
sensors

Article

A Hadoop-Based Platform for Patient Classification
and Disease Diagnosis in Healthcare Applications

Hassan Harb 1,2,* , Hussein Mroue 3, Ali Mansour 2, Abbass Nasser 1,2 and Eduardo Motta Cruz 3

1 ICCS-Lab, American University of Culture and Education (AUCE), Beirut 1105, Lebanon;
abbassnasser@auce.edu.lb

2 Lab-STICC, CNRS UMR 6285, Ensta-Bretagne, 29200 Brest, France; mansour@ieee.org
3 Institute of Electronics and Telecommunications of Rennes, University of Nantes, CNRS, IETR UMRS 6164,

85000 La Roche-sur-Yon, France; hussein.mroue@univ-nantes.fr (H.M.);
Eduardo.Mottacruz@univ-nantes.fr (E.M.C.)

* Correspondence: hassanharb@auce.edu.lb

Received: 18 February 2020; Accepted: 25 March 2020; Published: 30 March 2020

Abstract: Nowadays, the increasing number of patients accompanied with the emergence of new
symptoms and diseases makes heath monitoring and assessment a complicated task for medical staff
and hospitals. Indeed, the processing of big and heterogeneous data collected by biomedical sensors
along with the need of patients’ classification and disease diagnosis become major challenges for
several health-based sensing applications. Thus, the combination between remote sensing devices
and the big data technologies have been proven as an efficient and low cost solution for healthcare
applications. In this paper, we propose a robust big data analytics platform for real time patient
monitoring and decision making to help both hospital and medical staff. The proposed platform relies
on big data technologies and data analysis techniques and consists of four layers: real time patient
monitoring, real time decision and data storage, patient classification and disease diagnosis, and
data retrieval and visualization. To evaluate the performance of our platform, we implemented our
platform based on the Hadoop ecosystem and we applied the proposed algorithms over real health
data. The obtained results show the effectiveness of our platform in terms of efficiently performing
patient classification and disease diagnosis in healthcare applications.

Keywords: healthcare applications; hadoop platform; patient classification; disease diagnosis;
SK-means; association mining rules

1. Introduction

Today, the world faces an increasing number of diseases and patients. In addition, wars,
pollution, food-related illness, and human–animal relationships cause the emergence and propagation
of new types of diseases and viruses. Subsequently, with the emergence of an unknown disease, the
governments face two major challenges: first, medical centers require more and more qualified staff
in order to periodically monitor each patient and quickly act when an emergency state is detected.
Second, the correct diagnosis of the patient’s state and the progress of his situation are critical for
medical staff. Recently, the “Coronavirus” propagated in China has threatened millions of people and
the government was obliged to quickly build hospitals and increase the number of medical workers.
Furthermore, integrating new technologies in healthcare has became an essential task in order to
make hospitals more efficient in terms of monitoring and analyzing patient data, thus enhancing
medical processes.

Recently, the emergence of sensing-based devices, especially wireless sensor network (WSN) and
Internet of Things (IoT), and big data technologies, such as Hadoop ecosystem, lead to a new revolution
in healthcare. Basically, the sensing-based healthcare consists of a set of biomedical sensors that allows

Sensors 2020, 20, 1931; doi:10.3390/s20071931 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3066-9189
http://dx.doi.org/10.3390/s20071931
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 1931 2 of 20

continuously monitoring the vital signs (e.g., heart rate, respiration rate, oxygen rate, temperature,
blood pressure, etc.) of a patient and periodically transmit the collected data to a coordinator for
further inspection. Smart technologies have opened up a world of applications in disease diagnostic
and treatment such as for cancer, glucose monitoring, depression, Parkinson’s disease, connected
contact lenses, etc. Furthermore, this has been a big motivation for healthcare organizations to heavily
invest in big data analytics.

However, sensing-based healthcare applications are still challenging the scientific community
due to:

• Big data collection and storage: Biosensors continuously record vital signs of patients, usually
per second, and then they send their records toward data storage center. This type of data has
three characteristics: (1) massive data collection; (2) high speed generation; and (3) heterogeneous
nature. Unfortunately, the relational database management systems and the traditional data
storage technologies cannot handle such type and amount of data.

• Rapid emergency detection: Usually, a normal health range is defined for each vital sign. Records
outside this range lead to an abnormal situation which should be quickly detected and reported
to the medical staff in order to take suitable actions. Hence, rapid emergency detection is a crucial
event that can be a threat to patient safety or even life.

• Disease diagnosis and patients’ classification: In health applications, several diseases may generate
similar symptoms. Hence, disease diagnosis is susceptible to human error which may provoke
disabilities or death. Therefore, developing new techniques and algorithms in order to study,
on the one hand, the correlation between symptoms and, on the other hand, classify patients
according to their situations can help in making the right decision.

To overcome the above challenges, we propose an efficient and robust big data analytical
platform for real-time sensing-based healthcare applications. The proposed platform relies on big data
technologies, specifically Hadoop ecosystems, and it uses data analytical techniques for data analysis
and classification. In addition, our platform consists of four layers: real time patient monitoring, real
time decision and data storage, patient classification and disease diagnosis, and data retrieval and
visualization. We conducted a set of scenarios and simulations on real health data in order to show the
relevance of our platform.

The remainder of this paper is organized as follows. Section 2 presents an overview on various
existing systems in the literature. In Section 3, we introduce the architecture of our proposed platform.
Sections 4–7 detail tools and proposed algorithms in each layer, respectively. Section 8 describes the
implementation of our platform and explains the obtained results. Finally, Section 9 concludes the
paper and gives our directions for future work.

2. Related Work

Recently, remote sensing and Hadoop ecosystem have produced efficient and low cost solutions in
various domains, especially in healthcare applications. On the one hand, sensing devices help doctors
and nurses to remotely, in-hospital or in-home, monitor patients and allow a real-time detection of
urgent situations. On the other hand, Hadoop-based tools offer an efficient and rapid data storage
and processing platforms for hospitals, especially in specific scenarios such as war or global virus
contamination. Therefore, researchers have proposed various healthcare systems based on remote
sensing and Hadoop dedicated to disease diagnosis, emergency detection, patient classification,
etc. [1–3]. In [4,5], the authors gave an overview on different data analytical algorithms and big data
platforms proposed in the literature for healthcare applications.

Some works in sensing-based healthcare are focused on reducing big data collection using
aggregation, compression, and prediction methods [6–12]. The authors of [6] proposed the
Priority-based Compressed Data Aggregation (PCDA) technique to reduce the amount of heath data
transmitted. PCDA uses a compressed sensing approach followed by a cryptographic hash algorithm

Sensors 2020, 20, 1931 3 of 20

to save information accuracy before sending data for any diagnosis. The authors of [7] proposed a data
reduction technique dedicated to wireless seizure systems. In addition to local compressive sensing,
the proposed technique selects a set of features, specifically those with nonlinear autocorrelation, to
reduce the seizure signals sent to the data server. In [8], a cloud-based connected healthcare system,
called BigReduce, is proposed. The objective of BigReduce is to minimize the data processing cost at
the base station according to two schemes applied locally at the IoT sensors: reduction and decision
schemes. Finally, the authors of [9] proposed a fault tolerance and data recovery algorithm in order
to ensure the integrity of heath information and save the network energy. The proposed algorithm
works in a distributed manner and it maintains a set of active nodes where each one copies its data to
its neighbors according to several assumptions.

