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Abstract: Rapid lifestyle and dietary changes have contributed to a rise in the global prevalence of
metabolic syndrome (MetS), which presents a potential healthcare crisis, owing to its association
with an increased burden of multiple cardiovascular and neurological diseases. Prior work has
identified the role that genetic, lifestyle, and environmental factors can play in the prevalence of
MetS. Metabolomics is an important tool to study alterations in biochemical pathways intrinsic
to the pathophysiology of MetS. We undertook a metabolomic study of MetS in serum samples
from two ethnically distinct, well-characterized cohorts—the Baltimore Longitudinal Study of Aging
(BLSA) from the U.S. and the Tsuruoka Metabolomics Cohort Study (TMCS) from Japan. We used
multivariate logistic regression to identify metabolites that were associated with MetS in both cohorts.
Among the top 25 most significant (lowest p-value) metabolite associations with MetS in each cohort,
we identified 18 metabolites that were shared between TMCS and BLSA, the majority of which were
classified as amino acids. These associations implicate multiple biochemical pathways in MetS,
including branched-chain amino acid metabolism, glutathione production, aromatic amino acid
metabolism, gluconeogenesis, and the tricarboxylic acid cycle. Our results suggest that fundamental
alterations in amino acid metabolism may be central features of MetS.

Keywords: metabolic syndrome; metabolomics; amino acids; fasting glucose; triglycerides; waist
circumference; blood pressure

Int. J. Mol. Sci. 2020, 21, 1249; doi:10.3390/ijms21041249 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-2231-2454
https://orcid.org/0000-0001-7653-5106
https://orcid.org/0000-0002-4161-3829
https://orcid.org/0000-0003-2666-4932
https://orcid.org/0000-0001-5527-7574
http://dx.doi.org/10.3390/ijms21041249
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/4/1249?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 1249 2 of 20

1. Introduction

Metabolic syndrome (MetS) is a cluster of risk factors that raises an individual’s risk for heart
disease, diabetes, stroke, and chronic neurodegenerative disease [1–4]. MetS is defined as having 3
or more of 5 individual risk factors including elevated waist circumference, fasting serum/plasma
glucose concentration, triglyceride levels, and blood pressure and reduced serum/plasma high-density
lipoprotein (HDL) cholesterol [5]. In the United States, more than one-third of adults and more than
one-half of those 60 years or older have MetS [6]. Additionally, the global spread of the Westernized
lifestyle has increased the global burden of metabolic diseases, representing a substantial public health
concern as more societies become sedentary and transition to more unhealthy diets [7,8]. In Japan,
for instance, government estimates suggest that nearly one-third of males and one-tenth of females
20 years or older have MetS and expectations suggest that the prevalence will likely increase in the
coming years [9]. Presence of MetS further inflates the per-patient cost of treatment for those with
hypertension, and overall patient-specific health costs increase with the accumulation of each additional
MetS risk factor [10].

Part of the health and cost burden imposed by MetS stems from its association with increased
morbidity and mortality of other diseases. MetS has been shown to double the risk of fatal cardiovascular
events [11]; has been shown to increase the risk of cardiovascular disease and type II diabetes mellitus
(T2DM) [1,2]; and is associated with adverse neurological outcomes, including increased risk of
cognitive decline, vascular dementia, and Alzheimer’s disease (AD) [12–14]. MetS likely increases
risk of these conditions through chronic inflammation, hyperinsulinemia, dyslipidemia, and oxidative
stress [15]. Identifying the biologic pathways and mechanisms underlying MetS is essential to
developing biomarkers and interventions for multiple chronic and neurological diseases.

Despite prior work, the pathophysiology of MetS remains unclear. Recently, high-throughput
omics has emerged as an important tool for understanding disease-specific cellular processes [16].
Metabolomics of blood in particular may improve the mechanistic understanding of disease
pathology [17]. Metabolite profiling of MetS can help characterize altered metabolic processes,
which may lead to earlier diagnosis and intervention as well as improved personalized treatments [18].

Prior work has identified blood serum metabolites that characterize early phenotypes of MetS
prior to diagnosis [19]. Metabolomics has also been used to discriminate between overweight and obese
individuals with and without MetS [20,21], suggesting some diagnostic utility. Other studies established
blood metabolite profiles of different dietary patterns in patients with MetS [22,23], indicating that
the approach may be useful for studying the impact of lifestyle on disease processes. Metabolomics
studies in blood tissue have additionally identified multiple biochemical pathways in MetS, most
notably altered amino acid metabolism [24].

Cross-cultural and multiethnic studies may yield significant insight into biochemical processes
associated with MetS that are fundamental to the disease etiology. These studies may provide important
information regarding the interaction between genes and environment in the development of disease
and may shed light on fundamental biologic features of disease pathology. Prior cross-cultural studies
have examined clustering of MetS risk factors by ethnicity [25] as well as shared and distinct metabolite
associations with type II diabetes mellitus (T2DM) [26,27]. However, a metabolomic approach in two
ethnically distinct longitudinal cohorts has not yet been applied to identify a metabolite signature
of MetS.

The purpose of the present study is to comprehensively explore a serum metabolite signature
of MetS in two ethnically distinct cohorts of older individuals—the Baltimore Longitudinal Study of
Aging (BLSA) from the United States and Tsuruoka Metabolomics Cohort Study (TMCS) from Japan.
These distinct cohorts allow for cross comparisons that can help identify metabolic alterations that
may be fundamental to MetS. Specifically, we utilized capillary electrophoresis time-of-flight mass
spectrometry (CE-TOFMS) to assay charged and hydrophilic blood serum metabolites and examined
their associations with MetS. To our knowledge, our study is one of the first to utilize this omics
platform in a large, multiethnic study of MetS.
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2. Results

2.1. Participants

Table 1 summarizes the demographic characteristics of participants from the BLSA and TMCS
cohorts. Comparing the overall samples between the two cohorts, as shown in columns 2 and 3 of
Table 1, BLSA participants were, on average, older and more likely to have never smoked. The BLSA
participants were more likely male compared to TMCS. The prevalence of MetS was similar between
groups, but BLSA participants had a greater prevalence of elevated triglycerides and reduced HDL-C.
Overall, TMCS participants had a greater prevalence of elevated waist circumference, elevated fasting
glucose, and elevated blood pressure. Considering the continuous values for risk factors, on average,
the BLSA cohort had a larger waist circumference and lower HDL cholesterol than the TMCS cohort.
The TMCS cohort, on average, had higher fasting glucose and higher systolic and diastolic blood
pressures. Average triglyceride levels did not differ between the two cohorts. Regarding prescription
drug use, TMCS participants were more likely to use antihypertensive medications, while BLSA
participants were more likely to use lipid-lowering medications. Both cohorts were similar in terms of
use of diabetes medication.

Table 1. Demographic characteristics of the Baltimore Longitudinal Study of Aging (BLSA) and
Tsuruoka Metabolomics Cohort Study (TMCS) cohorts for overall samples and only participants with
metabolic syndrome (MetS): Two sample t-tests were used for comparison of continuous variables.
Chi-square tests were utilized for comparison of categorical variables. * Significant difference between
cohorts at p < 0.05 in the full sample and † comparisons were significant at p < 0.05 in samples restricted
to participants with MetS. Physical activity questionnaires were not directly comparable, and thus,
between group differences were not calculated.

BLSA (Total
Sample) (n = 252)

TMCS (Total
Sample) (n = 644)

BLSA MetS
(n = 106)

TMCS MetS
(n = 274)

Age, Mean (SD) 73.8 (8.8) * 69.4 (2.2) * 72.6 (7.9) † 69.4 (2.3) †

Female, n (%) 120 (47.2) * 359 (55.8) * 46 (43.4) † 190 (69.3) †

White, n (%) 210 (83.3) - 82 (77.4) -

Never smoke, n (%) 112 (44.4) * 424 (65.8) * 60 (56.6) † 205 (74.8) †

Physical Activity (SD) 87.3 (61.5) 17.5 (14.6) 80.6 (58.8) 16.8 (13.5)

DASH Score (SD) - 2.69 (0.7) - 2.71 (0.7)

Storage time, Mean (SD) 12.4 (9.4) - 11.1 (9.2) -

Metabolic syndrome, n (%) 106 (42.1) 274 (42.6) - -

Elevated waist circumference, n (%) 83 (32.9) * 276 (42.9) * 64 (60.4) 194 (70.8)

Waist circumference, Mean (SD) 35.9 (4.8) * 32.6 (3.2) * 38.4 (4.4) † 34.2 (3.2) †

Elevated triglyceride level, n (%) 121 (48.0) * 241 (37.4) * 93 (87.7) † 211 (77.0) †

Triglyceride level, Mean (SD) 104.5 (59.6) 105 (62.4) 133.7 (73.5) 124.6 (79.1)

Hyperlipidemia drug use, n (%) 93 (37.4) * 187 (29.0) * 70 (66.0) 175 (63.9)

Reduced HDL cholesterol, n (%) 138 (54.8) * 209 (32.4) * 97 (91.5) † 190 (69.3) †

HDL cholesterol, Mean (SD) 56.1 (16.4) * 67.4 (18.0) * 49.6 (14.6) † 64.3 (18.7) †

Elevated Blood Pressure, n (%) 134 (53.2) * 453 (70.3) * 81 (76.4) † 237 (86.5) †

SBP, Mean (SD) 124.6 (20.2) * 132.8 (18.4) * 125.3 (18.9) † 137.4 (18.0) †

DBP, Mean (SD) 71.3 (12.3) * 75.6 (10.7) * 71.8 (12.7) † 76.9 (10.0) †

Hypertension drug use, n (%) 56 (22.5) * 297 (46.1) * 42 (39.6) † 165 (60.2) †

Elevated fasting glucose, n (%) 97 (39.0) * 319 (49.5) * 64 (60.4) 186 (67.9)

Fasting glucose, Mean (SD) 99.6 (16.7) * 103.2 (15.9) * 106.5 (19.9) 107.1 (17.1)

Diabetes drug use, n (%) 18 (7.2) 60 (9.3) 17 (16.0) 38 (13.9)

BLSA: Baltimore Longitudinal Study of Aging; TMCS: Tsuruoka Metabolomics Cohort Study; SBP: systolic blood
pressure; DBP: diastolic blood pressure; SD: standard deviation; DASH: Dietary Approaches to Stop Hypertension;
HDL: high-density lipoprotein.
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The comparisons between each cohort among individuals with MetS are displayed in columns 4
and 5 of Table 1 and are summarized in Figure 1. As shown in Figure 1, TMCS participants with MetS
displayed a greater prevalence of elevated blood pressure, a lower prevalence of elevated triglycerides,
and reduced HDL-C relative to BLSA participants with MetS. Similar to the comparison of the overall
samples, individuals with MetS in the TMCS cohort displayed a higher use of antihypertensive
medication. The use of diabetes medication and lipid-lowering medications was similar between the
MetS subgroups of each cohort.

