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Abstract

EGFR-antibodies are associated with significant skin toxicity, including acneiform rash and

folliculitis. It remains impossible to predict the occurrence of severe skin toxicity due to the

lack of predictive markers. Here, we present the first genome-wide association study

(GWAS) to find single nucleotide polymorphisms (SNPs) associated with EGFR inhibitor-

induced skin toxicity using data of the multicentre randomized phase III CAIRO2 trial (clini-

caltrials.gov NCT00208546). In this study, advanced or metastatic colorectal cancer

patients were treated with capecitabine, oxaliplatin and bevacizumab with or without cetuxi-

mab. Germline DNA was available in 282 of the 368 patients in the cetuximab arm. Mild skin

toxicity occurred in 195 patients (i.e. CTC grade 1 or 2, respectively 91 and 104 patients)

and severe skin toxicity (i.e. grade 3) in 36 patients. Grade 4 skin toxicity did not occur.

None of the SNPs reached the formal genome wide threshold for significance of 5x10-8,

though SNPs of at least 8 loci did show moderate association (p-value between 5x10-7 and

5x10-5) with the occurrence of grade 3 (severe) skin toxicity. These SNPs did not overlap

with SNPs associated with cetuximab efficacy as found in a previous GWAS in the same

CAIRO2 cohort. If formally proven by replication, the SNPs associated with severe EGFR

induced skin toxicity may be helpful to predict the occurrence and severity of skin toxicity in

patients that will receive cetuximab and allow for adequate information on the risk of skin

toxicity and prophylactic measurements.

Introduction

Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) are

proven to be active anti-tumor agents in colorectal cancer (CRC) and squamous cell carci-

noma of the head and neck (SCCHN), either alone or combined with chemo- and/or radio-

therapy. These antibodies, cetuximab and panitumumab, are associated with few (non-

haematological) adverse events, except for skin toxicity (acneiform rash and folliculitis) which
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may be significant[1, 2]. Various studies have aimed to find predictive markers to select

patients at risk for developing (severe) skin toxicity, as previously reviewed[3]. Among these

are studies exploring the predictive value of germline polymorphisms and mutations[4–7].

None of these markers are used in daily practice. However, these studies are hampered by the

fact that until now only candidate gene based approaches have been applied. This approach

has important limitations since the mechanism of EGFR inhibitor-induced skin toxicity is not

completely understood and candidate gene based studies focus only on mutations and genes

assumed to be involved by biological plausibility, such as EGFR polymorphisms[4] and EGFR

gene copy number variants[7]. A genome-wide approach allows identifying new and yet

unknown single nucleotide polymorphisms (SNPs) possibly leading to new insights on the

pathophysiology of EGFR inhibitor-induced skin toxicity. Indeed, GWAS approaches have

shown to be successful especially in finding genetic biomarkers for drug toxicity[8]. Establish-

ing advance identification of patients who are at risk of developing (severe) skin toxicity is of

value because it allows better information to individual patients on the expected (extent) of

side effects. Moreover, in case of an expected high risk for severe skin toxicity one might

choose to start prophylactic therapy such as a tetracycline derivative[9], since it is well known

that EGFR inhibitor-induced skin toxicity negatively influences quality of life[10]. Here we

present the first GWAS to identify SNPs associated with EGFR inhibitor-induced skin toxicity

using data of the multicenter randomized phase III CAIRO2 trial of the Dutch Colorectal Can-

cer Group (DCCG)[11]. The CAIRO2 trial is registered at clinicaltrials.gov (NCT00208546).

Methods

Patients

Germline DNA was obtained after written informed consent from patients participating in the

CAIRO2 trial and randomized to receive capecitabine, oxaliplatin and bevacizumab (CAPOX-B)

with or without cetuximab. The study was approved by the Committee on Research involving

Human Subjects Arnhem-Nijmegen (the Netherlands) and by all local institutional ethics boards.