Other works in sensing-based healthcare are based on Hadoop ecosystems in order to efficiency
managing data collected in such network [13–18]. The authors of [13] proposed a storage and
processing architecture based on MapReduce and HBase, respectively. First, data generated by
health sensors are inserted into HBase using a mass insertion script, and then a data analysis algorithm
is proposed in order to retrieve valuable data and help in predicting disease. In [14], the authors
proposed a Hadoop-based framework in order to secure the transmitted data from biosensors to the
server. The proposed framework relies on three main pillars: The Hadoop clusters for storing, backing
up, and recovering data; a digital signature method, called ECC (Elliptic Curve Cryptography), which
is implemented in Sunspot nodes in order to secure communication; and the Sqoop tool, which is
used to import and export data between Mysql and Hadoop HDFS. In [15], a modern platform for
healthcare information systems consisting of three layers is proposed. The first layer is composed
of various data health sources such as sensors, clinical report, medication, etc. The second layer
aims to process and store data and it uses various Hadoop tools including Sqoop, HDFS, HBase,
MapReduce. and Hive. The last layer is responsible for applying business intelligence (BI) solutions
over the stored data and it uses SpagoBI tools as an open source BI suite. Lastly, the authors of [16]
proposed a correlation-based outlier detection platform, relying on Hadoop, to handle streaming of
data generated in health applications. The objective of the platform is to search statistical relationships
among biosensors, and then, in a later step, to predict contextual anomalies using an aggregated
outlier checker.

Recently, the authors of [19–22] opened a new trend in sensing-based healthcare by proposing
several frameworks for real-time patient monitoring and assessment. In [19], a framework for stress
detection and evaluation is proposed. The framework works by detecting first stress signals according
to skin conductance parameter, and then the stress level is evaluated through fuzzy inference system
based on patient vital signs, particularly heart rate, respiration rate, and average blood pressure. In a
later work [20], the authors proposed a data management framework for data collection and decision
making in sensing-based healthcare. The framework relies on three algorithms: first, an emergency
detection algorithm aims to send critical records directly to the coordinator; second, an adaptive
sampling rate algorithm based on ANOVA (ANalysis of Variance) and Fisher test allows each sensor
to adapt its sampling to the variation of patient situation; and third, a data fusion and decision making
model is proposed to the coordinator based on decision matrix and fuzzy set theory. Despite its great
advantages for patient monitoring and assessment, the proposed framework suffers from several
disadvantages: (1) sensors only send critical records to the coordinator, thus medical staff cannot avoid
patients entering dangerous situations before this happens; (2) in case of low critical patients, none of
the data would be archived in the hospital, thus revising patient archives to check patient progress
from doctors is not possible; and (3) integrating new data technologies, such as Hadoop, in order to
handle big data collected by biosensors is not considered in the proposed framework. To the best
of our knowledge, our proposed platform is still the only complete system that integrates both data
analytics and Hadoop ecosystems. In addition, it consists of a sequence of layers aiming to tackle other
problems related to patient classification and disease diagnosis. Finally, it combines several approaches
such as machine learning, data mining, clustering, classification, etc.

Sensors 2020, 20, 1931 4 of 20

3. Overview about the Architecture of Our Platform

In this section, we present an overview of the different tools and techniques forming the
architecture of our platform. Mainly, our system relies on Hadoop ecosystems, which are built on
clusters using parallel computing. On the one hand, the cluster architecture ensures a high scalability
and reliability of the collected data as well as a fast and huge data storage. On the other hand, the
parallel computing ensures a rapid data processing and analysis, especially when the volume of data
becomes huge. Furthermore, the architecture of our platform consists of four layers, which allow an
entire data analysis process for patients in hospitals, starting from patient data collection and ending
with patients’ classification and decision making. Subsequently, each layer performs batch and/or
real-time processing. In batch mode, data are first stored in cluster nodes and then processed, while, in
real-time mode, data are processed upon collection and before storing. These two processing modes
provide a high efficiency in terms of applying any desired techniques (machine learning, artificial
intelligence, data mining, etc.) over the collected data.

Figure 1 presents the architecture of our platform with all layers, which are briefly introduced
as follows:

• Real time patient monitoring: This layer consists of data sources and data ingestion tools. Data
sources are the active biosensors which allow continuously monitoring a patient and send data
in real-time toward the data storage via data ingestion tools. In addition, data sources could be
an archive of patients’ records which is already built by the hospital, mostly based on relational
database system, and should also be sent toward the data storage center. We use two ingestion
tools, namely kafka [23] and sqoop [24], to process and store streaming of data coming from
different data sources.

• Real time data decision and data storage: This layer uses Spark [25] and Hadoop HDFS (Hadoop
Distributed File System) [26] to process and store data, respectively. After installing it on the
master cluster node, Spark receives data coming from Kafka and applies two algorithms: the first
one allows detecting emergency situations and then taking the right action by the medical staff
and the other searches for missing records before sending the final data to the HDFS for storage.
Subsequently, data are stored in three Hadoop nodes according to HDFS cluster computing.

• Patient classification and disease diagnosis: This layer uses batch mode processing and aims
to classify and find the correlation after data storing. Two algorithms are proposed: The first
one uses an adapted version of Kmeans [27] clustering and aims to find patients with similar
situations. The second one uses the data mining approach to allow better understanding when
diagnosing any disease.

• Data retrieval and visualization: This layer allows medical staff to retrieve patient data from the
data storage and then to visualize them in order to analyze and understand the patient’s situation.
We use two tools from the Hadoop ecosystems (Hive [28] and SparkSQL [25]) and Matplotlib [29]
from Python.

B
IO

S
E

N
S

O
R

S
 F

O
R

 V
IT

A
L

 S
IG

N
S

R
E

L
A

T
IO

N
A

L
 D

B

D
A

T
A

 I
N

G
E

S
T

IO
N

KAFKA D
A

T
A

 P
R

O
C

E
S

S
IN

G

 Emergency detection

and clinical response

 Patient archiving

LAYER 2 ALGORITHMS

D
A

T
A

 S
T

O
R

A
G

E

 Patients’ classification

 Disease diagnosis

LAYER 3 ALGORITHMS

D
A

T
A

 R
E

T
R

E
IV

E
L

 &
 P

R
E

S
E

N
T

A
T

IO
N

LAYER 1: REAL TIME PATIENT MONITORING LAYER 2: REAL TIME DECISION AND DATA STORAGE
LAYER 3: PATIENT CLASSIFICATION

AND DISEASE DIAGNOSIS

LAYER 4: DATA RETRIEVAL

AND VISUALIZATION

Periodic collection

Figure 1. Architecture of our platform.

Sensors 2020, 20, 1931 5 of 20

4. Layer 1: Real Time Patient Monitoring

Data collection is the first step in the healthcare lifecycle. The first layer aims to collect data
coming from various data sources and sending them for a later storing. Mainly, it consists of data
sources, Kafka, and Sqoop tools. In the following, we detail them.

4.1. Data Sources

In health applications, data collection is usually done through small biosensors implemented
on the patient’s body in order to collect his vital signs. Subsequently, the vital signs of a patient
include Heart Rate (HR), Systolic Blood Pressure (SBP), Respiration Rate (RR), Oxygen Saturations
(OS), Body Temperature (BT), etc. Assume a set P of F patients as follows: P = [P1, P2, . . . , PF]
where each patient p ∈ P is assigned various types of biosensors to a set V of vital signs, e.g.,
V = [HR, SBP, RR, OS, BT, . . .] with T indicating the number of observed vital signs in V. For analysis
purposes, we assumed that the set of biosensors Bp

V , assigned to the patient p, periodically monitor the
vital signs and then send the set of collected records tR

p
V at period t, where tR

p
V = [r1, r2, . . . , rT] and ri

is the collected reading of the vital sign vi ∈ V, toward the coordinator.
Nowadays, saving an archive for patient vital signs during their hospitalization is a procedure in

all hospitals. Indeed, Relational Datadase (RDB) is the most preferred archiving system for almost of
them due to its simplicity and flexibility. Hence, to make it more efficient, our platform uses Sqoop
(as explained in (Section 4.3) to allow hospitals to insert their old archives into Hadoop cluster nodes.
However, unlike biosensors, which operate in real-time mode, Sqoop processes patient archives in
batch mode.