Figure 1. Distribution of individual MetS risk factors among participants with MetS in each cohort:
* Significant difference at p < 0.05 between risk factor prevalence according to chi-square tests.

2.2. Metabolite Concentrations and Classifications

Table S2 includes the median metabolite concentrations for BLSA and TMCS and the false
discovery rate (FDR)-adjusted p-values indicating the significance of differences between the two
cohorts. The majority of metabolites (76/82) was significantly different after FDR correction between
the two cohorts.

We classified metabolites according to the Human Metabolome Database (HMDB; http://www.
hmdb.ca/) designations (see Table S1): 44 metabolites were classified as carboxylic acids and derivatives;
8 metabolites were classified as fatty acyls; 5 metabolites were classified as organooxygen compounds;
4 metabolites were classified as hydroxy acids and derivatives; 3 metabolites were classified as keto
acids and derivatives; and 3 metabolites were classified as organonitrogen compounds. The additional
15 metabolites were each classified into distinct categories with two or fewer metabolites including
amines, benzenes and substituted derivatives, glycerophospholipids, imidazopyrimidines, indoles and
derivatives, organic sulfonic acids and derivatives, organic sulfuric acids and derivatives, pyridines
and derivatives, and pyrimidine nucleosides. Three metabolites were unclassified by HMDB.

2.3. Associations with Metabolic Risk Factors

In Table S3, we present the ranked results of all logistic regression models for both TMCS and
BLSA cohorts separately. As described in the Methods section, we ranked metabolites based on the
likelihood of a type I error (i.e., p-value) and identified the top 25 metabolites in each cohort with the
lowest likelihood of a type I error (i.e., smallest p-value). We indicated with an * if a metabolite in the top
25 for one cohort was also in the top 25 for the other cohort, and we indicated with a † if the metabolite
was unique to the top 25 in one cohort. In the BLSA, 17 metabolites were significantly associated
with MetS, 16 were significantly associated with elevated waist circumference, 7 were significantly

http://www.hmdb.ca/
http://www.hmdb.ca/
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associated with elevated fasting glucose, 4 were significantly associated with elevated triglycerides,
and no metabolites were significantly associated with reduced HDL-C or elevated blood pressure
after FDR correction. In the TMCS cohort, 33 metabolites were significantly associated with MetS,
21 were significantly associated with elevated waist circumference, 21 were significantly associated
with elevated triglycerides, 19 were associated with elevated fasting glucose, 6 were associated with
reduced HDL-C, and 4 were associated with elevated blood pressure after FDR correction.

In Figure 2, we summarize the results of the logistic regression models measuring the association
between metabolites and MetS in both cohorts for the 25 metabolites with the lowest likelihood of a
type I error (i.e., smallest p-value). Of the 25 most significant metabolites, 18 metabolites were in the
top 25 for both BLSA and TMCS cohorts while 7 were unique within each cohort. Results remained
consistent in three different sensitivity analyses: (1) adjusting models for smoking status, physical
activity, and diet quality (Table S4); (2) sex-stratified analyses (Table S5) in which fewer metabolites
remained significant after FDR correction, likely due to reduced statistical power; and (3) excluding
imputed values (Table S6).

Figure 2. Logistic regression model results for the top 25 metabolites with the lowest likelihood of a
type I error (i.e., smallest p-value) from the logistic regression model measuring the association between
metabolites and MetS in (a) TMCS and (b) BLSA. p-values are false-discovery rate (FDR) corrected for
multiple comparisons, and results are adjusted for age and sex in both cohorts as well as for storage
time in the BLSA cohort. The y-axis indicates the serum metabolite concentration used as the predictor
in the model and is ordered (i.e., ranked) from smallest to largest p-value within the top 25. The x-axis
indicates the outcomes of MetS and its individual risk factors. The size of each circle corresponds to the
significance of the association, with a larger circle indicating a smaller p-value. The color of each circle
indicates the value of the odds ratio estimate with blue indicating an OR < 1 and red indicating an
OR > 1. Red, bolded font indicates the metabolite was among the top 25 in both cohorts. Abbreviations:
glu: glutamate; pro: proline; ile: isoleucine; leu: leucine; val: valine; ser: serine; ala: alanine; gly:
glycine; tyr: tyrosine; phe: phenylalanine; trp: tryptophan; gln: glutamine; and asn: asparagine; BLSA:
Baltimore Longitudinal Study of Aging; TMCS: Tsuruoka Metabolomics Cohort Study.

2.4. Metabolite Classes Associated with MetS

A number of metabolite classes were represented among the 25 metabolites most significantly
associated with MetS in each cohort. These were classified a priori using HMDB class designations
reported above in Section 2.2. Of the 18 metabolites shared in the top 25 between cohorts, 13 represented
carboxylic acids and their derivatives. The remaining 5 metabolites were keto acids and their
derivatives (2 metabolites), hydroxy acids and their derivatives (2 metabolites), and pyruvate,
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which was unclassified by HMDB. The 7 metabolites unique to the TMCS cohort in the top 25
were classified as carboxylic acids and their derivatives (4 metabolites), hydroxy acid and their
derivatives (1 metabolite), indole and their derivatives (1 metabolite), and organooxygen compounds
(1 metabolite). The 7 metabolites unique to the BLSA cohort among the top 25 represented carboxylic
acids and their derivatives (2 metabolites), pyrimidine nucleosides (1 metabolite), keto acid and their
derivatives (1 metabolite), imidazopyrimidine (1 metabolite), organonitrogen compounds (1 metabolite),
and organooxygen compounds (1 metabolite).

Of the 18 metabolites overlapping between BLSA and TMCS, we additionally categorized
them into metabolic pathways based upon the HMDB pathway database and a literature search of
metabolite-associated pathways (see the Methods section for a description of pathway classification
relevant to MetS and related conditions). Classification by this methodology resulted in the identification
of 7 primary pathways: aromatic amino acid metabolism, amino acid metabolism, lysine degradation,
tricarboxylic acid cycle, glutathione production, gluconeogenesis, and branched-chain amino acid
metabolism. The class and primary pathways of the 18 metabolites overlapping between BLSA and
TMCS in the top 25 are summarized in Table 2.

Table 2. Shared metabolites among the top 25 metabolites with the lowest probability of type I error
from the logistic regression models measuring the association between metabolites and MetS: The class
of each metabolite was determined by Human Metabolome Database (HMDB) classification, and the
primary pathway was determined by the HMDB pathway database tool in addition to a literature
search identifying pathways relevant to MetS and related conditions.

Metabolite Class Primary Pathway *

Lactate Alpha hydroxy acids Gluconeogenesis
2-hydroxybutyrate Alpha hydroxy acids Glutathione production

Pro Carboxylic acids Amino acid metabolism
Phe Carboxylic acids Aromatic amino acid metabolism
Tyr Carboxylic acids Aromatic amino acid metabolism
Ile Carboxylic acids BCAA metabolism

Leu Carboxylic acids BCAA metabolism
Val Carboxylic acids BCAA metabolism
Ala Carboxylic acids Gluconeogenesis
Glu Carboxylic acids Glutathione metabolism

Cystine Carboxylic acids Glutathione metabolism
Gly Carboxylic acids Glutathione metabolism
Gln Carboxylic acids Glutathione metabolism

Alphaaminoapidate Carboxylic acids Lysine degradation
Isocitrate Carboxylic acids Tricarboxylic acid cycle

Methyl-2-oxopentanoate Short-chain keto acids BCAA metabolism
Oxoisopentanoate Short-chain keto acids BCAA metabolism

Pyruvate Unclassified Gluconeogenesis

BCAA: branched-chain amino acid; * the likely pathway of primary biologic relevance to MetS and related conditions.

3. Discussion

In this study, we compared U.S. and Japanese populations of older individuals in order to
identify a serum metabolite signature of MetS that may be intrinsic to the syndrome despite markedly
different population-specific characteristics and distribution of individual risk factors. We identified
18 metabolites that were common among the 25 metabolites with the strongest associations with
MetS in each cohort; these metabolites were mainly carboxylic acids, hydroxy acids, and keto acids.
Overwhelmingly, the shared associations identified in this study represented amino acids—which
account for 11 of the 13 carboxylic acids among the 18 shared metabolites—or metabolites implicated
in amino acid metabolism. Despite numerous differences between cohorts including metabolite
concentrations and prevalence of MetS risk factors, we identified alterations in overlapping metabolites
across cohorts, suggesting that fundamental alterations in amino acid metabolism may be intrinsic to
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MetS pathophysiology. This signature suggests a set of metabolites and associated pathways that may
be important for improved diagnosis and targeted therapeutic approaches.

Interestingly, while the prevalence of MetS was similar between TMCS and BLSA cohorts,
the prevalence of individual risk factors in the overall sample as well as among individuals with MetS
varied between cohorts. This finding is consistent with prior studies that indicate a cross-cultural
heterogeneity in the combination of the risk factors in MetS [25]. Part of these differences in risk factor
prevalence may stem from differences in drug prescription guidelines and practice between the U.S.
and Japan, since we reported differences in drug usage prevalence between cohorts. It has previously
been reported that cholesterol-lowering statins are underutilized in Japanese patients at risk for
cardiovascular disease, and differences in antihypertensive medication prescription have been reported,
suggesting that drug prescription guidelines and practices could underly this difference [28–30]. It is
important to note that we do not report pretreatment values of these measures and are therefore unable
to identify with certainty how differences in drug usage may impact risk factor differences. Finally,
contrary to prior research indicating a higher smoking prevalence in Asian countries [31], we report
higher rates of smoking among U.S. participants in this study.

Our findings suggest that, despite the heterogeneity in the prevalence of MetS risk factors across
both cohorts and differences in serum concentrations in over 92% of the metabolites measured in
this study, the majority of each cohort’s most significant metabolite associations with MetS was
similar. The 18 common and overlapping metabolites were either amino acids or metabolites directly
or indirectly related to amino acid metabolism, suggesting that amino acid metabolism and associated
pathways may be fundamental to the biologic processes that may underlie MetS. In particular, the amino
acid metabolic pathways represented in these results potentially implicate branched-chain amino acid
(BCAA) metabolism and glutathione (GSH) synthesis in the pathogenesis of MetS.