All patients gave written informed consent. Cetuximab was administered intravenously with an

initial dose of 400mg/m2 followed by 250mg/m2 weekly, until progression of disease, unacceptable

toxicity or death, whichever occurred first. Inclusion criteria of the CAIRO2 trial are described in

detail elsewhere[11]. Briefly, the study included previously untreated patients with locally

advanced or metastasized colorectal cancer. Skin toxicity was graded according to the National

Cancer Institute Common Toxicity Criteria (NCI-CTC) version 3.0, and cetuximab-associated

skin toxicity was defined as any adverse cutaneous event other than hand-foot syndrome. Cetuxi-

mab-associated skin toxicity reported during the first nine weeks of the study was included in the

present analysis. This was chosen to do so to minimize the influence of antitumor efficacy on the

results, since responders have longer exposure to cetuximab and therefore have more chance

developing toxicity (the first CT response evaluation was done at 9 weeks). Moreover, skin toxicity

typically starts within the first 1–2 weeks after start of cetuximab [12], further supporting the

inclusion of data obtained during only the first 9 weeks of treatment.

For each patient, the worst grade of skin toxicity reported during the first nine weeks on

study was used in the current analysis. It was chosen to divide the study population into two

distinct phenotypes; patients with grade 3 (or higher) toxicity and patients with no or up to

grade 2 skin toxicity, based on the clinical relevance of grade 3 versus grade 1 and 2.

All analyses were corrected for gender and age effects. Information on race was not avail-

able from the CAIRO2 database. The CAIRO2 protocol did not describe how to prevent or

manage skin toxicity, as the available evidence of (pre-emptive) therapy was limited at that

time. Therefore, it was not feasible to correct for prescribed medication (for skin toxicity).
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Since this GWAS cohort was previously studied to find biomarkers for cetuximab efficacy

[13], it was possible to compare whether these cetuximab efficacy markers and the skin toxicity

biomarkers found in the present study were overlapping. Markers associated with toxicity but

not efficacy were considered to be most valuable, as these might identify patients at risk for

toxicity without modifying likelihood of efficacy.

Genotyping

Whole blood was collected at baseline and germline DNA was isolated from peripheral leuko-

cytes using MagnaPure Compact (Roche diagnostics, Almere, the Netherlands). Genotyping

was performed on Human OmniExpress v12 BeadChip arrays containing 733,202 markers

(Illumina, San Diego, CA, USA). Genotype calls were set using GenomeStudio software (Illu-

mina). The following cut-off values were used to filter out incorrectly called genotypes:

GenCall� 0.85; ClusterSep� 0.3; CallFreq >0.85; AB T-mean 0.2–0.8, resulting in the exclu-

sion of 3172 markers (0.43%).

Statistical analysis

In total, 584,109 markers entered the quality control. Plink version 1.07 was used for the qual-

ity control. Allele frequencies were filtered at 5%, excluding 3,071 markers (0.5%). No markers

failed further QC based on missingness of genotypes (cut-off set at 3%). Hardy-Weinberg

equilibrium (HWE) was evaluated per remaining marker using a χ2 goodness-of-fit statistic.

Markers were excluded based on a P-value with a cut-off P-value� 1.0−7. One marker failed

this test (0%). Based on these quality controls 581,037 markers remained in the analysis.

Quality control of persons was performed by missing data analysis (threshold at 2%) and gen-

der check. None of the individuals failed the quality control. Multi-dimensional scaling (MDS)

was performed in order to detect possible population stratification (MDS plot is added as a sup-

plemental graph). The sample was judged not to contain distinct clusters or outliers, such that no

individuals were excluded. Also MDS-coordinates had not to be used to correct for population

stratification. MDS analysis from plink was used for analysing population stratification. After

quality controls SNPs were imputed using software impute2 without pre-phasing using the ‘The

Genome of the Netherlands‘(GoNL) panel, which is the freely available panel that most closely

matches the study population (www.nlgenome.nl). In total, data was imputed to 5.830.976 SNPs.

We have analyzed genetic association using binary logistic regression, correcting for age

and sex. The outcome was coded as skin toxicity grade greater or equal to three against smaller

than three. We also evaluated a model contrasting skin toxicity grade greater or equal to two

versus smaller than two and an ordinal logistic regression for which skin toxicity was treated

as an ordinal outcome. For the latter two models no P-value was smaller than 10^-6 and results

are not shown.

Locations of SNPs were identified using data from the Hapmap project (www.hapmap.org)

and RegulomeDB (http://www.regulomedb.org/), expression of the genes harbouring the

SNPs was determined using GTEx (https://www.gtexportal.org/home/) and functions of genes

were determined using the NCBI Gene database (http://www.ncbi.nlm.nih.gov/gene).

