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Abstract

LTR retrotransposons comprise a major component of the genomes of eukaryotes. On occasion, retrotransposon genes
can be recruited by their hosts for diverse functions, a process formally referred to as co-option. However, a compre-
hensive picture of LTR retrotransposon gag gene co-option in eukaryotes is still lacking, with several documented cases
exclusively involving Ty3/Gypsy retrotransposons in animals. Here, we use a phylogenomic approach to systemically
unearth co-option of retrotransposon gag genes above the family level of taxonomy in 2,011 eukaryotes, namely co-
option occurring during the deep evolution of eukaryotes. We identify a total of 14 independent gag gene co-option
events across more than 740 eukaryote families, eight of which have not been reported previously. Among these
retrotransposon gag gene co-option events, nine, four, and one involve gag genes of Ty3/Gypsy, Ty1/Copia, and Bel-
Pao retrotransposons, respectively. Seven, four, and three co-option events occurred in animals, plants, and fungi,
respectively. Interestingly, two co-option events took place in the early evolution of angiosperms. Both selective pressure
and gene expression analyses further support that these co-opted gag genes might perform diverse cellular functions in
their hosts, and several co-opted gag genes might be subject to positive selection. Taken together, our results provide a
comprehensive picture of LTR retrotransposon gag gene co-option events that occurred during the deep evolution of
eukaryotes and suggest paucity of LTR retrotransposon gag gene co-option during the deep evolution of eukaryotes.
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Introduction
Transposable elements (TEs), generally thought to be geno-
mic parasites, are major components of the eukaryote
genomes (Brandt, et al. 2005; Wicker, et al. 2007;
Etchegaray, et al. 2021); for instance, �45% of the human
genome and �85% of the maize genome are comprised of
various TEs (Schnable et al. 2009; Lander et al. 2012). Based on
their transposition mechanisms, TEs are typically classified
into two major classes, class I (retrotransposons) and class II
(DNA transposons) (Wicker et al. 2007). Among retrotrans-
posons, long terminal repeat (LTR) retrotransposons charac-
terized by the presence of LTRs at 50- and 30-termini encode
two common genes, gag and pol, required for retrotranspo-
sition (Llorens et al. 2009; Naville et al. 2016; Sanchez et al.
2017). LTR retrotransposons can be further divided into sev-
eral superfamilies, including Ty3/Gypsy, Ty1/Copia, and Bel-
Pao retrotransposons as well as retroviruses/endogenous ret-
roviruses (ERVs) (Wicker et al. 2007).

Most of LTR retrotransposons have been thought to be
neutral or deleterious, and are removed by recombination
between LTRs or inactivated and degraded by accumulating
disruptive mutations (Stoye 2012; Jangam et al. 2017; Johnson
2019; Etchegaray et al. 2021). On occasion, coding or

regulatory regions of LTR retrotransposons can be repur-
posed for diverse cellular functions in hosts, a process formally
termed as co-option, domestication, or exaptation (Feschotte
2008; Koko�sar and Kordi�s 2013; Hoen and Bureau 2015;
Chuong et al. 2016; Naville et al. 2016; Chuong et al. 2017;
Jangam et al. 2017; Wang et al. 2019; Wang and Han 2020;
Etchegaray et al. 2021). To date, more than 100 independent
retroviral gag gene co-option events have been documented
in literature (Campillos et al. 2006; Pastuzyn et al. 2018;
Skirmuntt and Katzourakis 2019; Wang et al. 2019; Wang
and Han 2020), as exemplified by Fv1 gene that serves as a
restriction factor to inhibit the replication of diverse retrovi-
ruses (Best et al. 1996; Yap et al. 2014; Boso et al. 2018). In
contrast, only six cases of co-opted LTR retrotransposon gag
gene occurred above the taxonomic family level have been
identified (Campillos et al. 2006; Pastuzyn et al. 2018), all of
which involve Ty3/Gypsy retrotransposons. 1) Activity-
regulated cytoskeleton-associated proteins (Arc) in tetrapods
and 2) dArc proteins in schizophoran flies were derived from
gag genes of distinct Ty3/Gypsy retrotransposon lineages, and
mediate intercellular RNA transfer in the nervous system
(Ashley et al. 2018; Pastuzyn et al. 2018). 3) Sushi-ichi retro-
transposon homolog (SIRH/RTL) family arose from gag gene of
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a sushi LTR retrotransposon, and two members of this family,
PEG10/RTL2 and PEG11/RTL1, are essential to the placenta
development (Ono et al. 2006; Sekita et al. 2008). 4)
Paraneoplastic Ma antigen (PNMA) gene family originated
from Gypsy12_DR gag gene and might perform diverse func-
tions; for example, PNMA5 and PNMA10 are associated with
brain development (Takaji et al. 2009; Cho et al. 2011; Pang
et al. 2018). 5) SCAN (SRE-ZBP, CTfin-51, AW-1, Number 18
cDNA) gene family was derived from C-terminal of Grm1-like
LTR retrotransposon capsid (CA). Members of SCAN
domains are usually associated with (C2H2)x-type zinc fingers
and Kruppel-associated box domains to form transcription
factors, and function in many aspects of cell differentiation
and development, for instance, regulating the transcription of
growth factors (Collins et al. 2001; Sander et al. 2003; Edelstein
and Collins 2005; Emerson and Thomas 2011). There were
also sporadic documented LTR retrotransposon gag gene co-
option events that occurred within the taxonomic family
level; for example, Gagr is a Ty3/Gypsy retrotransposon gag
gene co-opted within Drosophila (Nefedova et al. 2014;
Makhnovskii et al. 2020).