4.2. Kafka

Kafka [23] is an open-source data ingestion tool used to handle massive real-time data. Today, it
is used in many applications such as real-time monitoring of British gas smart home, matching driver
and passenger at Uber, etc. Among other data ingestion tools, the selection of Kafka is motivated by:
(1) its high horizontal scalability (up to hundreds of server nodes); (2) it can read data directly from the
biosensors; (3) it decreases latency much than other tools; and (4) it is easy to be implemented and
used thanks to built-in libraries in Python.

Generally, Kafka is based on the concept of “topics” and data are stored in the form of key-values.
In our platform, we installed Kafka on the master cluster node (called broker) and we create a topic,
named “Col2Proc”, allowing to read streaming data from biosensors then send them to further
processing (e.g., Spark tool).

4.3. Sqoop

Sqoop [24] is a command line interface application used to transfer data between relational
databases (RDB) and Hadoop nodes. Import and Export Sqoop are the major operations in Sqoop and
used to transfer data from RDB to Hadoop and vice versa, respectively. In our platform, Sqoop is used
in allow medical administrators to directly integrate their patients’ archive, supposed to be built with
RDB, into Hadoop cluster nodes without any further processing operation. This service makes our
platform more efficient and attractive for hospitals.

5. Layer 2: Real Time Data Decision and Data Storage

In this section, we introduce the second layer used in our platform, which is responsible for data
processing and storing. This layer mainly relies on two tools, namely Apache Spark and Hadoop
HDFS system, as well as it proposes two data processing algorithms: emergency detection and clinical
response, and patient archiving.

Sensors 2020, 20, 1931 6 of 20

5.1. Apache Spark

Spark [25] is an open-source cluster computing platform which is widely used for data processing
in Hadoop ecosystems. In our framework, Spark is selected among other existing tools due to three
major characteristics required in sensing-based healthcare: first, it supports both batch and streaming
processing which are necessary to apply various data analytical algorithms; second, it ensures a lower
latency level than other tools such as MapReduce, which is strongly required in health applications;
and third it guarantees scalability to any number of cluster nodes required for the health application
requirements. Therefore, in our platform, we implemented Spark on the master cluster node in order
to receive data streaming from Kafka, perform processing, and send data to the Hadoop HDFS for
storing purpose. Subsequently, data processing is done via two created scripts, one for the real time
decision and other for patient archiving (explained below).

5.2. Hadoop HDFS

Hadoop HDFS [26] It is a distributed file system that stores data across a set of machines, known
as cluster nodes. Hadoop HDFS splits received data into blocks, and then it distributes across the
nodes. Generally, it is characterized by two aspects: First, it ensures high data reliability thanks to
the replication process of data into nodes (at least three). This aspect is very useful in sensing-based
healthcare so patient archives will never be lost if any hardware failure occurs. Second, data in Hadoop
HDFS are treated in parallel computing so a high data retrieval process is ensured, which is necessary
for heath application especially in emergency cases. In our platform, we created three cluster nodes
while implementing Hadoop HDFS on each of them to store patient records in HDFS files.

5.3. Emergency Detection and Clinical Response Algorithm

After receiving periodic data sent from all biosensors, the coordinator should analyze them in
real time and alert the medical staff in case of a patient emergency detection. In the second layer of
our platform, we introduce an emergency detection algorithm that allows alerting in any abnormal
situation of the patient as well as it determines the appropriate response the should be taken by the
medical staff. To verify abnormal situations, let us first define the Early Warning Score (EWS) guide.

EWS is a guide based on the vital signs, e.g., V, and it is used by the medical staff within a hospital
to track the criticality level of a patient. For each vital sign v ∈ V, the collected record ri ∈ tR

p
V is

compared to a normal range in order to calculate a score si between 0 and 3; 0 means normal record
where other values indicate abnormal situations with increasing severity as the score increases. Hence,
a set of record scores tS

p
V = [s1, s2, . . . , sT] is calculated for tR

p
V . In Figure 2, we show one of the most

used EWS guides that is developed in UK and distributed around all the world, called National EWS
(NEWS) [30].

Sensors 2020, 20, 1931 7 of 20

PHYSIOLOGICA

L PARAMETERS 3 2 1 0 1 2 3

Repiration Rate ≤ 8 9 - 11 12 - 20 21 - 24 ≥ 25

Oxygen

Saturations
≤ 91 92 - 93 94 - 95 ≥ 96

Any Supplemental

Oxygen
Yes No

Temperature ≤ 35.0 35.1 - 36.0 36.1 - 38.0 38.1 - 39.0 ≥ 39.1

Systolic BP ≤ 90 91 - 100 101 - 110 111 - 219 ≥ 220

Heart Rate ≤ 40 41 - 50 51 - 90 91- 110 111 - 130 ≥ 131

Level Of

Conscioucness
A V, P, or U

Figure 2. National Early Warning Score (NEWS) [30].

Once the score set at each period is calculated, we propose to directly analyze the collected records
and alert, ideally using phone device, the medical staff by the appropriate response. In our platform,
we are interested in the clinical responses guide proposed in [30] as one of the most used guides
around the world. In this guide, the coordinator calculates the aggregated score of records received at
each period and then sends the corresponding response to the medical staff according to Figure 3. For
instance, if the score set calculated during a period is tS

p
V = [0, 2, 1, 2], then the aggregated score equals

5 (i.e., 0 + 2 + 1 + 2) and the coordinator sends an alert to medical staff informing that the frequency of
patient monitoring should be increased to at least once per hour.

AGGREGATED SCORE
FREQUENCY OF

MONITORING
CLINICAL RESPONSE

0 Minimum 12 hourly
• Continue routine NEWS monitoring with every set of

observations

1 - 4 Minimum 4-6 hourly

• Inform registered nurse who must assess the patient

• Registered nurse to decide if increased frequency of

monitoring and/or escalation of clinical care is

required

5 or more

Or

3 in one parameter

Increased frequency to a

minimum of 1 hourly

• Registered nurse to urgently inform the medical team

caring for the patient

• Urgent assessment by a clinician with core

competencies to assess acutely ill patient

• Clinical care in an environment with monitoring

facilities

7 or more
Continuous monitoring of

vital signs

• Registered nurse to immediately inform the medical

team for the patient – this should be at least at

specialist registrar level

• Emergency assessment by a clinical team with critical

care competencies, which also includes a practitioner/s

with advanced airway skills

• Consider transfer of clinical care to a level 2 or 3 care

facility. i.e. higher dependency or ITU.

Figure 3. NEWS Clinical Response (NEWS-CR) [30].

Algorithm 1 describes the emergency detection and clinical response process, which is applied at
the coordinator level. The algorithm takes as input the vector of records collected by all biosensors
during a period time t. Then, it calculates the score for each record followed by the aggregate score
(Lines 2–5). Finally, the coordinator sends an alert to the medical team indicating the clinical response
that should be taken according to the situation of the patient (Lines 6 and 7).

Sensors 2020, 20, 1931 8 of 20

Algorithm 1 Emergency detection and clinical response algorithm.

Require: A patient: p, Set of biosensors: Bp
V , A period time: t, Records collected during t: tR

p
V =

[r1, r2, . . . , rT].
Ensure: A clinical response.