The Cut-off value significance was set at 5x10-8 in this GWAS.

Results

Patient characteristics

Germline DNA was available from 282 of 368 patients receiving cetuximab. Baseline character-

istics of the patients are listed in Table 1 and are similar to the baseline characteristics of the
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complete study population included in the CAIRO 2 study. Median progression free survival

was 9.4 months (95% CI 8.4–10.5 months). Skin toxicity occurred in 231 patients (82%); 195

(69%) had mild skin toxicity (i.e. grade 1 or 2, respectively 91 and 104 patients) and 36 (13%)

had severe (i.e. grade 3) skin toxicity. Grade 4 skin toxicity did not occur. Various types of

medication used to treat EGFR inhibitor-induced skin toxicity were used, including antibiot-

ics, steroids and moisturizers. Both systemic and topical antibiotics were tetracyclines (mino-

cycline, doxycycline, tetracycline), macrolides (erythromycin, clarithromycin, clindamycin)

and metronidazole. It was not documented whether these agents were used pre-emptively or

reactively.

Genome-wide association (GWA) analysis

The Manhattan plot of the GWA analysis is shown in Fig 1. None of the SNPs reached the for-

mal threshold for genome wide significance. The inflation factor for this analysis was λ = 1.03,

suggesting that P-values were unbiased and confounding such as population stratification

were not a problem. Imputation using GoNL did not imply any new loci although the most

associated SNP was imputed. Table 2 shows the 10 SNPs with the lowest p-value. Two SNPs

per locus are reported; the one with the lowest p-value and the most associated SNP that had

not been imputed (reported as R2 = 1)–or one SNP in case an un-imputed SNP showed the

strongest association. Odds ratio was below 1 for the SNP with the highest p-value indicating a

protective effect of the minor allele. Four SNPs were located in a gene. To our knowledge none

of these genes have previously been reported to be related to EGFR inhibitor induced skin

toxicity.

Discussion

To the best of our knowledge this is the first GWAS on predictors for EGFR inhibitor induced

skin toxicity. Though none of the SNPs reached the formal threshold of genome wide signifi-

cance, all reported SNPs were moderately associated (i.e. p-value between 5x10-7 and 5x10-5)

[14, 15]. All of these SNPs showed relatively large effect sizes, owing to the fact that our study

was powered to detect only larger effect sizes. Such bigger effects have also reported in other

toxicity studies, lending plausibility to our findings.

Table 1. Baseline characteristics.

Overall Skin toxicity grade 0–2 Skin toxicity grade 3 p-value

Age–years 0.926�

Median 63 64 61

Range 33–80 33–80 41–79

Gender–n (%) 0.5355��

Male 183 (65) 157 (64) 26 (72)

Female 99 (35) 89 (36) 10 (28)

WHO performance score–n (%)

0 185 (66) 165 (67) 20 (56)

I 94 (33) 80 (32) 14 (39)

II 1 (<1) 1 (<1) -

Not reported 2 (<1) - 2 (5)

� One-way ANOVA

�� Pearson Chi-square test

https://doi.org/10.1371/journal.pone.0208080.t001
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Table 2. Moderate associated SNPs.

Marker Chromosome Position Allele frequency R2 Gene OR 95% CI p-value

rs12646351 4 146740625 0.20 0.95 ZNF827 0.04 0.01–0.33 2.47x10-7

rs17806780 4 146952104 0.20 1.00 ZNF827 0.04 0.01–0.35 3.42x10-7

rs7692430 4 66220697 0.19 0.97 EPHA5 4.57 2.46–8.49 4.39x10-7

2_3625175 2 3625175 0.25 0.96 - 0.14 0.05–0.39 1.04x10-6

rs10203413 2 3607053 0.25 1.00 RPS7 0.14 0.05–0.39 1.05x10-6

rs11183750 12 45803962 0.24 1.00 PCED1B 0.14 0.05–0.40 1.74x10-6

rs7012009 8 70753873 0.18 0.94 - 0.04 0.01–0.37 2.01x10-6

rs2422088 2 75251361 0.31 0.92 - 0.17 2.44–13.3 2.10x10-6

rs13155752 5 44680687 0.40 0.99 - 3.82 2.11–6.92 2.13x10-6

rs12522626 5 44685698 0.40 1.00 - 3.82 2.11–6.91 2.26x10-6

R2 corresponds to the ’info’ column computed by impute2 which can be interpreted as the squared correlation between true and imputed genotypes. Abbreviations: OR,

odds ratio; CI, confidence interval; ZNF827, zinc finger protein 827; EPH5, EPH receptor A5; RPS7, 40S ribosomal protein S7; PCED1B, PC-esterase domain-

containing protein 1.

