-

cause they do not appear in the direct inversion of the numerator

relationship matrix (involving only a-00, a-0a, a-a0, and a-aa) or

the classical gametic relationship matrix, where only g-0 and

g-gg need to be distinguished.
The Mendelian sampling variances that define the diagonal

elements of D are different for the transmitting abilities and ga-

metic effects. Furthermore, they depend on the occurrence of un-
known parents and the inbreeding coefficients of the known

ones. In particular, we have Fknown parent when an individual with

a transmitting ability in the matrix has only one known parent,

or Fsire and Fdam in the case of full parentage information. For

gametes, we need to account for the inbreeding coefficient Fparent

of the known parent from which a gamete is derived.
Accordingly, the 12 cases (a-00, a-0a, . . ., g-00) are grouped into

N. Reinsch, M. Mayer, and I. Blunk | 5

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab064#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab064#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab064#supplementary-data


the following five classes with distinct formulae for the inverse
Mendelian sampling variance d:

a� 00 d ¼ 2

a� 0a; a� a0; a� 0gg; a� gg0 d ¼ 1
2 ð1� Fknown parentÞ
h i�1

a� aa; a� agg; a� gga; a� gggg d ¼ 2 1
2

1
2 ð1� FsireÞ þ 1

2 ð1� FdamÞ
h i� ��1

g� a; g� gg d ¼ 2 1
2 ð1� FparentÞ
h i�1

g� 0 d ¼ 1

:

It is possible to construct the inverse generalized gametic rela-
tionship matrix from the pedigree in a step-by-step manner for
any arbitrary order of genetic effects. In each step, a matrix con-
tribution Ui is added for genetic effect i to a matrix comprising an
inverse G

�1
i�1 that already includes the preceding i� 1 effects and

zeroes:

G
�1
i ¼ G

�1
i�1 0
00 0

" #
þ Ui;

where 0 is a column vector of i� 1 zeros and:

Ui ¼ uiu
0
idi

is the contribution made for each genetic effect i. The row vector
u0 icomprises all zeros, except for the elements that correspond to
the genetic effects of the respective parent(s). The i-th element
(equal to unity) at least is a nonzero in this vector. If present, all
other nonzero elements are negative, with values of either � 1

2 or
� 1

4. Thus, the number of nonzero entries varies from one to five,
which can be derived from the rows in the example triangular
matrix ðT0Þ�1 in Supplementary Figure S2.1. Table 1 summarizes
the nonzero coefficients in u0 i and their indices for all 12 possible
cases. The nonzero elements of the resulting matrix Ui ¼ uiu0 idi

correspond to the (scaled) cross-products of the elements of the

nonzero vector, and their coordinates in the matrix are the re-

spective combinations of indices.

Transforming measured genotypes in a generalized
genomic gametic relationship matrix:
Parent-of-origin analyses may also use genomic relationships, or

combined genomic and pedigree relationships. However, a spe-

cific feature of this approach is that ordinary marker genotypes

(AA, AB, BB) are not sufficient. Instead the parental origins of the

marker alleles at each locus must be inferred (Lawson et al. 2013,

and references therein) and summarized as ordered genotypes of

AA, AB, BA, and BB, where the first allele is paternally derived,

but this is not always possible for all members of a genealogy. In

this case, the principles described above are beneficial for inte-

grating ordered and unordered genomic information into a single

genomic version of the generalized gametic relationship matrix.
Let us assume that all tindividuals are genotyped with p

markers and all genotypes phased into 2t haplotypes.

Information regarding the number (zero or one at each locus be-

fore centering) of minor alleles for all marker loci on each haplo-

type can be summarized in a 2t� p matrix C, which is mean-

centered column by column. For this matrix, each individual i

contributes two p-row vectors c0 i1 and c0 i2, with centered allele

indicators for its first and second haplotypes. Matrix C can then

be split into two submatrices Cv and Cu:

C ¼ Cv

Cu

� �
:

For imprinting analyses, at least all u individuals with pheno-

types need to have paternal and maternal haplotypes identified

in Cu. Thus, we must add at least one preceding generation with-

out records but with genotypes. All haplotypes in matrix partition

Cv are unordered in the case of a single generation. If the addi-

tional v genotyped individuals contain more than a single succes-

sive generation, then only part of their genotypes may qualify as

ordered where the exceptions come from the founders.
A genomic gametic relationship matrix can be derived from C:

Gg ¼
CC0

s
¼ CuC0u CuC0v

CvC0u CvC0v

� �
1
s
¼ Gguu Gguv

Ggvu Ggvv

� �
;

where s is a scaling factor, s ¼
P

pjð1� pjÞ, and pj is the allele fre-

quency at marker j.
In all cases where the parental origin of the two haplotypes

can be traced back, the first haplotype of each individual is as-

sumed to be paternal and the second maternal (c0 i1 ¼ c0 ipand

c0 i2 ¼ c0 im); otherwise, the ordering of haplotypes is arbitrary. We

apply the concept of generalization described above. One can de-

fine a transformation matrix K0 such that for all individuals i

with unordered genomic information, the two row vectors c0 i1
and c0 i2 are replaced by their averages:

c i ¼
1
2
ðci1 þ ci2Þ:

The vector c i does not depend on the order or the parental ori-

gin of the haplotypes of an individual:

Table 1 Size and indices of nonzero elements of vectors u0i by type
of genetic effect (a: transmitting ability; g: gametic effect)