1: AggScore = 0
2: for each record ri ∈ tR

p
V do

3: calculate score si of ri according to EWS
4: AggScore += si
5: end for
6: find the corresponding clinical response from NEWS-CR according to AggScore
7: send an alert containing the clinical response to the medical team

5.4. Patient Archiving Algorithm

Patient data archiving is a key operation in hospitals. On the one hand, it allows medical staff to
notice the progress of patient situation over time and, on the other hand, it helps professionals to better
understand diseases and improve the healthcare quality. Indeed, data collected by the biosensors are
vulnerable to loss before reaching the coordinator due to several reasons: (1) a long distance; (2) the
congestion due to the overloaded network in the case of dense biosensors deployment; (3) obstacles;
and (4) a failure in the biosensor itself. In such cases, the medical team cannot make the right decision
about the patient situation or store missing records for a later analysis. Thus, to overcome missing
records, a preprocessing of data should be made before any decision or storage process.

In our platform, we benefit from the Python open source libraries which offer a huge number of
functions allowing to preprocess the data before any analysis. Some of the most useful libraries dealing
with missing values in Python include Pandas, NumPy, and Scikit-Learn. Subsequently, the missing
values can be estimated using functions such as replace, isnull, dropna, fillna, and fit_transform, or
using prediction functions such as interpolate. In our simulation, we created a script for Spark called
MissRec that allows estimating the missing records during a period of time while focusing on two
main functions: ExponentialSmoothing and nanmean. After estimating the missing records, the Spark
script sends the regenerated records to the HDFS for storage.

6. Layer 3: Patient Classification and Disease Diagnosis

After data storage, the process of data analysis is started to better understand the diseases and try
to minimize their future effects. The first step of data analysis is to classify patients into clusters where
patients in the same cluster have common characteristics (symptoms and situations). The second step
is the study of the correlation between vital signs of patients at the same cluster. This can help medical
data analytics to understand disease causes and behaviors, and thus avoid false disease diagnosis and
find suitable treatments. In this layer, our objective is to propose two data analysis algorithms, one
for the patient classification and the other for the disease diagnosis. It is important to notice that both
algorithms are implemented on batch processing mode on the Spark cluster node.

6.1. Patient Classification Algorithm

Data classification is a well-known approach for most domains. One can find a huge number
of data classification algorithms such as K-nearest neighbors, naïve Bayes, decision tree, etc. [31].
However, Kmeans clustering is still the most used classification algorithm because it can be efficiently
adapted to a huge number of applications. Unfortunately, Kmeans has a significant negative impact
in data latency, especially in applications that produce big amount of data such as sensing-based
healthcare. To overcome this problem, we propose a new version of Kmeans, called SKmeans
(Stability-based Kmeans), which is strictly dedicated to sensing-based healthcare applications.

To classify similar patients’ situations using SKmeans, we first determine the stability level of each
patient during his journey in the hospital (according to his archive), and then we assign the patient

Sensors 2020, 20, 1931 9 of 20

to its nearest group of patients’ stability. Derived from tR
p
V , we define the subset s

t Rp
v , which only

contains the records of the vital sign v ∈ V with a score s in tR
p
V , where s ∈ [0, 3]. Accordingly, s

t Sp
v is

the subset with scores s of tS
p
V for the set of records tR

p
V . Thus, tR

p
v = ∪3

i=0
i
tR

p
v while tS

p
v = ∪3

i=0
i
tS

p
v .

Let |X| be the norm zero, i.e., the number of non-zero elements in a set X. For the sake of simplicity, let
us assume a portion of records collected for two patients p and q during a period t where two record
vectors tR

p
v and tR

q
v are stored, respectively, for p and q. Then, the stability level, noted as stab, of the

vital sign v of the two patients can be calculated as the overlap between the number of similar records
(having the same scores) in tR

p
v and tR

q
v, as shown in the following equation:

stab(tR
p
v , tR

q
v) =

∑3
k=0 min(|kt Rp

v |, |kt Rq
v|)

min(|tR
p
v |, |tR

q
v|)

× 100 (1)

where |kt Rp
v |means the number of records with score k in tR

p
v . Therefore, stab ranges between 0 and 100,

where 0 means that both patients have similar stable situation and 100 indicates a severely unstable
situation for both patients.

Basically, SKmeans allows patients with similar situation progress to be grouped together in
order to find patient correlation and understand the behavior of certain diseases. In our platform,
patients can be classified according to one or all vital signs depending on the medical needs. For the
sake of simplicity, we describe, in the next section, the process of SKmeans based on one patient’s
vital signs v ∈ V but similar process can be adapted to all other vital signs. Similar to traditional
Kmeans, the idea of SKmeans is to first define a positive number of clusters (K) and then a set of K
datasets is randomly selected as the initial centroids of the clusters. After that, for each dataset, the
distances to all centroids are calculated where the dataset is assigned to the nearest one. At this point,
the new centroid is recomputed for each cluster and the process is repeated until the convergence of
the algorithm. Obviously, the optimal number of clusters (K) can be selected depending on the number
of patients in the hospital and their situations. However, compared to traditional Kmeans, SKmeans
has two main differences:

• First, patients are grouped according to the scores of records and not the records themselves.
• Second, in each iteration, a patient is assigned to the nearest centroid based on the stability level

calculated using Equation (1) and not the Euclidean distance over the whole record vectors as in
the traditional Kmeans. This leads to a huge reduction of the cost of calculation.

Algorithm 2 describes our SKmeans adapted to the stability level in order to classify patients
according to a vital sign situation. First, it computes the score vector of a record vector for a patient
(Lines 1–5). Then, it randomly selects a set of K score vectors as the initial centroids of the clusters
(Lines 6–8). For every iteration, it computes the stability between each vector score and all cluster
centroids and assigns the patient to the nearest stable centroid (Lines 10–17). Finally, the algorithm
calculates the new cluster centroids and iterates until there are no longer changes in the cluster
memberships.

Sensors 2020, 20, 1931 10 of 20

Algorithm 2 SKmeans algorithm.

Require: A set of patients: P = [P1, P2, . . . , Pγ], A stored at period t, A vital sign: v ∈ V, Set of stored
records: tRv = [tR

1
v, tR

2
v, . . . , tR

F
v], Cluster number: K.

Ensure: Set of patient clusters: C = {C1, C2, . . . , CK}.
1: tSv ← ∅ // ∅ is an empty set
2: for i = 1 to γ do
3: calculate tS

i
v

4: tSv ← tSv ∪ {tS
i
v}

5: end for
6: for i = 1 to K do
7: randomly choose centroid ci among tSv belongs to Cj

8: end for
9: C ← ∅

10: repeat
11: for each set of scores tS

i
v ∈ tSv do

12: // calculate the stability between tS
i
v and all centroids

13: for k = 1 to K do
14: stk = stab (tS

i
v, ck)

15: end for
16: Assign tS

i
v to the cluster Ck with nearest centroid ck (i.e., |stk − cj∗| ≤ |stk − cj|; j ∈ {1, . . . , K})

17: end for
18: Update the centroids of all clusters
19: until no more changes in the cluster memberships
20: return C

6.2. Disease Diagnosis Algorithm

Getting the correct diagnosis is a key for the patient. Otherwise, the consequences of misdiagnosis
are most devastating, which may cause obstruction, getting incorrect medications, or even death.
Hence, disease diagnosis takes, day after day, an increasing attention from both clinicians and
researchers. Indeed, finding a correlation between the variation of vital signs of the same patient is
one of the most efficient ways to make a right diagnosis. The idea behind such approach is to link
between the variation of vital signs and the symptoms appeared on the patient, thus the mission of
determining the disease becomes easy for the clinicians. More formally, if two or more vital signs
are strongly correlated for a huge number of patients while the same symptoms have appeared on
such patients, then the accuracy of disease diagnosis is increased. In this section, a disease diagnosis
technique based on a modified version of association rule mining algorithm is proposed, which is
applied at each cluster after patient classification.