Besides Ty3/Gypsy retrotransposon gag genes, various cod-
ing and regulatory regions of TEs can be repurposed for cel-
lular functions (Chuong et al. 2017; Jangam et al. 2017;
Etchegaray et al. 2021). RAG1 and RAG2 proteins, which
are essential for the rearrangement of antigen receptors in
vertebrates, originated through co-opting a DNA transposon
known as ProtoRAG (Huang et al. 2016; Morales Poole et al.
2017). In angiosperms, several cases of co-option of class II TE
transposase have been documented: FAR1-related sequence
(FRS) and MUSTANG (MUG) gene families were derived from
transposases of Mutator-like elements (MULEs), and SLEEPER
gene family arose from hAT transposase (Oliver et al. 2013;
Hoen and Bureau 2015; Joly-Lopez et al. 2016). FRS genes (e.g.,
FHY3 and FAR1) perform diverse functions in plants, includ-
ing acting as a light signal transducer, regulating the flowering
time, and being involved in the division of chloroplasts (Lin
et al. 2007; Wang and Wang 2015; Ma and Li 2018). MUG gene
family plays crucial roles in plant growth, flowering time, and
floral organ development (Joly-Lopez et al. 2012). SLEEPER
genes regulate global gene expression and are crucial for
the growth of plants (Bundock and Hooykaas 2005; Knip
et al. 2012). In fission yeast, CENP-Bs (Cbh1, Cbh2, and
Abp1) that were derived from transposases of pogo DNA
transposons contribute to the silence of Tf retrotransposons
(Cam et al. 2008). Moreover, cis-regulatory sequences of TEs
can also be co-opted, shaping the evolution of host gene
regulatory networks (Chuong et al. 2017).

To date, a comprehensive picture of LTR retrotransposon
gag gene co-option in eukaryotes is still lacking. Little is
known about the extent and diversity of LTR retrotransposon
gag gene co-option in eukaryotes. In this study, we performed
a comprehensive phylogenomic analysis to unearth LTR ret-
rotransposon gag gene co-option events (RtGCEs) above the
taxonomic family level across eukaryotes. We identified a to-
tal of 14 RtGCEs, seven, four, and three of which occurred in
animals, plants, and fungi, respectively. We also analyzed the
evolutionary history, expression pattern, and selective

pressure for each co-opted LTR retrotransposon gag (Crtg)
gene. Our study provides a snapshot of LTR retrotransposon
gag gene co-option that occurred during the deep evolution-
ary history of eukaryotes.