Type of effect Case
Nonzero

elements in u0i

Indices of nonzero
elements

a a-00 1 i

a a-0a � 1
2

1 d, i

a a-0gg � 1
4
� 1

4
1 u, v, i

a a-a0 � 1
2

1 s, i

a a-gg0 � 1
4
� 1

4
1 p, q, i

a a-aa � 1
2
� 1

2
1 s, d, i

a a-agg � 1
2
� 1

4
� 1

4
1 s, u, v, i

a a-gga � 1
4
� 1

4
� 1

2
1 p, q, d, i

a a-gggg � 1
4
� 1

4
� 1

4
� 1

4
1 p, q, u, v, i

g g-a �1 1 s, i

g g-gg � 1
2
� 1

2
1 p, q, i

g g-0 1 I

The cases indicate unique combinations of types of genetic effects in an
individual and its parents. The indices comprise: i: number of genetic effects;
d: transmission ability of dam; s: transmission ability of sire; u: paternal
gamete of dam; v: maternal gamete of dam; p: paternal gamete of sire; and q:
maternal gamete of sire. For gametic effects (cases g-a and g-gg), an
individual’s paternal gamete is assumed. For a maternal gamete, the indices of
the genetic effects of the respective effects of the known parent are indexed in
the same manner as for a sire.
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c i ¼
1
2
ðci1 þ ci2Þ ¼

1
2
ðcip þ cimÞ;

i.e., c i is also the vector of average centered paternal and mater-
nal allele indicators. Consequently, a generalized genomic ga-
metic relationship matrix can be defined as:

Gg ¼ K0CC0K
1
s
¼ K0GgK;

where K0 is defined as above. The partition CuC0u of Gg can be
used to determine only the ordered genomic information of all
individuals with phenotypes, and thus, it is sufficient to estimate
the components of genetic variance in a parent-of-origin analy-
sis. It is possible to estimate all of the respective gametic effects
of these individuals. The entire matrix Gg represents the gametic
effects (as sire and dam) for all individuals, including those with
no phenotypes. By design, the generalized variant Gg is also ap-
propriate for parent-of-origin analyses and there are no other
requirements for K0 in the same manner as the pedigree-derived
counterpart. Thus, the general model for parent-of-origin analy-
ses is also applicable to genomic relationships provided that the
marker haplotypes of individuals with observations are ordered.

Example data in mice
The mouse line DUKs was maintained for 153 generations as a
control for a long-term growth selection experiment (Bünger et al.
1998) without any intentional selection conducted at the Leibniz-
Institute for Farm Animal Biology. Young DUKs mice were
weaned at 21 days of age, and up to five males and four females
from each litter were then further reared in two separate cages.
At an age of 42 days, the body mass (BM42) was measured for two
randomly selected males (BM42 varied from 9.33 g to 41.73 g, with
an average of 29.38 g). Randomly selected males and females
from about 50% of all litters formed each next generation. This
percentage varied from generation to generation due to random
fluctuations in the pregnancy rate. Males with a record for BM42
generally did not become a sire, but there were some exceptions
when excessively few other males were left in a litter. Therefore,
the vast majority (97.67%) of all 13,077 observations were
obtained from final progeny. The pedigree size, including all ani-
mals with phenotypes and their ancestors was 28,150 animals.
Founders were assigned to generation zero. Inbreeding increased
up to an average inbreeding coefficient of 0.62 in the last genera-
tion, with an average inbreeding coefficient of 0.40 over all gener-
ations. In total, 110 generations were included in data analyses
as fixed effects (because body weight was not recorded in every
generation) as well as 6648 uncorrelated random litter effects.
The genetic part of the model was alternatively covered by: (1)
breeding values in an animal model (AM); (2) a classical gametic
model (ICM); (3) a generalized gametic model (IGM); and (4) a reduced
version (IRM) of the IGM. The IGM comprised gametic effects only
for animals with phenotypes, and transmitting abilities for all
others. For the IRM, the underlying pedigree did not include all
phenotyped animals without offspring (12,772 in number),
thereby leaving only phenotyped parents (305 animals) and their
ancestors (15,378 animals). The imprinting models ICM, IGM, and
IRM considered genomic imprinting by design, and MCM, MGM,
and MRM, respectively, represented the null hypothesis of purely
Mendelian inheritance. Furthermore, additional maternal ga-
metic effects augmented the gametic models ICM and IGM to
separate them from possible imprinting effects. Inverse relation-
ships of all types were computed using our own Fortran program

and REML estimates of variance components were obtained with
the software packages ASReml version 4.1 (Gilmour et al. 2015)
and Echidna version 1.32 (Gilmour 2018). The R-packages
“pedigree” version 1.4 (Coster 2013) and “readxl” version 1.3.1
(Wickham et al. 2019) in R version 4.0.0 were used to prepare the
data. All data, command files, and output files are stored in the
RADAR repository. The significance of the imprinting variance
was tested by comparing the REML log-likelihood of each im-
printing model (ICM, IGM, and IRM) with the REML log-likelihood
outcome of the corresponding Mendelian model (MCM, MGM,
and MRM). An approximate RLRT with two degrees of freedom
was performed (Neugebauer et al. 2010a, 2010b). The existence of
maternal genetic variance was tested by comparing the REML
log-likelihood of an AM without maternal effect with the REML
log-likelihood of an AM with maternal effect. Detailed descrip-
tions of the data, methods, and results are presented in the
Supplementary Part S3.

Software and data availability
A collection of six worked toy examples is provided (Part S1 of the
Supplementary material provided at https://doi.org/10.25387/g3.
14046479) to illustrate the various gametic models with general-
ized gametic relationships. For each example, the R-code is explic-
itly presented and used to solve the corresponding mixed model
equations. The same examples are part of the detailed Guide to
Practical Implementation. We also demonstrate in detail how to im-
plement the various mixed models with generalized gametic rela-
tionships using the ASReml package. The Guide to Practical
Implementation is available via the RADAR repository (https://www.
doi.org/10.22000/284) and it also includes the source code of a pro-
gram for directly setting up the inverse of the generalized gametic
relationship matrix based on a pedigree file, a detailed program
description, and example input and output files.