https://doi.org/10.1371/journal.pone.0208080.t002

Fig 1. Manhattan plot.

https://doi.org/10.1371/journal.pone.0208080.g001
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A complicating aspect is that it is well known that the occurrence of skin toxicity is related

to EGFR inhibitor efficacy[16, 17]. However, since this relation is a statistical association rather

than a lab-confirmed causal mechanism one might expect that genetic markers associated with

skin toxicity and EGFR efficacy are not (fully) overlapping. Indeed, not all patients that experi-

ence EGFR induced skin toxicity are responsive to EGFR inhibitor therapy and also not all

responsive patients experience skin toxicity[17]. This cohort was previously used to study pre-

dictors for efficacy of cetuximab treatment [13], we had the unique possibility to see whether

the identified SNPs were also associated with efficacy. None of the 10 SNPs with the lowest p-

values showed overlap with the GWA analysis on predictors for efficacy. Therefore the SNPs

reported in this study seem to be exclusively associated with toxicity and may be useful for pre-

dicting the occurrence of severe skin toxicity in individual patients receiving cetuximab, inde-

pendently of anti-tumor efficacy.

The odds ratios of 6 of the 10 SNPs with the lowest p-values were below 1, indicating a pro-

tective effect of the minor allele. One of these SNPs (rs10203413) is located on a gene encoding

for 40S ribosomal protein S7 (RPS7). This protein has not been linked to EGFR-inhibiting

agents before. However, mitochondrial RPS7 is overexpressed in dermal papilla cells with high

tendency of aggregation, which produce growth factors stimulating proliferation of follicular

epithelium[18]. EGFR inhibitor-induced skin toxicity is typically most distinct in the sebor-

rhoeic areas of the skin. We hypothesize that this SNP leads to decreased activity of RPS7 and

thereby decreased follicular proliferation, thereby leading to lower susceptibility to EGFR

inhibitor-induced skin toxicity.

One group of SNPs is located on a gene encoding zinc finger protein 827 (ZNF827;

rs17806780). The function of this gene is yet unknown and it has not been related to EGFR-

inhibiting agents or dermal cells before and expression in skin tissue is average compared to

other organs. Zinc finger proteins are small protein domains characterized by the presence of

one or more zinc ion to stabilize their structure. There is a broad variance in structure of these

proteins and they contribute to a variety of cellular processes, including cell signalling, prolif-

eration and apoptosis. This gene is close to (among others) SMAD1, a gene active in the bone

morphogenic protein-7-phosphorylated Smad1, -5, -8 (BMP7-p-Smad1/5/8) pathyway. This

pathway is mainly known for its role in osteosynthesis however it has been described to be

involved in cetuximab resistance in oral squamous cell carcinomas[19]. While there was no

overlap with the GWA analysis on predictors for efficacy [13], it could well explain a relation

with EGFR inhibitor induced skin toxicity since this type of toxicity is related to anti-tumor

efficacy. Another group of SNPs (top SNP rs7692430) is located on EPH receptor A5

(EPHA5). This gene belongs to the ephrin subfamily of the tyrosine kinase receptor family,

and is involved in various developmental processes including oncogenesis[20]. It has however

never been linked to EGFR-inhibiting agents or any form of skin toxicity before and expres-

sion in skin tissue is low. As for neighbouring genes of EPHA5, none of them have been

described to be related to follicular proliferation of other processes in skin tissue. Hypothesiz-

ing on relation of these genes to EGFR inhibitor-induced skin toxicity remains complicated,

since the exact pathophysiology of EGFR inhibitor-induced skin toxicity is still not fully

elucidated.