Results

Mining Deep LTR Retrotransposon gag Gene Co-
option in Eukaryotes
We used a similarity search and phylogenetic analysis com-
bined approach to systematically identify Crtg genes above
the taxonomic family level in eukaryotes (see Methods and
Materials for the details; Wang and Han 2020). Our analyses
included a total of 2,011 annotated proteomes of eukaryotes,
which cover at least 743 families in eukaryotes (supplemen-
tary table S1, Supplementary Material online). The Crtg genes
identified in this study fulfill two criteria: 1) The Crtg genes
share similar synteny among the genomes of species across at
least two families, and/or the Crtg phylogeny largely agree
with the host phylogeny; and 2) the Crtg genes are subject
to certain level of natural selection, implying potential cellular
functionality (Graur et al. 2013; Jangam et al. 2017; Wang and
Han 2020). Following these two criteria, we identified a total
of 14 Crtg genes, referred to as Crtg1 to Crtg14 (figs. 1–5),
seven (Crtg1 to Crtg7), four (Crtg8 to Crtg11), and three
(Crtg12 to Crtg14) of which were identified in the genomes
of animals, plants, and fungi, respectively. Although six of
these Crtg genes have been documented in animals, namely
Arc (Crtg2), dArc (Crtg3), RTL (Crtg4 and Crtg5), PNMA
(Crtg6), and SCAN (Crtg7), the remaining eight Crtg genes
were first reported in this study. It should be noted that
the co-option events identified here represent the ones
that occurred above the family level of taxonomy and, in
general, during the deep evolution of eukaryotes.

To decipher the source of Crtg genes, we identified the LTR
retrotransposons that were closely related to these Crtg genes.
Phylogenetic analyses of reverse transcriptase (RT) suggest
that nine (Crtg1 to Crtg7 in animals, Crtg8 and Crtg11 in
plants), four (Crtg9 and Crtg10 in plants, Crtg12 and Crtg13
in fungi), and one (Crtg14 in fungi) Crtg-related retrotranspo-
sons belong to Ty3/Gypsy, Ty1/Copia, and Bel-Pao retrotrans-
posons, respectively (fig. 1). Whereas all the documented
cases of retrotransposon gag gene co-option were derived
from Ty3/Gypsy retrotransposons, our findings indicate
that gag genes of all the three major LTR retrotransposon
superfamilies (Ty3/Gypsy, Ty1/Copia, and Bel-Pao) could be
co-opted during the evolutionary course of eukaryotes.

LTR Retrotransposon gag Gene Co-option in Animals
In animals, we identified a total of seven Crtg genes, including
six previously known cases, namely Arc (Crtg2), dArc (Crtg3),
RTL (Crtg4 and Crtg5), PNMA (Crtg6), and SCAN (Crtg7). We
further investigated or revisited the evolutionary history of
these Crtg genes. We identified a novel Crtg gene, namely
Crtg1, in invertebrates (fig. 2A). Synteny analysis suggests
that Crtg1 arose before the last common ancestor of
Scarabaeidae and Lampyridae within Coleoptera (�286
Ma) (fig. 2A). Phylogenetic and similarity analyses of both
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RT and Gag proteins show that Crtg1 gene arose through
repurposing the gag gene of a Mdg3-like retrotransposon
within Ty3/Gypsy retrotransposons (fig. 1 and supplementary
fig. S1A, Supplementary Material online). Consistent with pre-
vious studies, Arc and dArc originated independently: the co-
option of Arc and dArc occurred before the last common
ancestor of tetrapods (~352 Ma) and before the last common
ancestor of Tephritidae and Drosophilidae within
Muscomorpha (~126 Ma), respectively (Pastuzyn et al.
2018) (figs. 1 and 2B and 2C, and supplementary fig. S1B,
S1C, Supplementary Material online). The known RTL genes
appear to originate from sushi-like retrotransposons through
two independent co-option events, with one occurring in the
last common ancestor of mammals (�159 Ma) and the other
occurring in the last common ancestor of placental mammals

(�105 Ma) (figs. 1 and 2E, and supplementary fig. S1D,
Supplementary Material online). PNMA genes arose through
co-opting a Ty3/Gypsy retrotransposon gag gene before the
last common ancestor of mammals (�159 Ma) (figs. 1 and 2F,
and supplementary fig. S1E, Supplementary Material online).
SCAN genes were derived from the gag gene of a Gmr1-like
retrotransposon (Ty3/Gypsy) before the last common ances-
tor of tetrapods (�352 Ma) (Goodwin and Poulter 2002;
Emerson and Thomas 2011) (figs. 1 and 2D, and supplemen-
tary fig. S2, Supplementary Material online). For Ctrg1, Arc
(Crtg2), and RTL-1 (Crtg5), most of them remain single copy in
a species. Interestingly, dArc (Crtg3), RTL (Crtg4), PNMA
(Crtg6), and SCAN (Crtg7) underwent extensive and complex
gene duplication; for example, although SCAN gene remains
single-copied in birds, SCAN genes underwent extensive
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duplication in reptiles and mammals independently (supple-
mentary fig. S2, Supplementary Material online).