Results
When nonimprinted Mendelian inheritance was assumed in our
mouse example (see Table 2, upper-left part), the classical gametic
model (MCM) used 56,300 gametic effects (100%) and the equiva-
lent animal model with a numerator relationship (AM) employed
exactly half of that number (28,150; 50%). The generalized gametic
model with two gametic effects per mouse with record and a sin-
gle transmitting ability for all others (MGM) was almost exactly
in between with 41,227 equations (73%). The number of equa-
tions decreased to only 15,683, i.e., 28% of the benchmark, when
all final progeny with trait values were represented through the
transmitting abilities of their parents (MRM). The corresponding
numbers of lower triangle nonzero elements in the inverse were
184,046 (100%) for the MCM and 92,023 (50%) for the AM. The
MGM had 103,125 nonzero elements in the lower triangle, which
was close to the AM (56%). Only half of that amount was needed
by the model with reduced observation equations (MRM), with
only 51,372 nonzero elements (28%). When the model allowed for
POEs, the absolute number of equations doubled for each model
variant (Table 2, upper-right part), and this also applied to the
number of saved equations, but their share was the same as that
with simple Mendelian inheritance.

It should be noted that the REML log-likelihood outcomes and
the genetic parameters were equal for the Mendelian models and
for the imprinting models. The reduced model versions (MRM,
IRM) yielded the same REML log-likelihood as the gametic and
generalized gametic versions, but with only a single iteration and
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identical (co-)variance parameters. The results differed when

analyses with adapted weightings were repeated until the REML
log-likelihood outcomes stabilized (Table 2).

Excluding maternal effects, the imprinting analyses yielded
significant imprinting variances with an RLRT of 46.06
(P¼ 9.96� 10�11 with DF ¼ 2) for the ICM and IGM, and an RLRT
of 38.74 (P¼ 3.87� 10�9 with DF ¼ 2) for the IRM. Using the ICM
and IGM, POEs explained 31.40% (69.40%) of the total genetic var-
iance and 17.52% (65.68%) of the phenotypic variance (Figure 1).

By applying the IRM, POEs explained 39.10% (68.30%) of the total

genetic variance (Table 2). Heritability estimates ranged from
55.80% (63.30%; ICM and IGM) to 66.60% (62.50%; IRM). All of the
estimated genetic parameters are shown in Table 2. Estimates of
the variance and covariance components are summarized in
Supplementary Table S3.2. Supplementary Figure S3.3 shows
that there was only slight genetic progress in BM42 with about 5 g
in 146 generations.

Neglecting imprinting effects (Mendelian inheritance), the ma-
ternal genetic variance was significant with an RLRT of 69.18
(P¼ 8.99� 10�17 with DF ¼ 1). Maternal genetic effects explained
12.70% (63.40%) of the phenotypic variation (Table 2; Figure 1).
Direct heritability decreased from 49.80% (63.00%) to 27.50%
(64.70%) when maternal effects were included (Figure 1).

Exceptionally slow convergence was observed when both ma-
ternal and imprinting effects were included in the model. The
log-likelihood improved little compared with the Mendelian
model that included a maternal genetic effect (Table 2), so the
imprinting variance was considered to be not significant (RLRT ¼
2.64; P¼ 0.45 with DF ¼ 3). By contrast, the maternal genetic vari-
ance was found to be significant compared with an imprinting
model without maternal genetic effects (RLRT ¼ 25.76;
P¼ 1.07� 10�5 with DF ¼ 3). The direct heritability (19.60%;
60.20%) and relative litter variance (18.80%; 60.90%) decreased
further when all types of POEs were considered, and an increase
in relative maternal variance (13.30%; 60.20%) was observed
(Table 2; Figure 1).

Discussion
The outlined generalization introduces elements of the reduced
imprinting model into the gametic model, and vice versa, to obtain
increased flexibility and substantial reductions in terms of the
number of equations. The latter is especially important for esti-
mating the components of variance (Shor et al. 2019). The matrix
G contains two limiting cases that set the boundaries for the ratio
of equations that can possibly be eliminated. The first is the

Table 2 Logarithmic values of the REML (LogL), overall number of random genetic effects (no. equa.), and total number of nonzero
elements (nonzero) in the lower triangle of the inverted variance–covariance matrix of random genetic effects

Nonimprinted Mendelian inheritance Imprinted inheritance

AM MCM MGM MRM ICM IGM IRM

LogL –17,891.870 –17,891.870 –17,891.870 –17,891.870a –17,868.840 –17,868.840 –17,868.840a

–17,894.640b –17,875.270b

no. equa. 28,150 56,300 41,227 15,683 112,600 82,454 31,366
non zero 92,023 184,046 103,125 51,372 184,046 103,125 51,372
h2 0.497 (60.030) 0.498 (60.030) 0.498 (60.030) 0.565 (60.025)b 0.558 (60.033) 0.558 (60.033) 0.666 (60.025)b

c2 0.275 (60.015) 0.275 (60.015) 0.275 (60.015) 0.248 (60.019)b 0.242 (60.017) 0.242 (60.017) 0.196 (60.020)b

i2 — — — — 0.314 (60.094) 0.314 (60.094) 0.391 (60.083)b

r — — — — 0.819 (60.123) 0.819 (60.123) 0.713 (60.102)b

mat. effect
LogL –17,857.280 –17,857.280 –17,857.280 — –17,855.960 –17,855.960 —
m2 0.127 (60.034) 0.127 (60.034) 0.127 (60.034) — 0.133 (60.002) 0.133 (60.002) —
h2 0.275 (60.047) 0.275 (60.047) 0.275 (60.047) — 0.196 (60.002) 0.196 (60.002) —
c2 0.206 (60.016) 0.206 (60.016) 0.206 (60.016) — 0.188 (60.009) 0.188 (60.009) —
i2 — — — — 0.256 (not es.) 0.256 (not es.) —
r — — — — 0.907 (not es.) 0.907 (not es.) —