Circulating concentrations of both serum and plasma BCAAs, which include valine, isoleucine,
and leucine, have been previously linked to obesity and insulin resistance [32–34]. In a Chinese cohort,
BCAAs were associated with overall MetS as well as elevated fasting glucose, elevated triglycerides,
and reduced HDL-C [35]. When BCAA metabolism becomes dysregulated, as in MetS, the breakdown
products of valine, isoleucine, and leucine may accumulate and exert negative metabolic effects.
This is evidenced by the previous finding that a genetic disposition to impaired BCAA metabolism
confers an increased risk for type II diabetes mellitus [36]. Notably, branched-chain alpha-ketoacid
(BCKA; direct catabolic products of the BCAAs) administration has been demonstrated to induce
mitochondrial dysfunction in diverse tissues [37–39]. In our study, all three BCAAs were positively
associated with MetS in both cohorts and the BCKAs methyl-2-oxopentanoate and oxoisopentanoate
were also positively associated with MetS. This suggests that BCAA metabolism may be fundamentally
implicated in MetS and confirms that BCAAs and BCKAs may represent markers of the disease in
diverse populations. Interestingly, both BCAAs and BCKAs have been associated with MetS in a
previous TMCS cohort of postmenopausal women [40].

More generally, BCAAs have been frequently studied in the context of metabolic disorders and
obesity. Among healthy-weight individuals, BCAAs appear to exert beneficial effects, including
a decreased risk of obesity, increased muscle mass, potential improvements in glucose sensitivity,
and possible therapeutic effects for patients with hepatic cirrhosis and encephalopathy [41–44].
However, long-term exposure to elevated BCAAs stimulates hyperphagia and obesity, has been
correlated positively with LDL and triglyceride levels and negatively with HDL-C, and directly inhibits
the TCA cycle through BCKA accumulation [43,45,46]. In prior in vitro studies using rat cortical slices,
BCKA accumulation has also been demonstrated to reduce neuronal glutamate uptake [47], which
has been identified as a potential pathological feature of Alzheimer’s disease (AD) [48]. In addition,
a genetic predisposition to elevated isoleucine has been found to increase risk of AD, and leucine
has previously been shown to promote tau accumulation via a mammalian target of rapamycin
(mTOR)-dependent mechanism [49,50]. An altered BCAA metabolism could therefore represent a
potential mechanistic link between MetS and AD [51].
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Oxidative stress likely plays a key role in the pathology of both AD and obesity-related
disorders [52–54] among older adult populations like those included in this study. One essential
mechanism for combatting oxidative stress is the production of GSH, a molecule with numerous
antioxidant roles for which homeostasis is disrupted in both AD and obesity [55,56]. Interestingly, our
recent work using the CE-MS platform to measure brain tissue metabolite concentrations in the BLSA
autopsy study identified a positive association between GSH and cystine, a GSH precursor, in AD,
suggesting a disease-specific, chronic inflammatory state [57]. In the present study, several amino acids
essential to GSH synthesis were associated with MetS. Most notably, cystine and glutamate displayed
positive associations with MetS while glycine displayed a negative association. While cystine is
considered a rate-limiting metabolite for the synthesis of GSH, elevated extracellular glutamate inhibits
the uptake of cystine and reduces GSH synthesis [58]. Independently, cystine has been associated
with obesity and insulin resistance [59]. Additionally, 2-hydroxybutyrate was positively associated
with MetS in this study and plays an important role in the GSH synthetic pathway. Specifically,
2-hydroxybutyrate is a byproduct of cystine formation, and its association with MetS may represent
an increased flux through GSH synthesis in response to oxidative stress [60]. When its levels are
reduced, glycine may become the limiting factor in GSH production as suggested by the finding that
glycine supplementation restores GSH levels and reduces oxidative stress [61]. Serine, which was
associated with a decreased risk of MetS in the TMCS cohort only, has been shown to play a role in GSH
synthesis through its conversion to glycine [62]. Another amino acid, glutamine, that was associated
with a decreased risk of MetS in both cohorts has additionally been shown to drive production of
glutathione [63]. As a whole, our results suggest that MetS implicates pathways associated with chronic
oxidative stress owing to the positive associations of several metabolites from the GSH synthesis
pathway with MetS. Furthermore, glycine availability may be a limiting factor in GSH production
under these conditions, since glycine demonstrated a negative association with MetS.

Our results further implicate the importance of gluconeogenesis and particularly the
glucose-alanine cycle in MetS. In this study, alanine, pyruvate, and lactate all displayed positive
associations with MetS across cohorts. Alanine is the predominant glucogenic amino acid and is
typically released from muscle under conditions in which glucose is scarce. In peripheral tissues,
alanine is produced through transamination of pyruvate and is then converted back to pyruvate and
glucose via gluconeogenesis in the liver [64]. Lactate is typically produced from pyruvate under
conditions of anaerobic glycolysis and is similarly reconverted to pyruvate for gluconeogenesis in the
liver. Subcutaneous fat has been demonstrated to be a source of excess lactate in obese individuals,
suggesting altered metabolism in the obese [65]. The positive associations of alanine, pyruvate,
and lactate with MetS suggests that alterations in glycolytic flux are likely central features of MetS.

Interestingly, it has been shown that disruption of pyruvate entry into the tricarboxylic acid (TCA)
cycle causes an increased rate of conversion of glutamine—which was identified as protective against
MetS in this study—into oxoglutarate, a TCA cycle intermediate [66]. Increased utilization of amino
acids for the TCA cycle under pathological conditions could reduce their availability for other key
biochemical pathways, such as GSH synthesis discussed previously. More general alterations in the
TCA cycle may be fundamental to MetS, as we identified that isocitrate was positively associated
with the disease in both cohorts. This is not surprising, as increased anaplerotic flux generating TCA
intermediates is a hallmark feature of obesity and insulin resistance [67].

We additionally identified an alteration in aromatic amino acid metabolism, indicated by the
positive association of phenylalanine and tyrosine with MetS across cohorts. Tyrosine is produced
through hydroxylation of phenylalanine, and both metabolites have previously been associated with
obesity [68]. These amino acids may become elevated as a result of competition with BCAAs for the
same large neutral amino acid transporter or inhibition of tyrosine aminotransferase by cystine [32,69].
Interestingly, phenylalanine and tyrosine function as precursors for catecholamines in the brain,
presenting a potential link between the metabolic dysfunction of MetS and common neurological
diseases [70,71].
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Lastly, we identified that alpha-aminoadipate, a breakdown product of lysine degradation, was
associated with MetS in both cohorts. This metabolite has previously been identified as a marker
distinguishing between metabolically healthy and unhealthy obese individuals and has been considered
a biomarker of diabetes [72,73].

In a prior study, we utilized metabolomics to identify classes of metabolites associated with MetS
in a study including similar cohorts from the BLSA and TMCS [74]. In that study, we performed flow
injection analysis-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry to
quantify 167 metabolites spanning a wide variety of polar and hydrophobic compounds. We identified
that phosphatidylcholines-acyl-alkyls, sphingomyelins, and hexoses were associated with MetS in
both cohorts, suggesting that these classes of metabolites may represent fundamental markers of the
syndrome. Furthermore, we measured 27 of the 82 metabolites quantified in this study, some of which
were associated with MetS in this study but not our prior work. There may be a few explanations for
this disparity between our results. First, the present study makes use of much larger sample sizes for
both cohorts, nearly six times larger for TMCS and twice as large for BLSA. This increased the statistical
power of our analyses and thus improved the possibility that additional metabolite associations were
captured. In addition, the current study utilizes a different metabolomics platform than our previous
work, quantifying metabolites by CE-TOFMS as opposed to LC-MS, which may explain some variation
in our results.

Our study has several limitations. First, the TMCS cohort represented a narrower age range
than the BLSA cohort and were from the same city and prefecture in Japan, suggesting that the
BLSA cohort was more heterogenous with respect to a number of unmeasured environmental and
ethnicity-related factors. Additionally, the TMCS cohort is likely more representative of the general
Japanese population than the BLSA cohort is of the U.S. population, since the BLSA participants
are predominantly Caucasian, well educated, and relatively healthy. In addition, the metabolomics
platform we utilized only allowed us to measure a subset of the serum metabolome. Furthermore,
while our sample provided sufficient power to detect significant associations between metabolites and
MetS, a larger sample size may have allowed for the detection of other novel metabolites that we did
not detect in our current analyses. Lastly, the cross-sectional nature of the present study prevents us
from making inferences regarding metabolic predictors of MetS onset or how longitudinal changes in
metabolite concentrations may reflect disease processes.

In conclusion, our results highlight the importance of several altered amino acid metabolic
pathways in MetS. Specifically, we confirm through analysis in two ethnically distinct cohorts
that BCAA metabolism and GSH synthesis may represent central pathways contributing to MetS
and additionally note alterations in gluconeogenesis, TCA cycle, aromatic amino acid metabolism,
and lysine degradation. It is possible that these alterations in amino acid metabolism may be the result
of mitochondrial dysfunction coupled with protein breakdown, which have previously been discussed
as causal mechanisms in amino acid alterations [68,75]. These alterations, however, take place across
disparate biochemical pathways, suggesting that MetS likely represents a state of chronic, systemic
metabolic dysregulation. The findings of this study are relevant for future studies examining altered
metabolic flux through these pathways in MetS as well as an understanding of shared pathways across
MetS and other diseases associated with aging.

4. Methods

4.1. Participants

The National Institute on Aging’s (NIA) BLSA is one of the longest running scientific studies
of human aging in the U.S. [76]. This observational study began in 1958 and includes longitudinal
clinical, radiological, and laboratory evaluations on community-dwelling volunteer participants.
The individuals in this study were participants in the neuroimaging sub-study of the BLSA [77].
Written informed consent was obtained at each visit for all BLSA participants. The BLSA study protocol
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has ongoing approval from the Institutional Review Board of the National Institute of Environmental
Health Science, National Institutes of Health (“Early Markers of Alzheimer’s Disease (BLSA)”, IRB
No. 2009-074).

The Tsuruoka Metabolomics Cohort Study (TMCS) is a population-based study of residents from
Tsuruoka City, Yamagata Prefecture, Japan that began in 2012. Participants were recruited from annual
municipal or worksite health checkup programs in the city. The individuals in this study were a
subset from the baseline survey participants of the TMCS [78]. Written informed consent was obtained
from all TMCS participants. The TMCS study protocol has ongoing approval from the Medical Ethics
Committee of the School of Medicine, Keio University, Tokyo, Japan (Approval No. 20110264; original
approval date: 6 December 2011; latest update: 2 December 2019).

4.2. Blood Samples

In BLSA participants, blood samples were collected at the NIA Clinical Research Unit in Harbor
Hospital, Baltimore, MD. Collection and processing details have been described previously [79]. Briefly,
venous blood samples were collected (after an overnight fast) between 6 and 7 AM. Serum samples
were aliquoted into 0.5-mL volumes in Nunc cryogenic tubes (Rochester, NY, USA) and stored at
−80 ◦C. Samples were not subject to any freeze–thaw cycles prior to metabolomic assays. The average
storage time of BLSA serum samples prior to thaw for quantitative metabolomics was 12.39 years
(SD: 9.41). The sample included 252 participants.