LTR Retrotransposon gag Gene Co-option in Plants
No retrotransposon gag gene co-option has been docu-
mented in plants before. In this study, we identified four novel
retrotransposon gag gene co-option events in plants, gener-
ating Crtg8 to Crtg11 genes. Although Crtg8 and Crtg11 genes
were derived from Ty3/Gypsy retrotransposon gag genes, the
origin of Crtg9 and Crtg10 genes involved Ty1/Copia retro-
transposon gag genes. Interestingly, two of them, Crtg8 and
Crtg9, originated during the early evolution of angiosperms.
Crtg8 genes are closely related to Athila-like retrotransposon
gag genes, and the co-option occurred after the divergence of
Amborella trichopoda from angiosperm (�175 Ma) (figs. 1
and 3A, and supplementary fig. S3A, Supplementary Material
online). Crtg9 genes appear to arise through co-opting a Tork-
like retrotransposon gag gene, which occurred after the di-
vergence of Nymphaea thermarum from angiosperms (�160
Ma) (figs. 1 and 3B, and supplementary fig. S3B,
Supplementary Material online). The remaining co-option
events took place during the evolutionary course of eudicots.
Crtg10 genes arose through co-opting a Tork-like retrotrans-
poson gag gene, which occurred after the divergence of
Nelumbo nucifera from eudicots (�117 Ma) (figs. 1 and 3C,
and supplementary fig. S3C, Supplementary Material online).
Crtg11 genes are closely related to Del-like retrotransposon

gag genes, and the co-option occurred before the common
ancestor of Cannabaceae and Moraceae within eudicots
(�86 Ma) (figs. 1 and 3D, and supplementary fig. S3D,
Supplementary Material online). These Crtg genes underwent
sporadic gene duplication, and notably Crtg9 genes were tan-
demly duplicated in many species (fig. 3).

LTR Retrotransposon gag Gene Co-option in Fungi
No retrotransposon gag gene co-option has been docu-
mented in fungi before. In this study, we identified three
retrotransposon gag gene co-option events in fungi, generat-
ing Crtg12 to Crtg14. Although Crtg12 and Crtg13 appear to be
derived from Ty1/Copia retrotransposon gag genes, Crtg14
originated through repurposing a Bel-Pao retrotransposon
gag gene (supplementary fig. S4, Supplementary Material on-
line). The co-option of Crtg12, Crtg13, and Crtg14 genes oc-
curred before the last common ancestor of Lentitheciaceae
and Lindgomycetaceae, before the last common ancestor of
Pleosporales and Mytilinidiales (�242 Ma), and before the
last common ancestor of Tremellales and Trichosporonales,
respectively (fig. 4). All the Crtg genes in fungi are single copy
(fig. 4).

Expression Pattern and Gene Structure of Crtg Genes
We used transcriptome sequencing (RNA-seq) raw data to
explore whether the eight Crtg genes first identified in this
study (Crtg1, Crtg8 to Crtg14) are expressed. Strong evidence
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FIG. 3. The evolutionary history of Crtg genes in plants. The host phylogenetic relationship is based on TimeTree and literature (Kumar et al. 2017;
Janssens et al. 2020), and gene syntenies flanking each Crtg gene are shown near the corresponding species.
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for expression was found for almost all these eight Crtg genes
(the largest transcript per million [TPM] value for each gene
ranges from 1.61 to 72.23) (supplementary table S7,
Supplementary Material online), except Crtg12 with a TPM
value of 0.41, which may be due to the poor quality of RNA-
seq data (�60% reads are too short to map). Crtg1 gene was
found to be expressed during the development from larva to
adult stages in Agrilus planipennis (supplementary table S7,
Supplementary Material online). In plants, Crtg8, Crtg9,
Crtg10, and Crtg11 were found to be expressed in a wide range
of tissues, including leaf, root, flower, and seed (supplemen-
tary table S7, Supplementary Material online). Because RNA-
seq data are only available for a limited number of tissues and
gene expression is of temporal and spatial specificity, our
results do not necessarily indicate that the co-opted genes
are not expressed in other tissues.