Heritability (h2), relative litter variance (c2), relative imprinting variance (i2), and correlations between gametic parental effects (r) are provided with their standard
errors in brackets. LogL, relative maternal genetic variance (m2), h2, and c2 were also estimated with a model that included a maternal genetic effect (mat. effect).
AM, animal model; MCM, classical gametic model that assumes nonimprinted Mendelian inheritance; MGM, generalized gametic model that assumes
nonimprinted Mendelian inheritance; MRM, generalized reduced gametic model that assumes nonimprinted Mendelian inheritance; ICM, imprinting model with
classical gametic relationships; IGM, imprinting model with generalized gametic relationships; IRM, imprinting model with generalized reduced gametic
relationships.

a The number of iterations was fixed to one and weightings were calculated based on variance component estimates from the corresponding classical models
(MCM and ICM).

b Multiple runs were conducted with adapted weightings until LogL stabilized. Multiple iterations were allowed per run in order to reach convergence.
Not es. ¼ standard error could not be estimated.

Figure 1 Phenotypic variance of body mass measured in the DUKs
mouse line partitioned into the residual variance (gray), additive genetic
variance (purple), litter variance (yellow), maternal genetic variance
(green), Mendelian variance (blue), and imprinting variance (red). The
Mendelian variance was derived by subtracting the imprinting variance
from the (direct) additive genetic variance. The variance components
were estimated using a model assuming pure Mendelian inheritance
(Men), a model assuming Mendelian inheritance and maternal genetic
effects [Men (mat)], a model assuming the existence of genomic
imprinting but excluding maternal genetic effects (Imp), and a full model
that also includes maternal genetic effects [Imp (mat)]. Error bars
indicate standard errors. For the Imp (mat) model, the standard errors
could not be estimated for all components.
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classical gametic relationship matrix itself (dimensions of 2t � 2t)

when K0 is an identity matrix. The other limiting case is

K0 ¼ I� 1
2

1
2

� �
, such that G ¼ 1

2 A with dimensions of t� t.

Therefore, the reduction in the number of equations for genetic
effects can range from 0% to 50% compared with a classical ga-
metic model. However, the actual reduction depends on the spe-
cific details of each data set. Furthermore, a specific fraction of
individuals with records (i.e., with phenotypes) might have not
reproduced at all or not yet reproduced at the time of data recall,
i.e., they appear as final progeny, which allows them to be repre-
sented by reduced observational equations rather than having
their own gametic effects in the model. This may result in a reduc-
tion of even more than 50% of the full set of gametic equations.

In general, sex-specific traits such as the litter size, number of
eggs, or milk yield allow all males to be represented by their
transmitting abilities. Thus, the resulting number of equations is
considerably smaller compared with a trait commonly recorded
in both sexes. The family structure also has an effect, where it is
possible to save more equations with smaller groups of paternal
offspring if sires without their phenotype have transmitting abili-
ties as genetic effects. Furthermore, in imprinting analyses, it is
reasonable to add a high ratio of ancestors without phenotypes
to better reflect inbreeding and the relationships between genetic
effects as sire and dam. Thus, we can minimize the burden of ad-
ditional equations by estimating the transmitting abilities of
these ancestors rather than their gametic effects.

In certain cases, we could refrain from using reduced observa-
tional equations, which have the advantage that no weights are
required that depend on currently undetermined components of
the variance. This approach may be beneficial in Bayesian
approaches that employ Markov Chain Monte Carlo methods,
where the values of the components of variance change from it-
eration to iteration. By exploiting the flexibility of the generalized
approach, weights become obsolete by representing all individu-
als with phenotypes by two gametic effects, regardless of
whether they are final progeny. This helps to offset the computa-
tional burden due to repeated reweighting. In addition, we can in-
tegrate individuals without observations by single equations. In
previous REML estimations of the components of variance with
reduced imprinting models (Neugebauer et al. 2010a, 2010b;
Blunk et al. 2017a, 2017b), equal weights were used at the start
and later recalculated repeatedly until final convergence was
reached. For the mouse example data, this led to an REML log-
likelihood that was slightly below the actual maximum (Table 2)
under both Mendelian (MRM: –17,894.64 vs –17,891.87) and
imprinted inheritance (IRM: –17,875.27 vs –17,868.84). No similar
behavior was detected in the cited livestock studies, which may
be explained by the much higher degree of inbreeding in the
mouse line (up to about 60%).

Excluding this difficulty finding the maximum, all of the REML
log-likelihood values were identical (Table 2) if we assumed the
same underlying genetic model, irrespective of the equivalent
representations employed for the gametic relationships. The
same was clearly true for all of the estimated variance compo-
nents (Supplementary Table S3.2). Thus, our mouse example
data analyses technically reproduced all of the theoretically de-
rived model equivalences.

Among the DUKs mouse data, none of the dams had a trait
value, which can hinder the estimation of variance components
in the presence of maternal genetic effects (Heydarpour et al.
2008), and it probably explains the observed slow convergence

rate for the full model with three genetic effects. An imprinting
model variant with reduced observation equations (IRM) includ-
ing maternal genetic effects was not applied to the mouse data
set because the reduced imprinting model cannot separate the im-
printing variance from maternal genetic variance components
when both are present, as mentioned in the introduction and
proven in Appendix A4. A solution to this issue involves avoiding
reduced equations and explicitly representing individuals with
phenotypes based on their gametic effects in a model that also
includes maternal genetic effects. In principle, it should then be
possible to separate the gametic variances as sire and dam from
the maternal genetic variance (Appendix A5). However, in prac-
tice, limitations in the amount and structure of the data may hin-
der this approach, as also observed in a human genetic
epidemiological study (Blunk et al. 2020) and for Mendelian mod-
els (Heydarpour et al. 2008). Similar to maternal effects models,
other types of imprinting models may also include more than a
single genetic effect as sire and dam per individual, e.g., random
regression models or multitrait models. However, they are all
hindered by a large number of gametic equations, and thus they
benefit even more from generalized relationships.