For TMCS participants, blood serum samples were collected during annual health checkups.
Details on collection and processing have been published previously [40,78]. Briefly, venous blood
samples were collected (after an overnight fast) between 8:30 and 10:30 AM. Serum samples were
collected with serum-separating medium and assayed immediately. Storage time was less than 6 h and
did not vary across TMCS participants. The sample included 644 participants.

4.3. Metabolites

Non-targeted metabolomics was carried out in this study using capillary electrophoresis
time-of-flight mass spectrometry (CE-TOFMS) for quantification of metabolites. CE-TOFMS captures a
broad range of charged and hydrophilic metabolites, including amino acids, organic acids, ketoacids,
and a number of other metabolite classes which represent a variety of biological pathways. Compared
to other methods, CE-TOFMS requires a small sample size with robust sensitivity and high resolution
of results [80].

4.3.1. Metabolite Extraction

As described previously [81], metabolite extraction was completed at Keio University, Tokyo,
Japan. Briefly, samples were thawed and 100-µL serum aliquots were placed in 900-µL of methanol
with internal standards (20 µmol of both methionine sulfur and camphor 10-sulfonic acid). Solutions
were mixed and 400 µL of Milli-Q water (Millipore, Billerica, MA, USA) and 1 mL of chloroform was
added, followed by centrifugation at 4600× g for 5 min at 4 ◦C. Next, the aqueous layer was transferred
to a 5-kDa cutoff centrifugal filter tube (Millipore, Billerica, MA, USA) to remove large molecules.
The filtrate was then centrifugally concentrated at 35 ◦C and reconstituted with 50 µL of Milli-Q water
that contained reference compounds (200 µmoL/L each of 3-aminopyrrolidine and trimesic acid) prior
to CE-TOFMS.

4.3.2. Capillary Electrophoresis Time-of-Flight Mass Spectrometry (CE-TOFMS)

Analysis using CE-TOFMS to quantify cationic and anionic metabolites has been described
previously [82–84]. Briefly, CE-TOFMS analysis was used an Agilent CE capillary electrophoresis
system equipped with an Agilent 6210 time-of-flight mass spectrometer, Agilent 1100 series isocratic
HPLC pump, Agilent G1603A CE-MS adapter kit, and Agilent G1607A CE-ESI-MS sprayer kit (Agilent
Technologies, Waldbronn, Germany). Agilent G2201AA ChemStation software version B.03.01 for CE
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(Agilent Technologies, Waldbronn, Germany) was used to control systems. Systems were connected by
a fused silica capillary (50 µm internal diameter × 100 cm total length) with 1 mol/L formic acid as
the electrolyte for cationic analysis and 50 mmol/L ammonium acetate solution for anionic analysis.
The spectrometer was scanned from m/z 50 to 1000 [85]. MasterHands automatic integration software
(Keio University, Tsuruoka, Yamagata, Japan) was used to extract peaks in order to quantify m/z, peak
area, and migration time (MT) [84]. Signal peaks corresponding to isotopomers, adduct ions, and other
product ions of known metabolites were excluded. The remaining peaks were annotated by matching
m/z values and normalized migration times of corresponding authentic standard compounds [81].

As described previously [86], CE-TOFMS analysis enabled measurement of the absolute
concentrations of metabolites on the basis of their peak area and a 6-point calibration curve for
each metabolite. Quantification was performed using the (M+H)+ or (M-H)− parent ion peak area
for each metabolite compared to the same parent peak in the standard solution. Concentration is
only reported if the measured area is above the signal:noise ratio (S/N) of 5 and peak area is within
linear range of the standard curve [87]. As reported previously [88], coefficients of variation (CVs) for
repeat technical was less than 10%. In this study, 103 distinct metabolites were originally detected by
CE-TOFMS. Metabolite concentrations are reported in µM.

4.4. Metabolite Classifications

Among the 82 metabolites included in analyses, we identified metabolite classes and primary
pathways using a three-step process (summarized in Figure 3). We first categorized metabolites based
on the Human Metabolome Database (HMDB) designation of metabolite class, subclass, and direct
parent [89]. Table S1 includes classifications and groupings of all metabolites. The “class” classification
is included in the tables in the Results section for significant metabolites.

Second, after identifying the 18 overlapping metabolites associated with MetS in both cohorts, we
used the HMDB pathway database to identify the biochemical pathways each individual metabolite
participates in as well as the pathways that were overlapping across metabolites. Third, we conducted
a comprehensive literature search to identify which of the overlapping pathways were associated with
MetS and/or related conditions. The primary pathway for metabolites highlighted in the tables in the
Results section for significant metabolites included the pathways identified by HMDB with primary
biologic relevance to MetS.

4.5. Outcomes

4.5.1. Definition of MetS

Metabolic syndrome (MetS) was defined using the Third Adults Treatment Panel of the National
Cholesterol Education Program (NCEPATPIII) criteria, revised by the American Heart Association and
National Heart, Lung, and Blood Institute (AHA/NHLBI) [5]. A diagnosis of MetS required meeting
at least three of five criteria/risk factors, including elevated waist circumference, elevated fasting
plasma glucose, elevated serum triglyceride levels, reduced serum HDL cholesterol, and elevated blood
pressure. Elevated waist circumference was defined as greater than 40 inches in males and greater than
35 inches in females. For TMCS participants, the criterion was modified as appropriate for a Japanese
population, defining elevated waist circumference as greater than or equal to 100 cm in males and
greater than or equal to 90 cm in females [40]. Elevated fasting glucose was defined as greater than or
equal to 100 mg/dL or the use of prescription diabetes medications. Elevated triglyceride level was
defined as greater than or equal to 150 mg/Dl or the use of prescription hyperlipidemia medications.
Reduced HDL cholesterol was defined as less than 40 mg/dl in males, less than 50 mg/dL in females, or
the use of prescription hyperlipidemia medications. Elevated blood pressure was defined as greater
than or equal to 130 mm Hg systolic blood pressure, greater than or equal to 85 mm Hg diastolic blood
pressure, or the use of prescription hypertension medications. All prescription medication use in both
cohorts were self-reported through a standardized medication questionnaire.



Int. J. Mol. Sci. 2020, 21, 1249 12 of 20

Figure 3. Establishing a metabolic signature of MetS: This figure presents an overview of the
methodology, demonstrating data processing steps, analytic methods, and data interpretation including
class and pathway classification of metabolites. CE-TOFMS: capillary electrophoresis time-of-flight
mass spectrometry; TMCS: Tsuruoka Metabolomics Cohort Study; BLSA: Baltimore Longitudinal Study
of Aging; HMDB: Human Metabolome Database; FDR: false-discovery rate.

4.5.2. Individual Risk Factors

In the BLSA sample, plasma levels of triglycerides and fasting plasma glucose were measured
using previously detailed enzymatic methods [90,91]. HDL-C values were measured using a dextran
sulfate-magnesium precipitation procedure. In addition to outcomes measured in blood serum, waist
circumference and blood pressure in both cohorts were also measured. BLSA staff clinicians measured
waist circumference with a tape measure kept parallel to the floor from the hipbone and wrapping
around the waist at the level of the umbilicus while participants held their breath [92]. Systolic and
diastolic blood pressures were recorded three times in both arms in a seated position using a mercury
sphygmomanometer sized to the arm of each participant, and the mean of the systolic and diastolic
measurements were used in analysis [93].

In the TMCS sample, serum levels of triglycerides and fasting plasma glucose were measured
using enzymatic and hexokinase methods, respectively [94]. HDL-C values were obtained using a
direct method. Waist circumference was measured to the nearest 0.1 cm at the umbilicus at the end of
a normal breath. If the umbilicus drooped down, the measurement was recorded midway between
the inferior margin of the last rib and the top of the iliac crest in a horizontal plane [40]. Systolic and
diastolic blood pressures were each measured twice on one occasion while seated using an automated
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sphygmomanometer (Omron HBP-T105S-N, Kyoto, Kyoto, Japan), and the mean of each of the two
measurements were used in analysis [40].

4.6. Statistical Analyses

We first excluded all metabolites with >30% missing values (i.e., values identified as “not
detectable” (ND) due to values lower than the limit of detection (LOD)) [57] and only included
metabolites that overlapped between samples; 21 of 103 metabolites were excluded, resulting in 82 total
metabolites included in analyses (see Figure 3). Similar to prior work, we then imputed all missing
values as the lowest detectable value/2 [95]. In the BLSA cohort, the number of imputed values for
individual metabolites ranged from 0 (0.0% of total) to 54 (21.4% of total), with a median of 5 (2.0% of
total). In the TMCS cohort, the number of imputed values ranged from 0 (0.0% total) to 174 (27.0%
of total), with a median of 12 (1.9% of total). Following imputation, we compared metabolite values
between BLSA and TMCS using nonparametric Wilcoxon rank-sum tests. To account for multiple
comparisons, we corrected levels of significance using false discovery rate (FDR)-adjusted p-values [96].
We compared demographic characteristics in addition to the prevalence of MetS and its individual
risk factors between BLSA and TMCS cohorts using two-sample t-tests for continuous variables and
chi-squared tests for categorical variables.

For primary analyses, we first natural log transformed all 82 metabolites and then excluded outlier
values outside the 1.5 interquartile range (i.e., 1.5 × IQR). We then performed IQR normalization
of metabolite values by subtracting the median value from the individual metabolite value and by
dividing by the IQR. We used these normalized values in multivariate logistic regression models
to explore the associations between distinct blood metabolites (predictors) and the binary outcome
indicators of MetS (i.e., present/absent) and its 5 individual risk factors: elevated waist circumference,
elevated fasting glucose, elevated triglycerides, reduced HDL cholesterol, and elevated blood pressure.
The logistic regression models indicated whether each of the 82 metabolites was associated with either
increased or decreased odds of the outcome. Covariates included sex and age at blood draw. For BLSA
models, we included storage time as an additional covariate. Model results indicate an increase or
decrease in the odds of having MetS or one of its individual risk factors associated with a one-unit
increase in the normalized metabolite concentration(s). We corrected levels of significance using
FDR-adjusted p-values using the same method described previously.

In order to identify a metabolite signature of MetS and to then describe the biologic pathways
that may link the metabolites to underlying disease processes, we first ranked metabolites within each
cohort. The ranking was based on the likelihood of a type I error (e.g., p-value) generated from the
logistic regression model, indicating the strength of the association between the metabolite and MetS.
The highest-ranking metabolite had the least likelihood of a type I error (i.e., smallest FDR-corrected
p-value), the second-highest-ranking metabolite had the second smallest p-value, and so on. We
used this ranking to identify the top 25 metabolites in each cohort. We then visualized the 25 top
ranked metabolites for each cohort using side-by-side rainplots [97], which visualize the significance
and direction of the odds ratio estimate of each metabolite association. Of these 25 metabolites, we
identified which metabolites were shared between cohorts (i.e., in the top 25 for both BLSA and TMCS),
which suggest metabolites and associated metabolic pathways that may be intrinsic to MetS despite
differences in population-specific factors. We additionally identified metabolites that were unique to a
cohort (i.e., in the top 25 for one cohort but not in the other). We included both the a priori indicated
HMDB designated “class” classification as well as the primary metabolic “pathway” classification in
order to meaningfully group metabolites and to develop a model linking metabolite associations to
biological processes.