As in the traditional algorithm, our adapted version of association rule mining algorithm consists
of a two-step process: find frequent scores and generate strong association. However, our version
is more dedicated to sensing-based healthcare and takes into account the record sores when finding
correlation among vital signs. Assume a cluster contains θ patients, where θ < γ, with their
corresponding stored record vectors tSv = [tS

1
v, tS

2
v, . . . , tS

γ
v]. Then, we describe both steps used

in our algorithm as follows:

• Find frequent scores: This step aims to find the most repetitive scores of each vital sign of a patient
to meet a certain threshold. We called the threshold as minimum score strength, expressed as
µ, which takes a value between 0 and 100. Then, we calculate the strength, str, of each score
s
t Sp

v ∈ Sp
v , where s ∈ [0, 3], of a vital sign according to the following equation:

Sensors 2020, 20, 1931 11 of 20

str(s
t Sp

v) =
|st Sp

v |
|tS

p
v |
× 100 (2)

where s ∈ [0, 3]. Therefore, if str(s
t Sp

v) ≥ µ, then the score is considered as a strong score. Indeed, if
a vital sign contains more than one score, then the vital sign assigned a unique notation according
to Table 1:

Table 1. Notation of scores.

Strong Scores Notation

0
t Sp

v I0
v

1
t Sp

v I1
v

2
t Sp

v I2
v

3
t Sp

v I3
v

0
t Sp

v and 1
t Sp

v I4
v

0
t Sp

v and 2
t Sp

v I5
v

0
t Sp

v and 3
t Sp

v I6
v

1
t Sp

v and 2
t Sp

v I7
v

1
t Sp

v and 3
t Sp

v I8
v

2
t Sp

v and 3
t Sp

v I9
v

0
t Sp

v and 1
t Sp

v and 2
t Sp

v I10
v

0
t Sp

v and 1
t Sp

v and 3
t Sp

v I11
v

0
t Sp

v and 2
t Sp

v and 3
t Sp

v I12
v

1
t Sp

v and 2
t Sp

v and 3
t Sp

v I13
v

0
t Sp

v and 1
t Sp

v and 2
t Sp

v and 3
t Sp

v I14
v

At the end of this step, patients with score notations at each cluster are defined in the form of the
following matrix (i ∈ [0, 14]):

HR SBP RR OS . . .

patient#1 = Ii
HR Ii

SBP Ii
RR Ii

OS . . .
patient#2 = Ii

HR Ii
SBP Ii

RR Ii
OS . . .

...
...

...
...

...
...

patient#θ = Ii
HR Ii

SBP Ii
RR Ii

OS . . .

• Generate strong association: In this step, we try to find strong correlation rules between vital
signs of all patients. By definition, the rules must be provided from frequent patient scores and
must satisfy, in addition to the minimum score strength µ, a minimum confidence expressed as ρ.
Assume the set of notations is defined as Iv = {I0

v , I1
v , . . . , I14

v }. Then, our objective is to find the list
of mining rules, M = {M1, M2, . . . , Mδ}, where each Mi ∈ M is in the form of L => N; L and N
can be one or an intersection of score notations from Iv. A rule Mi has a strong association mining
if its support, sup(Mi), is greater than the minimum support µ and its confidence, con f (Mi),
exceeds the minimum confidence threshold ρ as follows:

sup (Mi) =
|L ∩ N|

θ
× 100 ≥ µ, (3)

where |L ∩ N| is the number of patients, in the above matrix, that contains the combinations of
score notations in L and N.

Sensors 2020, 20, 1931 12 of 20

con f (Mi) =
|N|
|L| × 100 ≥ ρ, (4)

Algorithm 3 describes the process of finding the set of strong association rules among Iv. The
process starts by searching all the possible combinations of notations from Iv, and then finding the list
of all association rules (Lines 1–4). After that, we calculate the support and confidence for each rule
and a rule is added to the list of strong rules only if its support and confidence are greater than the
defined thresholds µ and ρ, respectively (Lines 5–11). Indeed, the obtained rules will allow clinicians
to find the correlation between the variation of vital signs of patients. Consequently, in addition to
the symptoms appearing in the corresponding patients, they can have a better understanding about a
disease and its diagnosis while giving the right patient medication.

Algorithm 3 Association mining rules algorithm.

Require: Set of notations: Iv = {I0
v , I1

v , . . . , I14
v }, Minimum score strength: µ, Minimum confidence

threshold: ρ.
Ensure: Set of strong mining association rules: M.

1: find all combinations of notations, T, from Iv

2: T ← {Ii
v, where i ∈ [0, 14]} ∪ {Ii

v ∩ I j
v, where i, j ∈ [0, 14] and i 6= j} ∪ · · · ∪ Iv

3: find all combinations of mining rules, U
4: U = {L => N, where L and N ∈ T}
5: M← ∅
6: for each rule Ui ∈ U do
7: calculate sup (Ui) and con f (Ui)
8: if sup (Ui) ≥ µ and con f (Ui) ≥ ρ then
9: M← M ∪ {Ui}

10: end if
11: end for
12: return M

7. Layer 4: Data Retrieval and Visualization

The last layer of our platform is dedicated to allow medical staff access to the patient records
stored in the Hadoop HDFS. It relies on two data retrieval tools (Hive and Spark SQL) and one
graphing tool (Matplotlib). On the one hand, data retrieval tools are responsible for obtaining data
from the Hadoop storage system using a set of criteria defining via queries. The retrieved data are
mostly stored in a file or displayed on the screen. On the other hand, data visualization is simply a
graphical representation of the retrieved data using statistical graphics or plots. In the next sections,
we highlight each tool used in our platform.

7.1. Hive

Hive [28] is software used for data warehousing implemented on top of Hadoop HDFS in order
to provide data query and analysis. In addition, Hive allows creating a metadata storage in the form
of tables in a relational database system. This makes our platform more efficient in terms of reducing
the access time to the patient archive. On the other hand, it helps the medical staff to keep track of the
criticality of patients in real-time. In our platform, we installed Hive on the cluster master node and
we created an external table located in the HDFS main directory, where the medical staff can explore
the data imported to HDFS using HiveQL console. To retrieve the data, they have to write HiveQL
queries depending on their requirements. For instance, they can ask for all patient IDs having critical
HR records as follows:

SELECT patient_id FROM Patient WHERE record < 51 or record > 90

Sensors 2020, 20, 1931 13 of 20

7.2. Spark SQL

Spark SOL [25] is a component that can be installed on top of Spark core and aims to provide a
data abstraction called DataFrames to handle structured database. DataFrames is usually handled
using a specific language named domain-specific language (DSL) [25], which is manipulated using
Python in our platform. After installing it on the master node, the medical staff can run the Spark SQL
console using the command spark-sql to access the patient data on Hadoop storage. Then, they have to
use HiveQL syntax, which is supported by Spark SQL to make various queries.

7.3. Matplotlib

Matplotlib [29] is the most used plotting library in Python programming with its extension
NumPy. In our platform, we created a Python script that allows reading periodic patient data sent
to Hadoop storage and visualizing them, using Matplotlib, on a real-time graph to the medical staff.
An important extension which can be added later to our platform is to send plotting graphs to the
clinicians using mobile application, so that they can monitor the patient situation far from the hospital.