No significant imprinting effects were found to affect the var-
iations in body mass in the DUKs mouse line, although imprint-
ing is known to have important functions in stem cells, neuronal
differentiation, and growth (Plasschaert and Bartolomei 2014). By
contrast, maternal effects seemed to play an important role,
which was expected because maternal genetic effects on body
mass traits in mice have been known for a long time (Hanrahan
and Eisen 1973). When maternal effects were neglected in the
analysis, direct heritability seemed to be overestimated, as shown
in Figure 1 for the Mendelian and the imprinting models.
Furthermore, when maternal effects were not considered, the im-
printing variance was inflated and the estimates were reduced
when maternal effects were included in the model (Figure 1). The
litter variance seemed to be largely unaffected by the inclusion of
POEs and it explained about a quarter of the phenotypic variance
(21–27%).

In applications where all v individuals with phenotypes plus
at least one preceding generation have measured genotypes and
the variance components need be estimated, it is sufficient to in-
clude only the subset of these v individuals with their genomic
covariance Ggvv. If the genetic effects of the u founders as sire
and dam are of interest, then either Gg or Gg is selected. An ex-
ample is an F2 line-cross experiment with phenotypes recorded
only in the F2 generation, where the genotypes of the F1 and P0

generations are only required for phasing and determining the
line origins of the markers.

To assess genomic imprinting effects, a two-step approach
was developed for the reduced imprinting model. In the first step,
imprinting effects (differences between transmitting abilities as
sires and dams) must be estimated for parents in pedigree-based
analyses. After de-regressing these estimates and using the corre-
sponding reliabilities, they can be employed as dependent varia-
bles in a genome-wide association study (Blunk et al. 2019) where
the marker genotypes of the parents can be unordered. Further
investigations are required to determine whether we can extend
this two-step approach to generalized gametic relationships,
which would require de-regressing the differences between ge-
netic effects of all types (both gametic effects and transmitting
abilities as sire and dam) in a similar manner, before they are
subjected to a genome scan.

Animal breeders frequently combine large pedigrees compris-
ing smaller cohorts of genotyped individuals. Certain individuals
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are then the first to be genotyped in their genealogy and one can

trace their pedigree further back. In contrast to their own

descendants, it is not possible to order the haplotypes of these

candidates, and thus, it is uncertain whether the first of two

unordered marker haplotypes matches the paternal gametic ef-

fect in a pedigree-derived gametic relationship matrix or the ma-

ternal one. Consequently, a combined relationship matrix cannot

be constructed that is suitable for parent-of-origin analyses. We

can solve this problem by collapsing gametic effects into trans-

mitting abilities in the genomic relationships as well as in the

pedigree-derived relationships. The generalized pedigree relation-

ships for all animals can then be combined with their matching

generalized genomic counterparts Gg for the genotyped cohort in

a manner that facilitates integration of unordered genomic infor-

mation. The available theory (Legarra et al. 2009; Christensen and

Lund 2010; Aguilar et al. 2010) can be used to combine pedigree-

derived relationships (G) and genomic relationships (Gg) into a

joint matrix, at least in the many cases where candidates with

unordered genotypes have no records, such as dairy bulls.
In conclusion, the generalized gametic relationship matrix

provides the necessary flexibility to adapt imprinting analyses to

specific computational and analytical requirements in many sit-

uations by using tailored versions of the general imprinting

model. The most important features of this method are the effec-

tive estimation of the imprinting variance in REML and Bayesian

approaches in case where the parents have records, the inclusion

of maternal genetic effects, and genomic relationships that inte-

grate ordered and unordered genomic information. Overall, these

new options are expected to stimulate systematic research into

the importance of POEs for the genetic variation in quantitative

traits in farm animals and other species.
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Appendix

Appendix A1: Equivalence of the classical
gametic model and generalized gametic model
where all individuals with phenotypes have
two gametic effects
Both models have the same expectation EðyÞ ¼ Xb
for the vector of observations y. The variance of
observations in the classical gametic model is
VarðyÞ ¼ Qc þ Ir2

e , where

Qc ¼ ½Zs Zd �
Gr2

s Grsd
Grsd Gr2

d

" #
Z0s
Z0d

� �
¼ ZsGZs

0r2
s þ ZsGZd

0rsd þ ZdGZs
0rsd þ ZdGZd

0r2
d

:

The first term can be rewritten as

ZsGZs
0 ¼ ½02u Zv

s �
Guu Guv

Guv
0 Gvv

� �
ð02uÞ0
ðZv

s Þ
0

" #
¼ Zv

s GvvZv
s
0:

Likewise,

ZsGZd
0 ¼ Zv

s GvvZv
d
0; ZdGZs

0 ¼ Zv
dGvvZv

s
0 and ZdGZd

0 ¼ Zv
dGvvZv

d
0:

Finally,

Q c ¼ Zv
s GvvZv

s
0r2

s þ Zv
s GvvZv

d
0rsd þ Zv

dGvvZv
s
0rsd þ Zv

dGvvZv
d
0r2

d:

In the generalized case, the variance of observa-
tions is

VarðyÞ ¼ Qg þ Ire
e

with

Qg ¼ ½ZsK ZdK � Gr2
s Grsd

Grsd Gr2
d

" #
K0Z0s
K0Z0d

� �
:

We use ZsK ¼ ½0u Zv
s � and ZdK ¼ ½0u Zv

d �, and
rewrite

ZsKGK0Zs
0 ¼ ½0u Zv

s �
1
2

Au Suv

Suv
0 Gvv

2
4

3
5 ð0uÞ0
ðZv

s Þ
0

� �
¼ Zv

s GvvZv
s
0:

In the same manner,

ZsKGK0Zd
0 ¼ Zv

s GvvZv
d
0; ZdKGK0Zs

0 ¼ Zv
dGvvZv

s
0;

and ZdKGK0Zd
0 ¼ Zv

dGvvZv
d
0:

We then obtain:

Qg ¼ Zv
s GvvZv

s
0r2

s þ Zv
s GvvZv

d
0rsd þ Zv

dGvvZv
s
0rsd þ Zv

dGvvZv
d
0r2

d ¼ Qc:

From Qg ¼ Qc, it follows that VarðyÞ is the same
in both models and they are equivalent.