We performed sensitivity analyses for the multivariate logistic regression models including
smoking status, physical activity, and diet (for TMCS only) as covariates in addition to age, sex,
and serum sample storage time (for BLSA only). Smoking status was coded 0 (never smoker) or
1 (current or former smoker). Diet quality was assessed using the Dietary Approaches to Stop
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Hypertension (DASH) score [98]. The DASH score indicates adherence to the DASH dietary pattern by
measuring consumption of 9 target nutrients including total fat, saturated fat, protein, fiber, cholesterol,
calcium, potassium, and magnesium. We excluded magnesium as this target was not included in
TMCS data collection. The DASH score therefore represented the sum of 8 nutrient components, with
higher values indicating a higher quality diet. The DASH score was not collected for the majority of
BLSA participants included in this study and was therefore only included in sensitivity analyses for
the TMCS cohort.

Physical activity measurements were obtained via questionnaire in each study. For BLSA
participants, a physical activity (PA) questionnaire was administered that asked participants to
estimate the time spent performing 97 different activities. The use of this questionnaire in the BLSA has
previously been described [99]. PA intensity was measured in metabolic equivalents (METs) [100]. As in
prior studies, activities were grouped into low-intensity (<4 METs), moderate-intensity (4–5.9 METs),
and high-intensity (>6 METs) [101]. Total PA was determined by summing the three categories of
activity and by multiplying the hours spent in each activity by the assigned MET value. The PA survey
administered to TMCS participants was developed initially for the Japan Public Health Center-based
Study [102] and relies on measurement of the domains of occupational activity, leisure time activity,
sleeping, and other activities [103]. Total PA was determined by summing all domains of activity and
by multiplying the hours spent in each activity by the assigned MET value. In both BLSA and TMCS,
we used total PA in METs/week in sensitivity analyses.

We conducted additional sensitivity analyses exploring potential sex-specific differences in
metabolite associations. We ran sex-stratified multivariate logistic regression models for the BLSA
and TMCS including age as a covariate as well as sample storage time in the BLSA cohort. Finally, we
conducted sensitivity analyses to verify that imputation did not significantly impact results. We ran
multivariate logistic regression models for BLSA and TMCS including sex and age as covariates as
well as sample storage time in the BLSA cohort while excluding all imputed data from the analyses.

For all logistic regression models, we reported odds ratios. The type I error level was set to 0.05
for unadjusted p-values, and we corrected for multiple comparisons using FDR-adjusted p-values as
described above. We used R Studio 1.1.453 for all data analyses and visualizations.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/4/1249/s1,
Figure S1: title, Table S1: title, Video S1: title.

Author Contributions: Conceptualization, J.A.R., V.R.V, Y.A., A.O., and M.T.; data curation, V.R.V and P.E.;
formal analysis, J.A.R. and C.-W.H..; funding acquisition, M.T.; investigation, T.T. (Toru Takebayashi ), S.H.,
and M.I.; methodology, J.A.R, V.R.V, Y.A., T.T. (Toshiko Tanaka), T.T. (Toru Takebayashi ), S.H., and M.I.; project
administration, L.F. and M.T.; resources, T.T. (Toru Takebayashi ), S.H., M.I., and M.T.; supervision, V.R.V and
M.T.; validation, C.-W.H.; visualization, J.A.R.; writing—original draft, J.A.R.; writing—review and editing, V.R.V.,
A.O., and M.T. All authors have read and agreed to the published version of the manuscript

Funding: This research was supported in part by the Intramural Research Program of the NIH, National Institute
on Aging. The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript. M.T. is grateful for funding support from the Andrew and Lillian A. Posey Foundation to the
Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, NIA.

Acknowledgments: This study was funded in part by the National Institute on Aging Intramural Research
Program. We are grateful to the Baltimore Longitudinal Study of Aging and Tsuruoka Metabolomics Cohort Study
participants for their invaluable contributions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BLSA Baltimore Longitudinal Study of Aging
TMCS Tsuruoka Metabolomics Cohort Study
MetS Metabolic Syndrome
CE-TOFMS Capillary electrophoresis time-of-flight mass spectrometry
AD Alzheimer’s disease

http://www.mdpi.com/1422-0067/21/4/1249/s1


Int. J. Mol. Sci. 2020, 21, 1249 15 of 20

HMDB Human Metabolome Database
FDR False-discovery rate
PA Physical activity
MET Metabolic equivalent
DASH Dietary Approaches to Stop Hypertension
LOD Limit of detection
IQR Interquartile range
BCAA Branched-chain amino acid
BCKA Branched-chain keto acid
GSH Glutathione
TCA Tricarboxylic acid

References

1. Ford, E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic
syndrome—A summary of the evidence. Diabetes Care 2005, 28, 1769–1778. [CrossRef] [PubMed]

2. Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis.
Am. J. Med. 2006, 119, 812–819. [CrossRef] [PubMed]

3. Chen, W.; Pan, Y.; Jing, J.; Zhao, X.; Liu, L.; Meng, X.; Wang, Y.; Wang, Y.; Investigators, C. Recurrent Stroke
in Minor Ischemic Stroke or Transient Ischemic Attack With Metabolic Syndrome and/or Diabetes Mellitus.
J. Am. Heart Assoc. 2017, 6. [CrossRef] [PubMed]

4. Razay, G.; Vreugdenhil, A.; Wilcock, G. The metabolic syndrome and Alzheimer disease. Arch. Neurol.
2007, 64, 93–96. [CrossRef] [PubMed]

5. Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.;
Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American
Heart Association/National Heart, Lung, and Blood Institute scientific statement: Executive Summary.
Crit. Pathw. Cardiol. 2005, 4, 198–203. [CrossRef] [PubMed]

6. Shin, D.; Kongpakpaisarn, K.; Bohra, C. Trends in the prevalence of metabolic syndrome and its components
in the United States 2007-2014. Int. J. Cardiol. 2018, 259, 216–219. [CrossRef] [PubMed]

7. Hu, F.B. Globalization of Diabetes The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257.
[CrossRef]

8. Odegaard, A.O.; Koh, W.P.; Yuan, J.M.; Gross, M.D.; Pereira, M.A. Western-Style Fast Food Intake and
Cardiometabolic Risk in an Eastern Country. Circulation 2012, 126, 182–188. [CrossRef]

9. Ministry of Health LaWoJ. A Summary of the National Nutritional and Health Survey of 2016. Available
online: https://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h28-houkoku.pdf (accessed on 10 November 2019).

10. Scholze, J.; Alegria, E.; Ferri, C.; Langham, S.; Stevens, W.; Jeffries, D.; Uhl-Hochgraeber, K. Epidemiological
and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany,
Spain and Italy; a prevalence-based model. BMC Public Health 2010, 10. [CrossRef]

11. Dekker, J.M.; Girman, C.; Rhodes, T.; Nijpels, G.; Stehouwer, C.D.A.; Bouter, L.M.; Heine, R.J. Metabolic
syndrome and 10-year cardiovascular disease risk in the hoorn study. Circulation 2005, 112, 666–673.
[CrossRef]

12. Exalto, L.G.; van der Flier, W.M.; van Boheemen, C.J.M.; Kappelle, L.J.; Vrenken, H.; Teunissen, C.; Koene, T.;
Scheltens, P.; Biessels, G.J. The metabolic syndrome in a memory clinic population: Relation with clinical
profile and prognosis. J. Neurol. Sci. 2015, 351, 18–23. [CrossRef] [PubMed]

13. Raffaitin, C.; Gin, H.; Empana, J.P.; Helmer, C.; Berr, C.; Tzourio, C.; Portet, F.; Dartigues, J.F.; Alperovitch, A.;
Barberger-Gateau, P. Metabolic Syndrome and Risk for Incident Alzheimer’s Disease or Vascular Dementia
The Three-City Study. Diabetes Care 2009, 32, 169–174. [CrossRef] [PubMed]

14. Vanhanen, M.; Koivisto, K.; Moilanen, L.; Helkala, E.L.; Hanninen, T.; Soininen, H.; Kervinen, K.;
Kesaniemi, A.; Laakso, M.; Kuusisto, J. Association of metabolic syndrome with Alzheimer disease A
population-based study. Neurology 2006, 67, 843–847. [CrossRef]

15. Luque-Contreras, D.; Carvajal, K.; Toral-Rios, D.; Franco-Bocanegra, D.; Campos-Pena, V. Oxidative Stress
and Metabolic Syndrome: Cause or Consequence of Alzheimer’s Disease? Oxid. Med. Cell. Longev. 2014.
[CrossRef] [PubMed]

http://dx.doi.org/10.2337/diacare.28.7.1769
http://www.ncbi.nlm.nih.gov/pubmed/15983333
http://dx.doi.org/10.1016/j.amjmed.2006.02.031
http://www.ncbi.nlm.nih.gov/pubmed/17000207
http://dx.doi.org/10.1161/JAHA.116.005446
http://www.ncbi.nlm.nih.gov/pubmed/28572281
http://dx.doi.org/10.1001/archneur.64.1.93
http://www.ncbi.nlm.nih.gov/pubmed/17210814
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.169405
http://www.ncbi.nlm.nih.gov/pubmed/18340209
http://dx.doi.org/10.1016/j.ijcard.2018.01.139
http://www.ncbi.nlm.nih.gov/pubmed/29472026
http://dx.doi.org/10.2337/dc11-0442
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.084004
https://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h28-houkoku.pdf
http://dx.doi.org/10.1186/1471-2458-10-529
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.516948
http://dx.doi.org/10.1016/j.jns.2015.02.004
http://www.ncbi.nlm.nih.gov/pubmed/25748296
http://dx.doi.org/10.2337/dc08-0272
http://www.ncbi.nlm.nih.gov/pubmed/18945929
http://dx.doi.org/10.1212/01.wnl.0000234037.91185.99
http://dx.doi.org/10.1155/2014/497802
http://www.ncbi.nlm.nih.gov/pubmed/24683436


Int. J. Mol. Sci. 2020, 21, 1249 16 of 20

16. Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [CrossRef]
17. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms.

Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [CrossRef]
18. Sallese, A.; Zhu, J.J. Mass spectrometry based metabolomics: A novel analytical technique for detecting

metabolic syndrome? Bioanalysis 2017, 9, 1623–1626. [CrossRef]
19. Pujos-Guillot, E.; Brandolini, M.; Petera, M.; Grissa, D.; Joly, C.; Lyan, B.; Herquelot, E.; Czernichow, S.;

Zins, M.; Goldberg, M.; et al. Systems Metabolomics for Prediction of Metabolic Syndrome. J. Proteome Res.
2017, 16, 2262–2272. [CrossRef]

20. Wiklund, P.K.; Pekkala, S.; Autio, R.; Munukka, E.; Xu, L.T.; Saltevo, J.; Cheng, S.M.; Kujala, U.M.; Alen, M.;
Cheng, S.L. Serum metabolic profiles in overweight and obese women with and without metabolic syndrome.
Diabetol. Metab. Syndr. 2014, 6. [CrossRef]

21. Zhong, F.Y.; Xu, M.Y.; Bruno, R.S.; Ballard, K.D.; Zhu, J.J. Targeted High Performance Liquid
Chromatography Tandem Mass Spectrometry-based Metabolomics differentiates metabolic syndrome
from obesity. Exp. Biol. Med. 2017, 242, 773–780. [CrossRef]

22. Tulipani, S.; Llorach, R.; Jauregui, O.; Lopez-Uriarte, P.; Garcia-Aloy, M.; Bullo, M.; Salas-Salvado, J.;
Andres-Lacueva, C. Metabolomics Unveils Urinary Changes in Subjects with Metabolic Syndrome following
12-Week Nut Consumption. J. Proteome Res. 2011, 10, 5047–5058. [CrossRef] [PubMed]

23. Pallister, T.; Jackson, M.A.; Martin, T.C.; Zierer, J.; Jennings, A.; Mohney, R.P.; MacGregor, A.; Steves, C.J.;
Cassidy, A.; Spector, T.D.; et al. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation
by diet and relationship to metabolic syndrome. Sci. Rep. 2017, 7. [CrossRef] [PubMed]

24. Lent-Schochet, D.; McLaughlin, M.; Ramakrishnan, N.; Jialal, I. Exploratory metabolomics of metabolic
syndrome: A status report. World J. Diabetes 2019, 10, 23–36. [CrossRef] [PubMed]

25. Lee, C.M.Y.; Huxley, R.R.; Woodward, M.; Zimmet, P.; Shaw, J.; Cho, N.H.; Kim, H.R.; Viali, S.; Tominaga, M.;
Vistisen, D.; et al. The metabolic syndrome identifies a heterogeneous group of metabolic component
combinations in the Asia-Pacific region. Diabetes Res. Clin. Pr. 2008, 81, 377–380. [CrossRef] [PubMed]

26. Van Valkengoed, I.G.M.; Argmann, C.; Ghauharali-van der Vlugt, K.; Aerts, J.M.F.G.; Brewster, L.M.;
Peters, R.J.G.; Vaz, F.M.; Houtkooper, R.H. Ethnic differences in metabolite signatures and type 2 diabetes:
A nested case-control analysis among people of South Asian, African and European origin. Nutr. Diabetes
2017, 7. [CrossRef] [PubMed]

27. Tillin, T.; Hughes, A.D.; Wang, Q.; Wurtz, P.; Ala-Korpela, M.; Sattar, N.; Forouhi, N.G.; Godsland, I.F.;
Eastwood, S.V.; McKeigue, P.M.; et al. Diabetes risk and amino acid profiles: Cross-sectional and prospective
analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE
(Southall And Brent REvisited) Study. Diabetologia 2015, 58, 968–979. [CrossRef] [PubMed]

28. Teramoto, T.; Uno, K.; Miyoshi, I.; Khan, I.; Gorcyca, K.; Sanchez, R.J.; Yoshida, S.; Mawatari, K.; Masaki, T.;
Arai, H.; et al. Low-density lipoprotein cholesterol levels and lipid-modifying therapy prescription patterns
in the real world: An analysis of more than 33,000 high cardiovascular risk patients in Japan. Atherosclerosis
2016, 251, 248–254. [CrossRef]

29. Hyman, D.J.; Pavlik, V.N. Self-reported hypertension treatment practices among primary care
physicians—Blood pressure thresholds, drug choices, and the role of guidelines and evidence-based
medicine. Arch. Intern. Med. 2000, 160, 2281–2286. [CrossRef]

30. Zhou, B.; Danaei, G.; Stevens, G.A.; Bixby, H.; Taddei, C.; Carrillo-Larco, R.M.; Solomon, B.; Riley, L.M.;
Di Cesare, M.; Iurilli, M.L.C.; et al. Long-term and recent trends in hypertension awareness, treatment, and
control in 12 high-income countries: An analysis of 123 nationally representative surveys. Lancet 2019, 394,
639–651. [CrossRef]

31. Islami, F.; Torre, L.A.; Jemal, A. Global trends of lung cancer mortality and smoking prevalence. Transl. Lung
Cancer R 2015, 4, 327–338. [CrossRef]

32. Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.;
Arlotto, M.; Slentz, C.A.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates
Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009, 9, 565–566. [CrossRef]

33. Flores-Guerrero, J.L.; Oste, M.C.J.; Kieneker, L.M.; Gruppen, E.G.; Wolak-Dinsmore, J.; Otvos, J.D.;
Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Plasma Branched-Chain Amino Acids and Risk of Incident
Type 2 Diabetes: Results from the PREVEND Prospective Cohort Study. J. Clin. Med. 2018, 7. [CrossRef]
[PubMed]

http://dx.doi.org/10.1186/s13059-017-1215-1
http://dx.doi.org/10.1038/nrm.2016.25
http://dx.doi.org/10.4155/bio-2017-0165
http://dx.doi.org/10.1021/acs.jproteome.7b00116
http://dx.doi.org/10.1186/1758-5996-6-40
http://dx.doi.org/10.1177/1535370217694098
http://dx.doi.org/10.1021/pr200514h
http://www.ncbi.nlm.nih.gov/pubmed/21905751
http://dx.doi.org/10.1038/s41598-017-13722-4
http://www.ncbi.nlm.nih.gov/pubmed/29057986
http://dx.doi.org/10.4239/wjd.v10.i1.23
http://www.ncbi.nlm.nih.gov/pubmed/30697368
http://dx.doi.org/10.1016/j.diabres.2008.05.011
http://www.ncbi.nlm.nih.gov/pubmed/18617286
http://dx.doi.org/10.1038/s41387-017-0003-z
http://www.ncbi.nlm.nih.gov/pubmed/29259157
http://dx.doi.org/10.1007/s00125-015-3517-8
http://www.ncbi.nlm.nih.gov/pubmed/25693751
http://dx.doi.org/10.1016/j.atherosclerosis.2016.07.001
http://dx.doi.org/10.1001/archinte.160.15.2281
http://dx.doi.org/10.1016/S0140-6736(19)31145-6
http://dx.doi.org/10.3978/j.issn.2218-6751.2015.08.04
http://dx.doi.org/10.1016/j.cmet.2009.05.001
http://dx.doi.org/10.3390/jcm7120513
http://www.ncbi.nlm.nih.gov/pubmed/30518023


Int. J. Mol. Sci. 2020, 21, 1249 17 of 20

34. Patel, M.J.; Batch, B.C.; Svetkey, L.P.; Bain, J.R.; Turer, C.B.; Haynes, C.; Muehlbauer, M.J.; Stevens, R.D.;
Newgard, C.B.; Shah, S.H. Race and Sex Differences in Small-Molecule Metabolites and Metabolic Hormones
in Overweight and Obese Adults. Omics 2013, 17, 627–635. [CrossRef] [PubMed]

35. Sun, L.; Hu, C.Y.; Yang, R.Y.; Lv, Y.; Yuan, H.P.; Liang, Q.H.; He, B.J.; Pang, G.F.; Jiang, M.H.; Dong, J.; et al.
Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and
the oldest-old. Oncotarget 2017, 8, 88882–88893. [CrossRef]

36. Lotta, L.A.; Scott, R.A.; Sharp, S.J.; Burgess, S.; Luan, J.A.; Tillin, T.; Schmidt, A.F.; Imamura, F.; Stewart, I.D.;
Perry, J.R.B.; et al. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids
and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med. 2016, 13. [CrossRef]

37. Jackson, R.H.; Singer, T.P. Inactivation of the 2-Ketoglutarate and Pyruvate-Dehydrogenase Complexes of
Beef-Heart by Branched-Chain Keto Acids. J. Biol. Chem. 1983, 258, 1857–1865.

38. Walajtysrode, E.; Williamson, J.R. Effects of Branched-Chain Alpha-Ketoacids on the Metabolism of Isolated
Rat-Liver Cells. 3. Interactions with Pyruvate-Dehydrogenase. J. Biol. Chem. 1980, 255, 413–418.

39. Oyarzabal, A.; Martinez-Pardo, M.; Merinero, B.; Navarrete, R.; Desviat, L.R.; Ugarte, M.; Rodriguez-Pombo, P.
A Novel Regulatory Defect in the Branched-Chain -Keto Acid Dehydrogenase Complex Due to a Mutation
in the PPM1K Gene Causes a Mild Variant Phenotype of Maple Syrup Urine Disease. Hum. Mutat. 2013, 34,
355–362. [CrossRef]

40. Iida, M.; Harada, S.; Kurihara, A.; Fukai, K.; Kuwabara, K.; Sugiyama, D.; Takeuchi, A.; Okamura, T.;
Akiyama, M.; Nishiwaki, Y.; et al. Profiling of plasma metabolites in postmenopausal women with metabolic
syndrome. Menopause 2016, 23, 749–758. [CrossRef]

41. Lustgarten, M.S.; Price, L.L.; Chale, A.; Phillips, E.M.; Fielding, R.A. Branched Chain Amino Acids Are
Associated With Muscle Mass in Functionally Limited Older Adults. J. Gerontol. A Biol. 2014, 69, 717–724.
[CrossRef]

42. Qin, L.Q.; Xun, P.C.; Bujnowski, D.; Daviglus, M.L.; Van Horn, L.; Stamler, J.; He, K.; Grp, I.C.R. Higher
Branched-Chain Amino Acid Intake Is Associated with a Lower Prevalence of Being Overweight or Obese in
Middle-Aged East Asian and Western Adults. J. Nutr. 2011, 141, 249–254. [CrossRef] [PubMed]

43. Wang, J.; Liu, Y.X.; Lian, K.; Shentu, X.Y.; Fang, J.W.; Shao, J.; Chen, M.P.; Wang, Y.B.; Zhou, M.Y.; Sun, H.P.
BCAA Catabolic Defect Alters Glucose Metabolism in Lean Mice. Front. Physiol. 2019, 10. [CrossRef]
[PubMed]

44. Tamanna, N.; Mahmood, N. Emerging Roles of Branched-Chain Amino Acid Supplementation in Human
Diseases. Int. Sch. Res. Not. 2014, 2014, 235619. [CrossRef] [PubMed]

45. Wang, F.H.; Liu, J.; Deng, Q.J.; Qi, Y.; Wang, M.; Wang, Y.; Zhang, X.G.; Zhao, D. Association between
plasma essential amino acids and atherogenic lipid profile in a Chinese population: A cross-sectional study.
Atherosclerosis 2019, 286, 7–13. [CrossRef] [PubMed]