8. System Demonstration and Evaluation

To evaluate its performance, we developed our platform based on two phases: Hadoop installation
and algorithms’ implementation. On the one hand, we installed Hadoop 3.0.1 on a physical machine
with an i7 processor, 8 CPUs 2.70 GHz, and 16 GB of memory. Then, we created a four-node Hadoop
cluster on four virtual machines with Ubuntu 18.04 as an operating system. In addition, a virtual
machine was configured to act as the master node and the three other machines were configured to
act as slave nodes. We installed all layer tools (ingestion, processing, and visualization) on the master
node while the slave nodes were responsible for storing patient data. On the other hand, we used
real health data collected from MultipleIntelligent Monitoring in Intensive Care (MIMIC) database of
PhysioNet [32]. MIMIC contains data for about 72 patients where records about vital signs include
Heart Rate (HR), Systolic Blood Pressure (SBP), Respiration Rate (RR), and Oxygen Saturation (OS).
Every second, the biosensor collects new reading for each vital sign, and then it sends toward the
Hadoop cluster for processing and archiving purposes. In our simulation, we used a file that includes
a log of about 100,000 readings for each patient. To make our simulation more realistic, patient records
are stored separately in a file in the main directory of the master node. Then, we created Java and
Python scripts that allow reading data for each patient while applying one of the proposed algorithms.

Table 2 summarizes the parameters used in our platform with their tested values.

Table 2. Simulation environment.

Parameter Symbol Values

number of patients F 72
number of features T [HR, SBP, RR, OS]
number of clusters K 2, 3, 4, 5, 6

minimum score strength µ 30%, 40%, 50%
minimum score confidence ρ 50%, 60%, 70%

8.1. Records Patients Study

In this section, we show the patient situation progress after storing data in the HDFS which can
help in understanding the stability level of each patient. In Figure 4a, we show a portion of 15, 000
record values (e.g., 4 h) for each vital sign of a patient while, in Figure 4b, we only show HR records for
three patients with different criticality situations, namely low, medium, and high. The obtained results
reveal many observations: First, the stored records for each vital sign of a patient are highly redundant.
Second, we can also observe that some vital signs are correlated where the variation/stability of one

Sensors 2020, 20, 1931 14 of 20

can influence the others (Figure 4a). Third, we notice that low and high criticality patient situations
produce more data redundancy than a patient with medium situation (Figure 4b).

HR SBP RR OS

0

20

40

60

80

100

120

140

re
co

rd
 v

al
ue

0 3,000 6,000 9,000 12,000 15,000
record number

(a) One patient with various vital signs

Low Medium High

70

80

90

100

110

120

130

140

150

160

H
R

 r
ec

or
d

va
lu

e

0 3,000 6,000 9,000 12,000 15,000
record number

(b) Three patients with the same vital sign (HR)

Figure 4. Variation of raw record data during 4 h of patient monitoring.

8.2. SKmeans Study

Our objective is to study the SKmeans algorithm proposed at the third layer in our platform
for patients’ classification. As mentioned above, classification can be done according to one or all
vital signs of the patients depending on the medical staff decision. Figure 5 shows the distribution of
patients over clusters after applying SKmeans algorithm when varying K from 2 to 6. We can notice
several observations according to the obtained results: First, the patients are not equally distributed
into clusters, which confirms the behavior of SKmeans of classifying patients based on their stability
level and not in an equal way. Second, clusters approximately have the same number of patients
regardless of the monitored vital sign (Figure 5a–d). This confirms the existence of a correlation
between the variation of vital signs of the same patient. Third, we obtain similar patients’ classification
when applying SKmeans on one vital sign (Figure 5a–d) and all vital signs (Figure 5e). Fourth, we
notice that the number of clusters converges to 5 with RR and OS biosensors.

Cluster#1 Cluster#2 Cluster#3
Cluster#4 Cluster#5 Cluster#6

0

6.6

13.2

19.8

26.4

33

nu
m

be
r

of
 p

at
ie

nt
s

2 3 4 5 6
number of clusters

(a) HR

Cluster#1 Cluster#2 Cluster#3
Cluster#4 Cluster#5 Cluster#6

0

6.6

13.2

19.8

26.4

33

nu
m

be
r

of
 p

at
ie

nt
s

2 3 4 5 6
number of clusters

(b) SBP

Cluster#1 Cluster#2 Cluster#3
Cluster#4 Cluster#5 Cluster#6

0

6.6

13.2

19.8

26.4

33

nu
m

be
r

of
 p

at
ie

nt
s

2 3 4 5 6
number of clusters

(c) RR

Cluster#1 Cluster#2 Cluster#3
Cluster#4 Cluster#5 Cluster#6

0

6.6

13.2

19.8

26.4

33

nu
m

be
r

of
 p

at
ie

nt
s

2 3 4 5 6
number of clusters

(d) OS

Cluster#1 Cluster#2 Cluster#3
Cluster#4 Cluster#5 Cluster#6

0

6.6

13.2

19.8

26.4

33

nu
m

be
r

of
 p

at
ie

nt
s

2 3 4 5 6
number of clusters

(e) all vital signs

Figure 5. Distribution of patients over clusters.

Sensors 2020, 20, 1931 15 of 20

According to Figure 5, Figure 6 shows a distribution map for the patient IDs classification over
the clusters after applying SKmeans. The objective of this figure is to verify if patients with similar
stability are always assigned to the same cluster for various vital signs or not. The number of clusters
is fixed to 4. As expected, the obtained results show a significant correlation between vital signs where
patients with same records’ variation are grouped together. Therefore, we consider SKmeans as an
efficient clustering algorithm for sensing-based healthcare application in terms of classifying patients
according to their stability level and their situation progress.

0

5

10

15

20

25

30

35

nu
m

be
r

of
 p

at
ie

nt

Cluster#1 Cluster#2 Cluster#3 Cluster#4

(a) HR

0

5

10

15

20

25

30

35

nu
m

be
r

of
 p

at
ie

nt

Cluster#1 Cluster#2 Cluster#3 Cluster#4

(b) SBP

0

5

10

15

20

25

30

35

nu
m

be
r

of
 p

at
ie

nt

Cluster#1 Cluster#2 Cluster#3 Cluster#4

(c) RR

0

5

10

15

20

25

30

35

nu
m

be
r

of
 p

at
ie

nt

Cluster#1 Cluster#2 Cluster#3 Cluster#4

(d) OS

0

5

10

15

20

25

30

35

nu
m

be
r

of
 p

at
ie

nt

Cluster#1 Cluster#2 Cluster#3 Cluster#4

(e) all vital signs

Figure 6. Illustrative example for distribution of patients’ IDs over clusters.

8.3. Iteration Number Study

In Figure 7, we show the iteration number required by SKmeans to find the final clusters of
patients, compared to those obtained with traditional Kmeans. Indeed, this factor becomes important
to study in sensing-based healthcare since it affects the latency of decision making which is a critical
factor in the study of emergency situations. The iteration number is mostly related to initial centroids
which are randomly selected in both SKmeans and Kmeans. The obtained results show that SKmeans
outperforms Kmeans in terms of minimizing the number of iterations with all vital sign conditions.
Subsequently, the number of iterations in SKmeans varies from 2, in the worst case, to 9, in the best
case, and from 8 to 14 using Kmeans. Therefore, SKmeans ensures a fast computation process to the
medical staff.

Sensors 2020, 20, 1931 16 of 20

SKmeans,
HR

SKmeans,
SBP

SKmeans,
RR

SKmeans,
OS

SKmeans,
All vital
signs

Kmeans, HR Kmeans,
SBP

Kmeans, RR Kmeans, OS Kmeans, All
vital signs

0

2.8

5.6

8.4

11.2

14

nu
m

be
r

of
 lo

op
s

2 3 4 5 6
number of clusters

Figure 7. Number of iterations when applying SKmeans and traditional Kmeans.