Interestingly, we found two Crtg genes, Crtg10 and Crtg14,
were fused with host genes (supplementary table S3,
Supplementary Material online). Crtg10 was fused with
KELP gene, and the product of KELP gene is a transcriptional
co-activator and binds movement protein (MP) of tomato
mosaic virus to inhibit its cell-to-cell movement (Sasaki et al.

2009). Crtg14 was fused with PEX14 gene, which produces a
peroxisomal membrane protein, Pex14p, involved in peroxi-
somal targeting signal-dependent protein import pathway
(Albertini et al. 1997). Moreover, we found a putative intron
with typical splicing sites GT-AG and the branch point (50-
YURAY-30) (Thanaraj and Clark 2001) in the gag-derived re-
gion of Crtg14 genes. Taken together, all the results of gene
expression and gene structure analyses further support that
the eight Crtg genes are co-opted gag genes.

Natural Selection Acting on Crtg Genes
Like host cellular genes, the co-opted retrotransposon genes
should be subject to certain level of natural selection, imply-
ing potential cellular functionality (Graur et al. 2013; Jangam
et al. 2017; Wang and Han 2020). To explore whether Crtg
genes are subject to natural selection, we first calculated the
dN/dS ratio for the eight Crtg genes (Crtg1, Crtg8 to Crtg14),
where dN represents the number of nonsynonymous substi-
tutions per nonsynonymous site and dS represents the num-
ber of synonymous substitutions per synonymous site. The
dN/dS ratio has often been used to detect signal of natural
selection acting on genes (Daugherty and Malik 2012; Duggal
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FIG. 4. The evolutionary history of Crtg genes in fungi. The host phylogenetic relationship is based on TimeTree and literature (Hirayama et al. 2010;
Raja et al. 2011; Li et al. preprint; Tian et al. 2015), and gene syntenies flanking each Crtg gene are shown near the corresponding species.
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and Emerman 2012; Sironi et al. 2015; Han 2019; Wang and
Han 2020). We found that all the dN/dS ratios are less than
one for all the eight genes (all but Crtg12 are <0.44), indicat-
ing that they evolved under certain functional constraints
(table 1).

Due to the conservative nature of dN/dS in detecting nat-
ural selection (Yang and Bielawski 2000), we further used two
pairs of site models (M1a vs. M2a and M8a vs. M8) to detect
sites subject to natural selection in Crtg genes. The results of
M1a versus M2a show that all these eight Crtg genes possess a
proportion of sites under purifying selection (table 1).
Interestingly, evidence for positive selection was found in
Crtg10 gene (table 1). We also used the branch-site unre-
stricted statistical test for episodic diversification (BUSTED)
method, which detects gene-wide diversifying selection
(Murrell et al. 2015), and the fast, unconstrained Bayesian
approximation for inferring selection (FUBAR) method,
which identifies sites under purifying or positive selection
(Murrell et al. 2013) to analyze natural selection in seven
Crtg genes (Crtg12 was excluded due to its limited number
of sequences). The BUSTED method inferred at least one site
or branch under positive selection in five Crtg genes (except
Crtg11 and Crtg14) (table 1). The FUBAR method identified
many sites subject to purifying selection in all the seven genes
and detected several positively selected sites in three plant
Crtg genes, namely Crtg9, Crtg10, and Crtg11 genes (table 1).
Moreover, we divided each Crtg gene into several subsets at
the taxonomic family level and tested the signals of natural
selection for each subset. We detected several sites under
positive selection in the Cryptococcaceae subset of Crtg14
gene and found that the dN/dS ratio of the Fagaceae subset
of Crtg10 gene is greater than one (supplementary table S5,
Supplementary Material online). Nevertheless, for each Crtg
genes, the results of the subset analyses are similar to these of
the whole data set analysis (supplementary table S5,
Supplementary Material online). Overall, these results suggest

that all the eight Crtg genes evolve under certain level of
natural selection, indicating that they are likely to perform
diverse cellular functions.