As previously discussed, age, performance status and race might be associated with the

occurrence of (severe) skin toxicity, although studies remain inconclusive so far[3]. Patients

with grade 0–2 and grade 3 skin toxicity had comparable age and performance score, as shown

in Table 1. Information on race was not available from the original CAIRO2 database, however

when using the information of multi-dimensional scaling (MDS) analysis it is possible to pre-

dict (diversity of) ethnicity of the cohort. Inspection of the plots of MDS-coordinates in combi-

nation with a low inflation factor seems to exclude the presence of several different ethnicities
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in our sample. As this was a Dutch study we presume that almost all patients were Caucasian

(though there might me some variation due to the multi-ethnic composition of the population

in the Netherlands). Furthermore, it we decided not to correct for medication used for skin

toxicity. The original database of the CAIRO2 did not contain information on whether these

medications were used preventive or reactive. However, since little was published about effec-

tive prevention of EGFR inhibitor-induced skin toxicity at time of the CAIRO2 study and this

was not in the guidelines, it is highly unlikely that accurate prevention took place. If our results

were confounded by medication we would expect our results to be diluted by individuals with

lower skin-toxicity that should have really been reported as grade 3 patients, thereby making

our results conservative.

The CAIRO2 study specified to use NCI CTC version 3.0, grading skin toxicity based on

the need of therapy (grade 1 versus 2) and the presence of symptoms such as pain, disfigure-

ment or ulceration (grade 3). The cohort was divided into two distinct phenotypes; patients

with grade 3 (or higher) toxicity and patients with no or up to grade 2 skin toxicity It was cho-

sen to do so since the occurrence of grade 3 toxicity is of significant clinical relevance; toxicity

of this severance might interfere with anti-tumor efficacy due to the need for dose reductions,

dose delays and, in some cases, even permanent discontinuation of the EGFR inhibitor. Nowa-

days, version 4.0 is being used, grading acneiform rash by the percentage of body surface area

(BSA) affected, the need for oral of systemic antibiotics and the impact on activities of daily liv-

ing (ADL). This newer approach lends towards a more strict classification of skin toxicity.

Nonetheless, the grading system of version 3.0 was sufficient to divide the current cohort into

two distinct phenotypes, identifying a group of patients with clinically significant toxicity.

Notably, 19% of this cohort did not experience any skin toxicity at all. However, we have previ-

ously demonstrated that up to 24% of patients treated with cetuximab (either alone or in com-

bination with chemotherapy) remain free from skin toxicity[3].

Finding an identical population for replication of these results is hampered by the fact that

the CAIRO 2 study showed inferior survival patients receiving the combination of cetuximab

and bevacizumab, and this schedule has not been used since. Nonetheless, as it is unlikely that

the addition of bevacizumab influences EGFR inhibitor–induced skin toxicity, a cohort treated

with a comparable treatment schedule except for not receiving bevacizumab seems appropri-

ate. The choice of the genetic model is another consideration in this (and other) GWA studies.

It is conceivable that especially recessive effects, i.e. effects due to absence of two functional

alleles, might play a role in side effect studies. For SNPs in linkage disequilibrium (LD) with

such causal sites the apparent genetic model would move towards an additive model with

decreasing LD [21]. We believe that using dense, imputed genotypes makes it unlikely that we

missed important findings. However, we plan to investigate different disease models in future,

exploratory work.

While the end goal of studying the association of SNP markers with toxicity is establishing

a prediction model, the lack of significant findings in our study precludes that goal. We have

avoided the construction of a prediction model in the absence of significant findings to avoid

over-optimistic interpretation. The putative associations reported here might still be used in

meta-analyses, guide research for associations in new studies, and might suggest biological

functions though database searches. In conclusion, at least 8 loci were shown to be moderately

associated with EGFR inhibitor induced severe skin toxicity and none were associated with

anti-tumor efficacy. For most of these loci we were able to find a plausible biological rationale

for their relationship with skin toxicity of EGFR inhibition. The effect sizes were relatively

high. Though routine testing for those SNPs might not be part of routine practice in the near

future, if replicated, these results will lead to new insight and future research on the most opti-

mal risk stratification strategy.
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S1 Fig. Scatterplot of the first two genetic principal components.
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