8.4. Processing Speed Study

Figure 8 shows the processing speed, or the execution time, required to apply SKmeans and
Kmeans algorithms for the various vital signs. Mostly, the processing speed is an indicator to the
robustness of any system. In our platform, the processing speed is highly dependent on the iteration
numbers shown in Figure 7; the greater is the iteration number, the longer is the processing time
required and the lower is the robustness. Since SKmeans algorithm highly reduces the number
of iterations, it simultaneously reduces the execution time compared to the traditional Kmeans.
Subsequently, SKmeans can optimize the processing time speed up to three times compared to Kmeans.

SKmeans,
HR

SKmeans,
SBP

SKmeans,
RR

SKmeans,
OS

SKmeans,
All vital
signs

Kmeans, HR Kmeans,
SBP

Kmeans, RR Kmeans, OS Kmeans, All
vital signs

0
200
400
600
800

1,000
1,200
1,400

ex
ec

ut
io

n
ti

m
e

(m
s)

2 3 4 5 6
number of clusters

Figure 8. Execution time when applying SKmeans and Kmeans.

8.5. Clustering Accuracy Study

Clustering accuracy is one of the most important metric in order to evaluate the performance of
the formed final clusters. Indeed, one can find various coefficients that is proposed in the literature
to evaluate the clustering. In this paper, we select the Silhouette coefficient [33] as one of the most
popular metrics to evaluate the accuracy of SKmeans and Kmeans algorithms. By definition, the
Silhouette coefficient score ranges between −1 (which indicates a low clustering accuracy) and +1
(which indicates a high clustering accuracy) while 0 indicates nested clusters. Generally, the Silhouette
coefficient is a composite index that indicates the cohesion and separation of the clusters and can apply
several distance measures. In this work, the Silhouette coefficient is adapted to the Euclidean distance
that is calculated as follows:

S =
Ei(tR

p
V)− Ej(tR

p
V)

max(Ei(tR
p
V), Ej(tR

p
V))

(5)

where Ei(tR
p
V) is the mean Euclidean distance of the record set tR

p
V to other record sets within the

same cluster and Ej(tR
p
V) is the mean Euclidean of record set tR

p
V to record sets in the other clusters.

Sensors 2020, 20, 1931 17 of 20

SKmeans Kmeans

0

0.06

0.12

0.18

0.24

0.3

Si
lh

ou
et

te
 c

oe
ff

ic
ie

nt
2 3 4 5 6

number of clusters

Figure 9. Clustering accuracy of SKmeans and Kmeans.

Figure 9 shows the Silhouette coefficient of the heart rate vital sign when varying the number of
clusters K from 2 to 6. The obtained results show that both algorithms (SKmeans and Kmeans) give
important results regarding the clustering accuracy for various number of clusters. Subsequently, the
clustering accuracy obtained with SKmeans varies between 0.09 and 0.18 while it varies between 0.07
and 0.3 using Kmeans. We can also observe that the clustering accuracy decreases with the increasing
of the number of clusters.

8.6. Vital Signs and Disease Diagnosis Study

Figure 10 shows the number of mining rules generated after applying association rule algorithm
adapted to sensing-based healthcare. Indeed, these rules allow finding correlations between vital signs
and thus help the medical staff to understand the disease behavior. The obtained results depend on the
minimum support threshold (µ) and the minimum confidence threshold (ρ). As shown, our algorithm
allows generating many rules—between 21 and 232—for various values of µ and ρ. Subsequently, we
also observe that the number of rules decreases when increasing µ or ρ values; however, this makes
the rules stronger and more accurate.

0

50

100

150

200

250

nu
m

be
r

of
 r

ul
es

50 60 70

Figure 10. Variation of number of rules as a function of µ and ρ.

8.7. Further Discussions

In this section, we give further consideration to the proposed SKmeans algorithm by discussing
and analyzing its performance, regarding several metrics, under various conditions and circumstances
of the application.

From the processing speed point of view, SKmeans can highly reduce the execution time required
for the clustering process compared to the traditional Kmeans. This is due to two reasons: first, the
fewer iterations required for the convergence of the SKmeans algorithm (see results on Figure 7), and,
second, SKmeans assigns the patients into clusters according to their criticality level, that is calculated
once during all iterations, which reduces the processing time overhead of the clustering (see results

Sensors 2020, 20, 1931 18 of 20

in Figure 8). Therefore, SKmeans can ensure a fast patient clustering technique, which is required in
healthcare applications, especially in emergency cases.

From the accuracy point of view, both SKmeans and traditional Kmeans ensure an acceptable level
of clustering accuracy for the healthcare applications. However, the random selection of the cluster
centroids considered in both SKmeans and Kmeans should be optimized to increase their performance.
Furthermore, in the healthcare cases where most of the patients have stable situations, SKmeans can
ensure an accurate data clustering; otherwise, the obtained clustering accuracy decreases.

9. Conclusions and Future Work

The investment in sensing-based healthcare applications continues to rise in this decade as the
public health attracts more attention day by day from governments and industries. In this paper,
we propose an efficient and robust big data analytics platform for real-time patient monitoring and
assessment. The architecture of our platform is mainly based on Hadoop ecosystems and it consists of
four layers: real time patient monitoring, real time decision and data storage, patient classification and
disease diagnosis, and data retrieval and visualization. In addition, our platform includes various data
analytical algorithms for each layer in order to make patient classification and help to find correlations
between variable of vital signs and diseases. We demonstrated the relevance of our platform based on
real heath data according to several parameters.

As future work, we have three main directions to enhance our platform. First, we plan to test
our platform in real-case scenarios in order to validate its performance. Second, we seek to adapt
our platform to take into account various types of patient data such as images for organs, video for
operations, etc. Finally, we plan to develop a mobile application in order to help clinicians closely and
remotely monitor critical patients.

Author Contributions: Conceptualization, H.H. and H.M.; methodology, E.M.C.; software, H.H.; validation,
A.M. and A.N.; formal analysis, A.M.; investigation, H.M.; resources, H.H.; data curation, H.H.; writing–original
draft preparation, H.H.; writing–review and editing, A.M.; visualization, A.N.; supervision, A.M.; project
administration, E.M.C.; funding acquisition, H.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding and the APC was funded by the University of Nantes.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Giorgi, G. A combined approach for real-time data compression in wireless body sensor networks. IEEE
Sens. J. 2017, 17, 6129–6135. [CrossRef]

2. Vitabile, S.; Marks, M.; Stojanovic, D.; Pllana, S.; Molina, J.M.; Krzyszton, M.; Sikora, A.;
Jarynowski, A.; Hosseinpour, F.; Jakobik, A. Medical Data Processing and Analysis for Remote Health
and Activities Monitoring. High-Performance Modelling and Simulation for Big Data Applications; Kołodziej, J.,
González-Vélez, H., Eds.; Springer: Basel, Switzerland, 2019; Volume 11400; pp. 186–220.

3. Boudargham, N.; Abdo, J.B.; Demerjian, J.; Guyeux, C.; Atechian, T. Efficient cluster-based routing algorithm
for body sensor networks. In Proceedings of the 2018 IEEE Middle East and North Africa Communications
Conference (MENACOMM), Jounieh, Lebanon, 18–20 April 2018; pp. 1–6.

4. Syed, L.; Jabeen, S.; Manimala, S.; Elsayed, H.A. Data Science Algorithms and Techniques for Smart
Healthcare Using IoT and Big Data Analytics. Smart Techniques for a Smarter Planet, Kołodziej, J.,
González-Vélez, H., Eds.; Springer: Basel, Switzerland, 2019; Volume 11400; pp. 211–241.

5. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming
analytics: A survey. IEEE Commun. Surv. Tutor. 2018, 2923–2960. [CrossRef]

6. Soufiene, B.O.; Bahattab, A.A.; Trad, A.; Youssef, H. Lightweight and confidential data aggregation in
healthcare wireless sensor networks. Trans. Emerg. Telecommun. Technol. 2016, 27, 576–588. [CrossRef]

7. Chiang, J.; Ward, R. Energy-efficient data reduction techniques for wireless seizure detection systems. Sensors
2014, 14, 2036–2051. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JSEN.2017.2736249
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1002/ett.2993
http://dx.doi.org/10.3390/s140202036
http://www.ncbi.nlm.nih.gov/pubmed/24469356

Sensors 2020, 20, 1931 19 of 20

8. Wang, T.; Bhuiyan, M.Z.A.; Wang, G.; Rahman, M.A.; Wu, J.; Cao, J. Big data reduction for a smart city’s
critical infrastructural health monitoring. IEEE Commun. Mag. 2018, 56, 128–133. [CrossRef]

9. Bahi, J.; Elghazel, W.; Guyeux, C.; Haddad, M.; Hakem, M.; Medjaher, K.; Zerhouni, N. Resiliency in
distributed sensor networks for prognostics and health management of the monitoring targets. Comput. J.
2016, 59, 275–284. [CrossRef]

10. Begum, S.; Barua, S.; Ahmed, M. Physiological sensor signals classification for healthcare using sensor data
fusion and case-based reasoning. Sensors 2014, 14, 11770–11785. [CrossRef] [PubMed]

11. Martínez Chávez, S.M.; Rivero-Angeles, M.E.; Garay-Jiménez, L.I.; Romero Ibarra, I.C. Priority Schemes for
Life Extension and Data Delivery in Body Area Wireless Sensor Networks with Cognitive Radio Capabilities.
Wirel. Commun. Mob. Comput. 2019, 2019, 22. [CrossRef]

12. Ward, R. Energy-efficient data reduction techniques for EEG wireless body sensor networks. In Proceedings
of the Qatar Foundation Annual Research Forum, Doha, Qatar, 24–25 November 2013.

13. Khourdifi, Y.; Bahaj, M. Hadoop and MapReduce technology as a solution for Wireless Body Area Networks
in e-Health. In Proceedings of the 2nd International Conference on Computing and Wireless Communication
Systems, New York, NY, USA, 14–16 November 2017; pp. 17–22.

14. Chen, H.; Fu, Z. Hadoop-based healthcare information system design and wireless security communication
implementation. Mob. Inf. Syst. 2015, 2015, 9. [CrossRef]

15. Raja, P.V.; Sivasankar, E. Modern framework for distributed healthcare data analytics based on Hadoop. In
Information and Communication Technology-EurAsia Conference; Linawati, M.M.S., Neuhold, E.J., Tjoa, A.M.,
You, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8407; pp. 348–355.

16. Saneja, B.; Rani, R. A scalable correlation-based approach for outlier detection in wireless body sensor
networks. Int. J. Commun. Syst. 2019, 32, e3918. [CrossRef]

17. Benhlima, L.; El aboudi, N. Big data management for healthcare systems: Architecture, requirements, and
implementation. Adv. Bioinform. 2018, 2018, 1–6.

18. Din, S.; Paul, A. Smart health monitoring and management system: Toward autonomous wearable sensing
for internet of things using big data analytics. Future Gener. Comput. Syst. 2019, 91, 611–619. [CrossRef]

19. Koussaifi, M.; Habib, C.; Makhoul, A. Real-time stress evaluation using wireless body sensor networks. In
Proceedings of the IEEE 2018 Wireless Days (WD), Dubai, United Arab Emirates, 3–5 April 2018.

20. Habib, C.; Makhoul, A.; Darazi, R.; Salim, C. Self-adaptive data collection and fusion for health monitoring
based on body sensor networks. IEEE Trans. Ind. Inform. 2016, 12, 2342–2352. [CrossRef]

21. Habib, C.; Makhoul, A.; Darazi, R.; Couturier, R. Real-time sampling rate adaptation based on continuous
risk level evaluation in wireless body sensor networks. In Proceedings of the IEEE 13th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy,
9–11 October 2017; pp. 1–8.

22. Habib, C.; Makhoul, A.; Darazi, R.; Couturier, R.l. Health risk assessment and decision-making for patient
monitoring and decision-support using wireless body sensor networks. Inf. Fusion 2019, 47, 10–22. [CrossRef]

23. Apache Software Foundation. 2011. Available online: https://kafka.apache.org (accessed on 1 October 2019).
24. Apache Software Foundation. 2009. Available online: http://sqoop.apache.org (accessed on 2 October 2019).
25. Apache Spark. 2014. Available online: https://spark.apache.org (accessed on 3 October 2019).
26. Apache Software Foundation. 2006. Available online: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.

html (accessed on 15 October 2019).
27. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the

Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley,
CA, USA, 1967; Volume 1, pp. 281–297.

28. Available online: https://hive.apache.org (accessed on 5 October 2019).
29. Droettboom, M. Matplotlib Library. 2003. Available online: https://matplotlib.org (accessed on 10 October

2019).
30. National Early Warning Score (NEWS); Royal College of Physicians: London, UK, 2015. Available online: http:

//www.rcplondon.ac.uk/resources/national-early-warning-score-news (accessed on 1 December 2019).
31. Aggarwal, C.C. Data classification: Algorithms and applications. In Mining and Knowledge Discovery Series; 1st ed.,

Chapman & Hall/CRC: Data, FL, USA; 2014. Available online: https://www.crcpress.com/Data-Classification-
Algorithms-and-Applications/Aggarwal/p/book/9781466586741 (accessed on 1 January 2020).

http://dx.doi.org/10.1109/MCOM.2018.1700303
http://dx.doi.org/10.1093/comjnl/bxv126
http://dx.doi.org/10.3390/s140711770
http://www.ncbi.nlm.nih.gov/pubmed/24995374
http://dx.doi.org/10.1155/2019/2637830
http://dx.doi.org/10.1155/2015/852173
http://dx.doi.org/10.1002/dac.3918
http://dx.doi.org/10.1016/j.future.2017.12.059
http://dx.doi.org/10.1109/TII.2016.2575800
http://dx.doi.org/10.1016/j.inffus.2018.06.008
https://kafka.apache.org
http://sqoop.apache.org
https://spark.apache.org
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hive.apache.org
https://matplotlib.org
http://www.rcplondon.ac.uk/resources/national-early-warning-score-news
http://www.rcplondon.ac.uk/resources/national-early-warning-score-news
https://www.crcpress.com/Data-Classification-Algorithms-and-Applications/Aggarwal/p/book/9781466586741
https://www.crcpress.com/Data-Classification-Algorithms-and-Applications/Aggarwal/p/book/9781466586741

Sensors 2020, 20, 1931 20 of 20

32. MIMIC Database on PhysioNet. 2000. Available online: https://www.physionet.org/ (accessed on
1 October 2019).

33. Rousseeuw, P. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput.
Appl. Math. 1987, 20, 53–65. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.physionet.org/
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Overview about the Architecture of Our Platform
	Layer 1: Real Time Patient Monitoring
	Data Sources
	Kafka
	Sqoop

	Layer 2: Real Time Data Decision and Data Storage
	Apache Spark
	Hadoop HDFS
	Emergency Detection and Clinical Response Algorithm
	Patient Archiving Algorithm

	Layer 3: Patient Classification and Disease Diagnosis
	Patient Classification Algorithm
	Disease Diagnosis Algorithm

	Layer 4: Data Retrieval and Visualization
	Hive
	Spark SQL
	Matplotlib

	System Demonstration and Evaluation
	Records Patients Study
	SKmeans Study
	Iteration Number Study
	Processing Speed Study
	Clustering Accuracy Study
	Vital Signs and Disease Diagnosis Study
	Further Discussions

	Conclusions and Future Work
	References