Discussion
Both coding and regulatory regions of TEs can be repurposed
for diverse cellular functions (Feschotte 2008; Koko�sar and
Kordi�s 2013; Hoen and Bureau 2015; Chuong et al. 2016;
Naville et al. 2016; Chuong et al. 2017; Jangam et al. 2017;
Wang et al. 2019; Wang and Han 2020; Etchegaray et al. 2021).
LTR retrotransposons are highly abundant in the genomes of
eukaryotes. However, a comprehensive picture of LTR retro-
transposon gag gene co-option is still lacking, with only six
cases documented in animals (Campillos et al. 2006; Pastuzyn
et al. 2018). In this study, we used a phylogenomic approach
to systematically mine co-opted LTR retrotransposon gag
genes at the taxonomic family level across eukaryotes. We
unearthed a total of 14 Ctrg genes, seven, four, and three of
which were identified in animals, plants, and fungi, respec-
tively. The LTR retrotransposon gag gene co-option events
represent the ones occurred during the deep evolution of
eukaryotes, because we only identified the co-option events
occurring before the last common ancestor of at least two
eukaryote families usually at the timescale of tens of millions
of years. Among these cases of LTR retrotransposon gag gene
co-option, eight have not been reported previously.

Across more than 740 eukaryote families, we only identi-
fied 14 LTR retrotransposon gag gene co-option events oc-
curred above the taxonomic family level (fig. 5), indicating
paucity of LTR retrotransposon gag gene co-option during
the deep evolution of eukaryotes. Two scenarios could ex-
plain this pattern: 1) Co-option of LTR retrotransposon genes
does occur at an extremely low frequency; and 2) co-option
of LTR retrotransposon genes occurs frequently, but co-opted
genes are frequently lost. In our previous study of retrovirus
gene co-option, we also observed a similar pattern: retrovirus

Species Family

36

66

2

5

6

1

20

1

10

24

7

~12

17

2

3

1

11

4

1

66

3

4

173 59

Discoba

Apusomonada

Choanoflagellates

Stramenopila

Rhodophyta

Animalia

Amoebozoa

Metamonada

Cryptophyta

Alveolata

Streptophyta
Chlorophyta

Haptophyta

Fungi

Rhizaria

Fon�culida

Filastere
Ichthyosporea

742

1 1

2 1

1 1
1 1

913 244

372

SAR

Hap�sta
Cryp�sta

Archaeplas�da

Amorphea

Excavates

Glomeromycota

Ascomycota

Neocallimas�gomycota
Blastocladiomycota

Chytridiomycota

Entomophthoromycota
BasidiomycotaCrtg12 Crtg13

Crtg14

Charophyta

Lycopodiopsida
Bryopsida
Marchan�opsida

Angiosperms
Crtg8 to Crtg11

Crtg4 to Crtg6

Aves

Cephalochordata

Mammalia

Amphibia

Cyclostomata

Rep�lia
Crtg2

Crtg7

Insecta
Crtg1Crtg3

Sarcoptergii
Ac�nopterygii
Chondrichthyes

FIG. 5. The distribution of Crtg genes across eukaryotes. Phylogenetic tree of eukaryotes is based on literatures (Eichinger et al. 2005; Steenkamp
et al. 2006; Burki et al. 2020).
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gene co-option is relatively rare in the deep branches of
vertebrates, which is likely due to frequent co-option and
frequent loss (Wang and Han 2020). We think the paucity
of LTR retrotransposon gag gene co-option during the deep
evolution of eukaryotes could be explained by frequent co-
option and frequent loss, and mining co-option events within
the level of taxonomic family would help confirm this hy-
pothesis. Our analyses came with several caveats: 1) We only
mined annotated proteomes of eukaryotes, and many
retrotransposon-related genes might not be well annotated.
Thus, the number of co-opted LTR retrotransposon gag genes
are underestimated in this study. 2) We only sampled �740
eukaryote families. It is possible that many co-option events
occurred recently, and these relatively recent co-option
events might not be unearthed in this study. 3) Our data
set is biased to animals, fungi, and plants, as most genome
sequencing has been performed in these groups, which might
result in underestimation of LTR co-option in protists.
However, our study well covers the deep diversity of eukar-
yotes, and covers the major diversity of animals, plants, and
fungi. If a co-option event occurred in deep past and the co-
opted gene pass on to its descendants, and if the co-opted
gene has been annotated in some of the descendants, our
analysis could capture this event (Wang and Han 2020). It
follows that we might not miss many co-option events oc-
curred in deep past (especially within animals, plants, and
fungi), such as the emergence of tetrapods or the emergence
of angiosperms. Together, our results reveal paucity of LTR
retrotransposon gag gene co-option during the deep evolu-
tion of eukaryotes and suggest that co-opted LTR retrotrans-
poson gag genes might have not been maintained for
extremely long periods of time.