Appendix A2: Equivalence of classical and
generalized gametic relationships in reduced
models
We consider a reduced model with classical ga-
metic relationships. With classical gametic rela-
tionships, all parents of the final progeny and their
ancestors have two gametic effects in the model
with covariance G. In the generalized case, the ga-
metic effects of u of them are collapsed into the
transmitting abilities, whereas the remaining v
individuals retain their gametic effects. For the
sake of generality, the latter group among an arbi-
trary choice of others includes all parents who
may have records. Parents with phenotypes need
to have gametic effects, whereas all other individu-
als may be modeled by gametic effects or transmit-
ting abilities. The final progeny have no genetic
effects of their own in the reduced model, so the
variance of the residuals Wr2

e is not affected by
relationships. With classical gametic relationships,
the variance of observations is:

VarðyÞ ¼ Qc þWr2
e ;

where

Q c ¼ ½Zs Zd �
Gr2

s Grsd
Grsd Gr2

d

" #
Z0s
Z0d

� �
:

The incidence matrix Zs for genetic effects can be
partitioned as Zs ¼ ½Z2u

s Zv
s �. There are two adjacent

columns per individual in the first partition, i.e.,

Z2u
s ¼ Zu

s �
1
2

1
2

� �
¼ Zu

s Iu �
1
2

1
2

� �� �
, where Zu

s is

the corresponding partition from the same type of in-
cidence matrix in the model with generalized gametic
relationships and Iu is a u � u identity matrix. It
should be noted that a multiplication with K cannot
applied for the conversion of the matrix ½Z2u

s Zv
s �

into ½Zu
s Zv

s � because Zv
s may have both entries of

single ones for records of parents and of pairs of one
half for records from final progeny. This also applies
in an analogous manner to Z2u

d and Zu
d.

The first component of Qc is:

ZsGZ0s ¼ Z2u
s Zv

s

h i Guur2
s Guvr2

s
Guvr2

s Gvvr2
s

� �
ðZ2u

s Þ
0

ðZv
s Þ
0

" #
¼

Z2u
s GuuðZ2u

s Þ
0r2

s þ Z2u
s GuvðZv

s Þ
0r2

s þ Zv
s G0uvðZ2u

s Þ
0r2

s þ Zv
s GvvðZv

s Þ
0r2

s ¼

Zu
s I� 1

2
1
2

� �� �
Guu I� 1

2
1
2

� �h i0
ðZu

s Þ
0r2

s þ Zu
s I� 1

2
1
2

� �� �
GuvðZv

s Þ
0r2

s þ Zv
s G0uv I� 1

2
1
2

� �h i0
ðZu

s Þ
0r2

s þ Zv
s GvvðZv

s Þ
0r2

s

¼ Zu
s

1
2

AðZu
s Þ
0r2

s þ Zu
s SuvðZv

s Þ
0r2

s þ Zv
s S0uvðZu

s Þ
0r2

s þ Zv
s GvvðZv

s Þ
0r2

s :

Similarly,
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ZsGZ0d ¼ ½Z2u
s Zv

s �
Guursd Guvrsd
Guvrsd Gvvrsd

� �
ðZ2u

d Þ
0

ðZv
dÞ
0

" #
¼

Zu
s

1
2

AðZu
s Þ
0rsd þ Zu

s SuvðZv
s Þ
0rsd þ Zv

s S0uvðZu
s Þ
0rsd þ Zv

s GvvðZv
s Þ
0rsd

and

ZdGZ0s ¼ ½Z2u
d Zv

s �
Guursd Guvrsd
Guvrsd Gvvrsd

� �
ðZ2u

s Þ
0

ðZv
s Þ
0

" #
¼

Zu
s

1
2

AðZu
s Þ
0rsd þ Zu

s SuvðZv
s Þ
0rsd þ Zv

s S0uvðZu
s Þ
0rsd þ Zv

s GvvðZv
s Þ
0rsd

and finally,

ZdGZ0d ¼ ½Z2u
d Zv

d �
Guur2

d Guvr2
d

Guvr2
d Gvvr2

d

" #
ðZ2u

d Þ
0

ðZv
dÞ
0

" #
¼

Zu
s

1
2

AðZu
s Þ
0r2

d þ Zu
s SuvðZv

s Þ
0r2

d þ Zv
s S0uvðZu

s Þ
0r2

d þ Zv
s GvvðZv

s Þ
0r2

d

:

Therefore, Qc can be summarized as:

Q c ¼ ½ ðZu
s Zv

s Þ ðZu
d Zv

d Þ �
r2

s rsd
rsd r2

s

� �

�
1
2

Auu Suv

Suv Gvv

2
4

3
5 ðZu

s Zv
s Þ
0

ðZu
d Zv

d Þ
0

� �
;

which is equal to the equivalent quantity Q r using
generalized gametic relationships:

Q r ¼ ½ ðZu
s Zv

s Þ ðZu
d Zv

d Þ �
Gr2

s Grsd
Grsd Gr2

d

" #
ðZu

s Zv
s Þ
0

ðZu
d Zv

d Þ
0

� �
:

Thus,

VarðyÞ ¼ Qc þWr2
e ¼ Q r þWr2

e ;q:e:d:

Appendix A3: Equivalence between the
model with gametic effects for all individuals
and the reduced model with gametic effects
for parents
We consider a classical gametic model that
includes a number f of final progeny. The vector g
is partitioned into two components, with the 2f ga-
metic effects of the final f progeny in gf and other
gametic effects in gg. Then, the covariance of g is:

VarðgÞ ¼ Var
gg
gf

" #
¼ Ggg Ggf

G0gf Gff

� �
¼ G:

The incidence matrices for gametic effects are:

Zall
s ¼

Zg
s1 0
0 Zf

s

" #
and Zall

d ¼
Zg

d1 0

0 Zf
d

" #
;

where Zg
s1 (Zg

d1) relates the observations to the ga-
metic effects as sire (as dam) of individuals that are
not in the set of the f final progeny. Accordingly, Zf

s

(Zf
d) relates observations of the f final progeny to

their respective gametic effects as sire (as dam).
By contrast, in a reduced model, all observations

of the f final progeny must be related to the ga-
metic effects as sire (as dam) of their parents. The
respective incidence matrices are:

Zred
s ¼

Zg
s1 0

Zg
s2 0

" #
and Zred

d ¼
Zg

d1 0
Zg

d2 0

" #
;

where Zred
s and Zred

d have only zero entries in their
columns for the gametic effects of final progeny.

The relationships between the incidence matri-
ces of the two types of models are:

Zred
s ¼

Zg
s1 0
0 Zf

s

" #
� 0 0
�Zg

s2 Zf
s

� �
¼ Zg

s1 0
Zg

s2 0

" #
¼ Zall

s � Zd
s :

The matrix Zd
s is the difference between Zall

s and Zred
s :

Zd
s ¼

0 0
�Zg

s2 Zf
s

� �
, and analogously Zd

d ¼ ½
0 0
�Zg

d2 Zf
d
�,

Zall
s ¼ Zred

s þ Zd
s ;

and

Zall
d ¼ Zred

d þ Zd
d:

To prove the equivalence of the two models, we
express the variance of observations VarðyÞ in terms
of model-specific incidence matrices and demon-
strate their equality by using the last two identities.

For any reduced observation equation, the var-
iances of the relevant Mendelian sampling effects
are part of the residual. For each paternal gamete
as sire of a final progeny, the Mendelian sampling
effect is the difference between the effect of the
paternal gamete and the transmitting ability of the
individual’s sire as sire. The respective vector is:

ms ¼ Zd
sgf ;

and the maternal counterpart as dam is:

md ¼ Zd
dgf :

The common covariance matrix is:

Var
ms

md

� �
¼ Zd

sGðZd
sÞ
0r2

s Zd
sGðZd

dÞ
0rsd

Zd
sGðZd

dÞ
0rsd Zd

dGðZd
dÞ
0r2

d

" #

¼ Zd
sGðZd

sÞ
0r2

s 0
0 Zd

dGðZd
dÞ
0r2

d

" #
:

The covariance between ms and md is zero be-
cause all rows of Zd

s have their nonzero entries at
places other than the rows of Zd

d, and thus, Zd
sGðZd

dÞ
0

is a matrix of zeroes.
In particular, the product is:
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Zd
sGðZd

dÞ
0 ¼ sum

�
zd

d;iðzd
s;jÞ
0 � G

�� 	
ij
¼ f0gij;

where � denotes element-wise multiplication, sum
() is the sum of all matrix elements in (), and ðzd

d;iÞ
0

and ðzd
s;jÞ
0 are the ith and jth rows of the two inci-

dence matrices involved, respectively.
The total VarðyÞ in the reduced model is:

VarðyÞ ¼ Qred þ VarðmsÞ þ VarðmdÞ þ Ir2
e ;

with

Qred ¼ ½Zred
s Zred

d �
r2

s rsd
rsd r2

d

" #
� G ðZred

s Þ
0

ðZred
d Þ
0

" #

¼ Zred
s GðZred

s Þ
0r2

s þ Zred
s GðZred

d Þ
0rsd þ Zred

d GðZred
s Þ

0rsd þ Zred
d GðZred

d Þ
0r2

d

:

In the classical gametic model, the variance of
observations VarðyÞ is:

Qall þ Ir2
e :

The first component is:

Qall ¼ ½Zall
s Zall

d �
r2

s rsd
rsd r2

d

" #
� G ðZall

s Þ
0

ðZall
d Þ
0

" #

¼ ½Zred
s þ Zd

s Zred
d þ Zd

d �
r2

s rsd
rsd r2

d

" #
� G ðZred

s þ Zd
sÞ
0

ðZred
d þ Zd

dÞ
0

" # :

This yields a total of 16 terms, where the first
four are:

¼ Zred
s GðZred

s Þ
0r2

s þ Zred
s GðZred

d Þ
0rsd þ Zred

d GðZred
s Þ

0rsd þ Zred
d GðZred

d Þ
0r2

d;

and this is equal to Q red in the reduced model. We
also have two more terms:

Zd
sGðZd

sÞ
0r2

s þ Zd
dGðZd

dÞ
0r2

d ;

which are equivalent to VarðmsÞ þ VarðmdÞ. The
remaining 10 terms in:

Zred
s GðZred

s Þ
0r2

s þ Zd
sGðZred

s Þ
0r2

sþ
Zred

s GðZd
dÞ
0rsd þ Zd

sGðZred
d Þ
0rsd þ Zd

sGðZd
dÞ
0rsdþ

Zred
d GðZd

sÞ
0rsd þ Zd

dGðZred
s Þ
0rsd þ Zd

dGðZd
sÞ
0rsdþ

Zred
d GðZred

d Þ
0r2

s þ Zd
dGðZred

d Þ
0r2

s

are all zero matrices. Thus, Qall ¼ Q red þ VarðmsÞþ
VarðmdÞ, and thus, the variance VarðyÞ is identical
in the classical gametic model and the reduced
model with gametic relationships. Both models
also have identical expectations of y, so they are
equivalent, q.e.d.