46. Solon-Biet, S.M.; Cogger, V.C.; Pulpitel, T.; Wahl, D.; Clark, X.; Bagley, E.; Gregoriou, G.C.; Senior, A.M.;
Wang, Q.P.; Brandon, A.E.; et al. Branched chain amino acids impact health and lifespan indirectly via amino
acid balance and appetite control. Nat. Metab. 2019, 1, 532–545. [CrossRef]

47. Funchal, C.; Rosa, A.M.; Wajner, M.; Wofchuk, S.; Pureur, R.P. Reduction of glutamate uptake into cerebral
cortex of developing rats by the branched-chain alpha-keto acids accumulating in maple syrup urine disease.
Neurochem. Res. 2004, 29, 747–753. [CrossRef]

48. Scott, H.A.; Gebhardt, F.M.; Mitrovic, A.D.; Vandenberg, R.J.; Dodd, P.R. Glutamate transporter variants
reduce glutamate uptake in Alzheimer’s disease. Neurobiol. Aging 2011, 32. [CrossRef]

49. Li, H.J.; Ye, D.; Xie, W.; Hua, F.; Yang, Y.L.; Wu, J.; Gu, A.F.; Ren, Y.; Mao, K.S. Defect of branched-chain
amino acid metabolism promotes the development of Alzheimer’s disease by targeting the mTOR signaling.
Biosci. Rep. 2018, 38. [CrossRef]

50. Larsson, S.C.; Markus, H.S. Branched-chain amino acids and Alzheimer’s disease: A Mendelian
randomization analysis. Sci. Rep. 2017, 7. [CrossRef]

51. Toledo, J.B.; Arnold, M.; Kastenmuller, G.; Chang, R.; Baillie, R.A.; Han, X.L.; Thambisetty, M.; Tenenbaum, J.D.;
Suhre, K.; Thompson, J.W.; et al. Metabolic network failures in Alzheimer’s disease: A biochemical road
map. Alzheimers Dement. 2017, 13, 965–984. [CrossRef]

52. Lovell, M.A.; Markesbery, W.R. Oxidative DNA damage in mild cognitive impairment and late-stage
Alzheimers disease. Nucleic Acids Res. 2007, 35, 7497–7504. [CrossRef]

http://dx.doi.org/10.1089/omi.2013.0031
http://www.ncbi.nlm.nih.gov/pubmed/24117402
http://dx.doi.org/10.18632/oncotarget.21489
http://dx.doi.org/10.1371/journal.pmed.1002179
http://dx.doi.org/10.1002/humu.22242
http://dx.doi.org/10.1097/GME.0000000000000630
http://dx.doi.org/10.1093/gerona/glt152
http://dx.doi.org/10.3945/jn.110.128520
http://www.ncbi.nlm.nih.gov/pubmed/21169225
http://dx.doi.org/10.3389/fphys.2019.01140
http://www.ncbi.nlm.nih.gov/pubmed/31551816
http://dx.doi.org/10.1155/2014/235619
http://www.ncbi.nlm.nih.gov/pubmed/27351005
http://dx.doi.org/10.1016/j.atherosclerosis.2019.04.225
http://www.ncbi.nlm.nih.gov/pubmed/31071661
http://dx.doi.org/10.1038/s42255-019-0059-2
http://dx.doi.org/10.1023/B:NERE.0000018846.66943.30
http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.008
http://dx.doi.org/10.1042/BSR20180127
http://dx.doi.org/10.1038/s41598-017-12931-1
http://dx.doi.org/10.1016/j.jalz.2017.01.020
http://dx.doi.org/10.1093/nar/gkm821


Int. J. Mol. Sci. 2020, 21, 1249 18 of 20

53. Nunomura, A.; Castellani, R.J.; Zhu, X.W.; Moreira, P.I.; Perry, G.; Smith, M.A. Involvement of oxidative
stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2006, 65, 631–641. [CrossRef] [PubMed]

54. Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.;
Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome.
J. Clin. Investig. 2004, 114, 1752–1761. [CrossRef]

55. Sastre, J.; Pallardo, F.V.; Llopis, J.; Furukawa, T.; Vina, J.R.; Vina, J. Glutathione Depletion by
Hyperphagia-Induced Obesity. Life Sci. 1989, 45, 183–187. [CrossRef]

56. Bains, J.S.; Shaw, C.A. Neurodegenerative disorders in humans: The role of glutathione in oxidative
stress-mediated neuronal death. Brain Res. Rev. 1997, 25, 335–358. [CrossRef]

57. Mahajan, U.V.; Varma, V.R.; Griswold, M.E.; Blackshear, C.T.; An, Y.; Oommen, A.M.; Varma, S.;
Troncoso, J.C.; Pletnikova, O.; O’Brien, R.; et al. Dysregulation of multiple metabolic networks related to
brain transmethylation and polyamine pathways in Alzheimer’s disease: A targeted metabolomic and
transcriptomic study. PLoS Med. 2020, 17, e1003012. [CrossRef]

58. Wu, G.Y.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for
health. J. Nutr. 2004, 134, 489–492. [CrossRef]

59. Elshorbagy, A.K.; Valdivia-Garcia, M.; Refsum, H.; Butte, N. The Association of Cysteine with Obesity,
Inflammatory Cytokines and Insulin Resistance in Hispanic Children and Adolescents. PLoS ONE 2012, 7.
[CrossRef]

60. Lord, R.S.; Bralley, J.A. Clinical Applications of Urinary Organic Acids. Part 1: Detoxification Markers.
Altern Med. Rev. 2008, 13, 205–215.

61. Ruiz-Ramirez, A.; Ortiz-Balderas, E.; Gardozo-Saldana, G.; Diaz-Diaz, E.; El-Hafidi, M. Glycine restores
glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats. Clin. Sci. 2014, 126,
19–29. [CrossRef]

62. Zhou, X.H.; He, L.Q.; Wu, C.R.; Zhang, Y.M.; Wu, X.; Yin, Y.L. Serine alleviates oxidative stress via supporting
glutathione synthesis and methionine cycle in mice. Mol. Nutr. Food Res. 2017, 61, 1700262. [CrossRef]
[PubMed]

63. Sappington, D.; Penney, R.; Siegel, E.; Boysen, G. Glutamine drives glutathione synthesis and contributes to
radiation sensitivity of A549 and H460 lung cancer cell lines. Cancer Res. 2016, 76, 1041. [CrossRef] [PubMed]

64. Felig, P. The glucose-alanine cycle. Metabolism 1973, 22, 179–207. [CrossRef]
65. Jansson, P.A.; Larsson, A.; Smith, U.; Lonnroth, P. Lactate Release from the Subcutaneous Tissue in Lean and

Obese Men. J. Clin. Investig. 1994, 93, 240–246. [CrossRef]
66. Yang, C.D.; Ko, B.; Hensley, C.T.; Jiang, L.; Wasti, A.T.; Kim, J.; Sudderth, J.; Calvaruso, M.A.; Lumata, L.;

Mitsche, M.; et al. Glutamine Oxidation Maintains the TCA Cycle and Cell Survival during Impaired
Mitochondrial Pyruvate Transport. Mol. Cell 2014, 56, 414–424. [CrossRef]

67. Satapati, S.; Sunny, N.E.; Kucejova, B.; Fu, X.R.; He, T.T.; Mendez-Lucas, A.; Shelton, J.M.; Perales, J.C.;
Browning, J.D.; Burgess, S.C. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin
resistance and fatty liver. J. Lipid Res. 2012, 53, 1080–1092. [CrossRef]

68. Libert, D.M.; Nowacki, A.S.; Natowicz, M.R. Metabolomic analysis of obesity, metabolic syndrome, and type
2 diabetes: Amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 2018, 6.
[CrossRef]

69. Buckley, W.T.; Milligan, L.P. Participation of cysteine and cystine in inactivation of tyrosine aminotransferase
in rat liver homogenates. Biochem. J. 1978, 176, 449–454. [CrossRef]

70. Liu, L.L.; Li, Q.; Li, N.J.; Ling, J.H.; Liu, R.; Wang, Y.X.; Sun, L.X.; Chen, X.H.; Bi, K.S. Simultaneous
determination of catecholamines and their metabolites related to Alzheimer’s disease in human urine.
J. Sep. Sci. 2011, 34, 1198–1204. [CrossRef]

71. Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the
brain. J. Nutr. 2007, 137, 1539s–1547s. [CrossRef]

72. Gao, X.; Zhang, W.D.; Wang, Y.B.; Pedram, P.; Cahill, F.; Zhai, G.J.; Randell, E.; Gulliver, W.; Sun, G. Serum
metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese
individuals. Nutr. Metab. 2016, 13. [CrossRef]

73. Wang, T.J.; Ngo, D.; Psychogios, N.; Dejam, A.; Larson, M.G.; Vasan, R.S.; Ghorbani, A.; O’Sullivan, J.;
Cheng, S.; Rhee, E.P.; et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Investig. 2013, 123,
4309–4317. [CrossRef]

http://dx.doi.org/10.1097/01.jnen.0000228136.58062.bf
http://www.ncbi.nlm.nih.gov/pubmed/16825950
http://dx.doi.org/10.1172/JCI21625
http://dx.doi.org/10.1016/0024-3205(89)90293-2
http://dx.doi.org/10.1016/S0165-0173(97)00045-3
http://dx.doi.org/10.1371/journal.pmed.1003012
http://dx.doi.org/10.1093/jn/134.3.489
http://dx.doi.org/10.1371/journal.pone.0044166
http://dx.doi.org/10.1042/CS20130164
http://dx.doi.org/10.1002/mnfr.201700262
http://www.ncbi.nlm.nih.gov/pubmed/28759161
http://dx.doi.org/10.1016/j.bbagen.2016.01.021
http://www.ncbi.nlm.nih.gov/pubmed/26825773
http://dx.doi.org/10.1016/0026-0495(73)90269-2
http://dx.doi.org/10.1172/JCI116951
http://dx.doi.org/10.1016/j.molcel.2014.09.025
http://dx.doi.org/10.1194/jlr.M023382
http://dx.doi.org/10.7717/peerj.5410
http://dx.doi.org/10.1042/bj1760449
http://dx.doi.org/10.1002/jssc.201000799
http://dx.doi.org/10.1093/jn/137.6.1539S
http://dx.doi.org/10.1186/s12986-016-0095-9
http://dx.doi.org/10.1172/JCI64801


Int. J. Mol. Sci. 2020, 21, 1249 19 of 20

74. Mahajan, U.V.; Varma, V.R.; Huang, C.-W.; An, Y.; Tanaka, T.; Ferrucci, L.; Takebayashi, T.; Harada, S.; Iida, M.;
Legido-Quigley, C.; et al. Blood metabolite signatures of metabolic syndrome in two cross-cultural older
adult cohorts. 2020. In press.