Co-opted LTR retrotransposon gag genes and co-opted
retrovirus genes have been known to perform diverse cellular
functions in animals, ranging from mediating intercellular
RNA transfer in the nervous system, to regulating develop-
mental processes, to inhibiting viral infections (Ashley et al.
2018; Pastuzyn et al. 2018; Wang and Han 2020). In general,
genes that regulate crucial physiological processes might be
mainly subject to purifying selection, whereas genes that are
involved in certain genetic conflicts mainly evolve under
strong positive selection. For eight Crtg genes first identified
in this study, we found these genes appear to evolve mainly
under purifying selection. These genes are expressed in a wide
range of tissues or developmental stages. Evidence of positive
selection was detected for some Ctrg genes, especially Ctrg10.
Crtg10 gene was found to be fused with KELP gene, and KELP
gene functions in the inhibition of tomato mosaic virus in-
fection (table 1 and supplementary table S3, Supplementary
Material online). It is possible that the fusion between a co-
opted gag gene and KELP might participate in the evolution-
ary arms race between hosts and viruses. Overall, our results
indicate Crtg genes might perform diverse cellular functions.
Further experiments are still needed to explore the function
of these Crtg genes.

Our study provides insights into the co-option of LTR
retrotransposon gag genes. First, all the six co-opted LTR
retrotransposon gag genes previously documented involveT
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Ty3/Gypsy retrotransposons (Campillos et al. 2006; Pastuzyn
et al. 2018). In this study, we identified four and one Ctrg
genes which were derived from gag genes of Ty1/Copia and
Bel-Pao retrotransposons, respectively. Our study indicates
that gag genes from diverse LTR retrotransposons can be
repurposed for cellular functions (fig. 1). Second, all the pre-
viously reported co-option of LTR retrotransposon gag genes
occurred in animals. In this study, we identified four and three
LTR retrotransposon gag gene co-option events occurred in
plants and fungi, respectively (fig. 5). Therefore, our study has
expanded the range of LTR retrotransposon gag gene co-
option. It follows that LTR retrotransposon gag gene co-
option occurred more widely than previously appreciated.
Our study provides a snapshot of LTR retrotransposon gag
gene co-option in eukaryotes.

Materials and Methods

Identification of Co-opted LTR Retrotransposon gag
Genes
We employed a similarity search and phylogenomic analysis
combined approach (Wang and Han 2020) to identify co-
opted LTR retrotransposon gag genes above the taxonomic
family level across 2,011 eukaryotes. In brief, we first mined
the homologs of LTR retrotransposon Gag proteins in 2,011
eukaryote genomes using the hmmsearch program in
HMMER 3.3.1 with seven family in GAG-polyprotein clan
(CL0523), Arc_C family, PNMA family, and SCAN family as
queries and an e cut-off value of 0.1 (Eddy 2011) (supplemen-
tary tables S1 and S2, Supplementary Material online). The
DUF4219 family in GAG-polyprotein clan was excluded, be-
cause its seed alignment is too short. Next, phylogenetic anal-
yses of significant hits and representative Gag proteins of
retroviruses and retrotransposons were performed (Llorens
et al. 2008). Gag protein hits whose phylogenetic relationship
largely agrees with their host above taxonomic family level
were retrieved as co-opted Gag protein candidates. Finally, we
verified the domain configuration for each co-opted Gag can-
didate using SMART and Conserved Domain (CD) search
with default parameters (Lu et al. 2020; Letunic et al. 2021),
and the candidates that encode these query domains were
retrieved for further analyses. Protein sequences were aligned
using MAFFT 7 (Katoh et al. 2002). Phylogenetic trees were
reconstructed using an approximate maximum likelihood
method implemented in FastTree 2.1.11 (Price et al. 2010).
We used two criteria to define Crtg genes: 1) The Crtg genes
share similar synteny among the genomes of species across at
least two families, and/or the Crtg phylogeny largely agree
with the host phylogeny; and 2) the Crtg genes are subject
to certain level of selection. The syntenies flanking Crtg genes
were based on genome annotation and/or domain annota-
tion by CD search. The divergence time of hosts provides a
minimum time estimate for the occurrence of co-option
events. Host divergence time was based on TimeTree
(Kumar et al. 2017).