Appendix A4: Maternal genetic variance in a
reduced model
We consider a reduced equation for a single obser-
vation:

yi ¼ lþmd þ ad
d þ as

s þ ri:

This equation comprises the maternal breeding
value md of the dam d of individual i, as well as the
transmitting ability as dam ad

d of the dam d of i, the
transmitting ability as sire as

s of the sire s of i, and
the residual ri.

Then, the covariance of the respective vectors of
random genetic effects is:

Var
m
as

ad

2
4

3
5 ¼ r2

m rms rmd
rms r2

s rsd
rmd rsd r2

d

2
64

3
75� 1

2
A;

where r2
m is the maternal gametic variance. We

use 1
2 A as the relationship matrix (assuming that

all records are from final progeny), so the incidence
matrix for maternal breeding values needs to have
nonzero entries of two to match this set of cova-
riances.

The variance of observations has the nonresidual
component:

Q rm ¼ ½Zm Zs Zd �
r2

m rms rmd
rms r2

s rsd
rmd rsd r2

d

2
64

3
75� 1

2
A

Zm
0

Zs
0

Zd
0

2
4

3
5;

which includes the incidence matrices Zm, Zs, and
Zd that link observations to maternal genetic
effects, transmitting abilities as sire, and transmit-
ting abilities as dam, respectively. Q rm is a sum of
nine matrices and the following matrix equalities
can be found by dropping the respective compo-
nents of variance and replacing Zm by ~Zm ¼ 1

2 Zm:

~ZmA ~Z0m ¼ ZdAZ0d ¼ ~ZmAZ0d ¼ ZdA ~Z0m
~ZmAZ0s ¼ ZdAZ0s
ZsA ~Z0m ¼ ZsAZ0d

:

An underlying fact is that the incidence matrices
Zm and Zd link all observations to genetic effects of
the same animals, i.e., of the dam of each final
progeny. Thus, the incidence matrices 1

2 Zm ¼ Zd
are equal, and they constitute the equalities
according to the equations above. Consequently,
Q rm can be rewritten as:

Qrm ¼
1
2

ZmAZ0mr2
m þ ZdAZ0dr2

d þ ZmAZ0drmd þ ZdAZ0mrmd
ZmAZ0srms þ ZdAZ0srsd
ZsAZ0mrms þ ZsAZ0drsd

ZsAZ0sr2
s

2
6664

3
7775;

which is as follows in terms of the incidence matri-
ces of the reduced model without maternal genetic
effects:

Q rm ¼
1
2

ZdAZ0dðr2
d þ 4r2

m þ 4rmdÞ ZdAZ0sðrsd þ 2rmsÞ
ZsAZ0dðrsd þ 2rmsÞ ZsAZ0sr2

s

� �
:

Therefore, the variance in the transmitting ability
as dam and the covariance with the transmitting
ability as sire are contaminated by components of
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the maternal genetic (co-)variances. Thus, in the
presence of maternal genetic effects, r2

d and r2
s can-

not be inferred from the reduced model. Moreover,
we cannot correctly calculate the weights of the
observations because this would require knowledge
of these two components of variance.

Interestingly, we can assume the absence of geno-
mic imprinting and utilize r2

g ¼ r2
s ¼ r2

d ¼ rsd, and
thus the residual variance of observation i becomes:

1
2
ð1� Fs;iÞr2

g þ
1
2
ð1� Fd;iÞr2

g þ r2
e :

Consequently, the imprinting variance becomes:

r2
i ¼ ðr2

d þ 4r2
m þ 42rmd þ r2

s Þ � 2ðrsd þ 2rmsÞ ¼ 4r2
m:

Appendix A5: Maternal variance in a classical
gametic model
The model equation for a single observation yi in a
gametic model with maternal effects is:

yi ¼ lþ gm
d;1 þ gm

d;2 þ gs
i;1 þ gd

i;2 þ ei;

which includes the maternal effect (superscript m)
of the paternal (1) gamete gm

d;1 and the maternal (2)
gamete gm

d;2 of the dam d of individual i, while gs
i;1 is

the effect of the paternal gamete of individual i as
sire, gd

i;2 is the effect of the maternal allele of indi-
vidual i as dam, and ei is the residual. The covari-
ance of random gametic effects is:

Var
gm

gs

gd

2
4

3
5 ¼ r2

m rms rmd
rms r2

s rsd
rmd rsd r2

d

2
64

3
75� G:

The covariance of the vector of observations y is
V ¼ Qmm þ Ir2

e , with

Qmm ¼ ½Zm Zs Zd �
r2

m rms rmd
rms r2

s rsd
rmd rsd r2

d

2
64

3
75� G

Zm
0

Zs
0

Zd
0

2
4

3
5:

All other components of the covariance are as
defined above in Appendix A4.

Qmm is a sum of six matrices where three are related
to variances: ZmGZ0mr2

m, ZsGZ0sr2
s , and ZdGZ0dr2

d. The
other three contributions depend on covariances:
ZmGZ0srms þ ZsGZ0mrms, ZmGZ0drmd þ ZdGZ0mrmd,
and ZsGZ0drsd þ ZdGZ0srsd. In contrast to the reduced
model, the incidence matrices Zm and Zd relate the
records to different gametic effects, and thus they are
not equal. Therefore, all six addends of Qmm are line-
arly independent and all components of the variance
can be separated.
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