75. Pasini, E.; Corsetti, G.; Aquilani, R.; Romano, C.; Picca, A.; Calvani, R.; Dioguardi, F.S. Protein-Amino Acid
Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. Nutrients 2018, 10.
[CrossRef]

76. Ferrucci, L. The Baltimore Longitudinal Study of Aging (BLSA): A 50-year-long journey and plans for the
future. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1416–1419. [CrossRef]

77. Resnick, S.M.; Pham, D.L.; Kraut, M.A.; Zonderman, A.B.; Davatzikos, C. Longitudinal magnetic resonance
imaging studies of older adults: A shrinking brain. J. Neurosci. 2003, 23, 3295–3301. [CrossRef]

78. Harada, S.; Takebayashi, T.; Kurihara, A.; Akiyama, M.; Suzuki, A.; Hatakeyama, Y.; Sugiyama, D.;
Kuwabara, K.; Takeuchi, A.; Okamura, T.; et al. Metabolomic profiling reveals novel biomarkers of alcohol
intake and alcohol-induced liver injury in community-dwelling men. Environ. Health Prev. 2016, 21, 283–284.
[CrossRef]

79. Casanova, R.; Varma, S.; Simpson, B.; Kim, M.; An, Y.; Saldana, S.; Riveros, C.; Moscato, P.; Griswold, M.;
Sonntag, D.; et al. Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed
cohorts of older individuals. Alzheimers Dement. 2016, 12, 815–822. [CrossRef]

80. Kuehnbaum, N.L.; Kormendi, A.; Britz-McKibbin, P. Multisegment Injection-Capillary Electrophoresis-Mass
Spectrometry: A High-Throughput Platform for Metabolomics with High Data Fidelity. Anal. Chem. 2013, 85,
10664–10669. [CrossRef]

81. Hirayama, A.; Nakashima, E.; Sugimoto, M.; Akiyama, S.; Sato, W.; Maruyama, S.; Matsuo, S.; Tomita, M.;
Yuzawa, Y.; Soga, T. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy.
Anal. Bioanal. Chem. 2012, 404, 3101–3109. [CrossRef]

82. Hirayama, A.; Tomita, M.; Soga, T. Sheathless capillary electrophoresis-mass spectrometry with a
high-sensitivity porous sprayer for cationic metabolome analysis. Analyst 2012, 137, 5026–5033. [CrossRef]

83. Hirayama, A.; Soga, T. Capillary Electrophoresis—Mass Spectrometry (CE-MS): Principles and Applications;
Wiley-VCH: Weinheim, Germany, 2016. [CrossRef]

84. Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass
spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles.
Metabolomics 2010, 6, 78–95. [CrossRef]

85. Ohashi, Y.; Hirayama, A.; Ishikawa, T.; Nakamura, S.; Shimizu, K.; Ueno, Y.; Tomita, M.; Soga, T. Depiction
of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol. Biosyst. 2008, 4, 135–147.
[CrossRef]

86. Soga, T.; Heiger, D.N. Amino acid analysis by capillary electrophoresis electrospray ionization mass
spectrometry. Anal. Chem. 2000, 72, 1236–1241. [CrossRef]

87. Sasaki, K.; Sagawa, H.; Suzuki, M.; Yamamoto, H.; Tomita, M.; Soga, T.; Ohashi, Y. Metabolomics Platform
with Capillary Electrophoresis Coupled with High-Resolution Mass Spectrometry for Plasma Analysis.
Anal. Chem. 2019, 91, 1295–1301. [CrossRef]

88. Soga, T.; Igarashi, K.; Ito, C.; Mizobuchi, K.; Zimmermann, H.P.; Tomita, M. Metabolomic Profiling of Anionic
Metabolites by Capillary Electrophoresis Mass Spectrometry. Anal. Chem. 2009, 81, 6165–6174. [CrossRef]

89. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.;
Li, C.R.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46,
D608–D617. [CrossRef]

90. Metter, E.J.; Windham, B.G.; Maggio, M.; Simonsick, E.M.; Ling, S.M.; Egan, J.M.; Ferrucci, L. Glucose and
insulin measurements from the oral glucose tolerance test and mortality prediction. Diabetes Care 2008, 31,
1026–1030. [CrossRef]

91. Mielke, M.M.; Bandaru, V.V.; Han, D.; An, Y.; Resnick, S.M.; Ferrucci, L.; Haughey, N.J. Factors affecting
longitudinal trajectories of plasma sphingomyelins: The Baltimore Longitudinal Study of Aging. Aging Cell
2015, 14, 112–121. [CrossRef]

92. Beydoun, M.A.; Tanaka, T.; Beydoun, H.A.; Ding, E.L.; Ferrucci, L.; Zonderman, A.B. Vitamin D receptor and
megalin gene polymorphisms are associated with central adiposity status and changes among US adults.
J. Nutr. Sci. 2013, 2. [CrossRef]

http://dx.doi.org/10.3390/nu10040391
http://dx.doi.org/10.1093/gerona/63.12.1416
http://dx.doi.org/10.1523/JNEUROSCI.23-08-03295.2003
http://dx.doi.org/10.1007/s12199-016-0519-1
http://dx.doi.org/10.1016/j.jalz.2015.12.008
http://dx.doi.org/10.1021/ac403171u
http://dx.doi.org/10.1007/s00216-012-6412-x
http://dx.doi.org/10.1039/c2an35492f
http://dx.doi.org/10.1002/9783527693801
http://dx.doi.org/10.1007/s11306-009-0178-y
http://dx.doi.org/10.1039/B714176A
http://dx.doi.org/10.1021/ac990976y
http://dx.doi.org/10.1021/acs.analchem.8b02994
http://dx.doi.org/10.1021/ac900675k
http://dx.doi.org/10.1093/nar/gkx1089
http://dx.doi.org/10.2337/dc07-2102
http://dx.doi.org/10.1111/acel.12275
http://dx.doi.org/10.1017/jns.2013.19


Int. J. Mol. Sci. 2020, 21, 1249 20 of 20

93. Brant, L.J.; Ferrucci, L.; Sheng, S.L.; Concin, H.; Zonderman, A.B.; Kelleher, C.C.; Longo, D.L.; Ulmer, H.;
Strasak, A.M. Gender Differences in the Accuracy of Time-Dependent Blood Pressure Indices for Predicting
Coronary Heart Disease: A Random-Effects Modeling Approach. Gend. Med. 2010, 7, 616–627. [CrossRef]
[PubMed]

94. Nakamura, M.; Iso, H.; Kitamura, A.; Imano, H.; Noda, H.; Kiyama, M.; Sato, S.; Yamagishi, K.; Nishimura, K.;
Nakai, M.; et al. Comparison between the triglycerides standardization of routine methods used in Japan and
the chromotropic acid reference measurement procedure used by the CDC Lipid Standardization Programme.
Ann. Clin. Biochem. 2016, 53, 632–639. [CrossRef] [PubMed]

95. Varma, V.R.; Oommen, A.M.; Varma, S.; Casanova, R.; An, Y.; Andrews, R.M.; O’Brien, R.; Pletnikova, O.;
Troncoso, J.C.; Toledo, J.; et al. Brain and blood metabolite signatures of pathology and progression in
Alzheimer disease: A targeted metabolomics study. PLoS Med. 2018, 15. [CrossRef] [PubMed]

96. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to
Multiple Testing. J. R. Stat. Soc. B 1995, 57, 289–300. [CrossRef]

97. Henglin, M.; Niiranen, T.; Watrous, J.D.; Lagerborg, K.A.; Antonelli, J.; Claggett, B.L.; Demosthenes, E.J.;
Von Jeinsen, B.; Demler, O.; Vasan, R.S.; et al. A Single Visualization Technique for Displaying Multiple
Metabolite-Phenotype Associations. Metabolites 2019, 9. [CrossRef]

98. Sacks, F.M.; Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Bray, G.A.; Vogt, T.M.;
Cutler, J.A.; Windhauser, M.M.; et al. A dietary approach to prevent hypertension: A review of the Dietary
Approaches to Stop Hypertension (DASH) study. Clin. Cardiol. 1999, 22, 6–10. [CrossRef]

99. Verbrugge, L.M.; Gruber-Baldini, A.L.; Fozard, J.L. Age differences and age changes in activities: Baltimore
Longitudinal Study of Aging. J. Gerontol. B Psychol. Sci. Soc. Sci. 1996, 51, S30–S41. [CrossRef]

100. Talbot, L.A.; Metter, E.J.; Fleg, J.L. Leisure-time physical activities and their relationship to cardiorespiratory
fitness in healthy men and women 18-95 years old. Med. Sci. Sports Exerc. 2000, 32, 417–425. [CrossRef]

101. Talbot, L.A.; Fleg, J.L.; Metter, E.J. Secular trends in leisure-time physical activity in men and women across
four decades. Prev. Med. 2003, 37, 52–60. [CrossRef]

102. Baba, S.; Mannami, T.; Konishi, M.; Sasaki, S. Anthropometric measures, blood pressure and major laboratory
examination results in the health check-up examination among the JPHC study participants at baseline survey.
Japan Public Health Center-based Prospective Study on Cancer and Cardiovascular Diseases. J. Epidemiol.
2001, 11, S87–S93. [CrossRef]

103. Fujii, H.; Yamamoto, S.; Takeda-Imai, F.; Inoue, M.; Tsugane, S.; Kadowaki, T.; Noda, M. Validity and
applicability of a simple questionnaire for the estimation of total and domain-specific physical activity.
Diabetol. Int. 2011, 2, 47–54. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.genm.2010.11.005
http://www.ncbi.nlm.nih.gov/pubmed/21195361
http://dx.doi.org/10.1177/0004563215624461
http://www.ncbi.nlm.nih.gov/pubmed/26680645
http://dx.doi.org/10.1371/journal.pmed.1002482
http://www.ncbi.nlm.nih.gov/pubmed/29370177
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.3390/metabo9070128
http://dx.doi.org/10.1002/clc.4960221503
http://dx.doi.org/10.1093/geronb/51B.1.S30
http://dx.doi.org/10.1097/00005768-200002000-00024
http://dx.doi.org/10.1016/S0091-7435(03)00058-6
http://dx.doi.org/10.2188/jea.11.6sup_87
http://dx.doi.org/10.1007/s13340-011-0025-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Participants 
	Metabolite Concentrations and Classifications 
	Associations with Metabolic Risk Factors 
	Metabolite Classes Associated with MetS 

	Discussion 
	Methods 
	Participants 
	Blood Samples 
	Metabolites 
	Metabolite Extraction 
	Capillary Electrophoresis Time-of-Flight Mass Spectrometry (CE-TOFMS) 

	Metabolite Classifications 
	Outcomes 
	Definition of MetS 
	Individual Risk Factors 

	Statistical Analyses 

	References