Analysis of the Evolutionary History of Co-opted gag
Genes
To explore the evolutionary history for each Crtg gene, we
used the TBlastN algorithm to search 2,011 eukaryote
genomes with a representative protein sequence for each
Crtg gene as the query and an e cut-off value of 10�5.
Phylogenetic analysis of significant hits and representative
Gag proteins was performed to confirm the distribution of
Crtg genes, and identify LTR retrotransposons that are closely
related to Crtg genes. The significant hits were bidirectionally
extended to identify classic structure of LTR retrotransposons
(supplementary table S4, Supplementary Material online).
LTR_Finder and LTRharvest were used to identify LTRs, and
CD search was used to annotate protein domains (Xu and
Wang 2007; Ellinghaus et al. 2008; Lu et al. 2020). We failed to
identify LTR retrotransposons that are closely related to
Crtg13 genes. But phylogenetic analysis of Gag proteins shows
that it is closely related to Ty1/Copia retrotransposons (sup-
plementary fig. S4B, Supplementary Material online).

Phylogenetic Analyses
For each Crtg gene, we performed phylogenetic analysis of
Crtg proteins, Gag proteins of LTR retrotransposons closely
related to Crtg, and representative LTR retrotransposons. We
only used Crtg7 protein sequences with the length of >84
amino acids for phylogenetic analyses (Edelstein and Collins
2005). To explore the phylogenetic relationship between LTR
retrotransposons closely related to Crtg proteins and repre-
sentative LTR retrotransposons, we performed phylogenetic
analysis of RT proteins of LTR retrotransposons closely related
to Crtg proteins and representative LTR retrotransposons
(supplementary tables S4 and S6, Supplementary Material
online). Protein sequences were aligned using MAFFT 7
with the strategy of L-INS-I, and then manually refined
(Katoh et al. 2002). Phylogenetic analyses were performed
using a maximum likelihood method implemented in
IQTREE 2.0 (Nguyen et al. 2015). ModelFinder in IQ-TREE
2.0 was used to select the best-fit models
(Kalyaanamoorthy et al. 2017). The branch support values
were assessed using the ultrafast bootstrap method with
1,000 replicates (Hoang et al. 2018).

Expression Pattern Analyses
The Illumina pair-end RNA-seq raw data for three fungi
(Lindgomyces ingoldianus, Alternaria alternata SRC1lrK2f,
and Kockovaella imperatae NRRL Y-17943), four developmen-
tal stages (larva, prepupae, pupae, and adult) of one animal
(A. planipennis), and seven tissues (leaf, root, bud, ovule,
flower, petiole, and seed) of four plants (N. thermarum,
Arabidopsis thaliana, N. nucifera, and Morus notabilis) were
retrieved from NCBI to analyze the expression pattern of
Crtg12 to Crtg14, Crtg1, and Crtg8 to Crtg11, respectively (sup-
plementary table S7, Supplementary Material online). First,
we employed Trimmomatic v0.39 to trim and filter the RNA-
seq raw data (Bolger et al. 2014). Next, we used STAR v2.5.4b
to map reads to reference genomes (Dobin et al. 2013). To
obtain the uniquely mapped reads for each gene, we used the
–quantMode GeneCounts option. Read alignment files
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generated by STAR v2.5.4b were sorted using Samtools v1.11
(Li et al. 2009). Finally, StringTie v2.1.5 was used to assemble
transcripts and estimate the gene abundance through calcu-
lating TPM values (Kovaka et al. 2019). To further confirm
that gag-derived regions of Crtg10 and Crtg14 are expressed,
TBlastN algorithm was employed to BLAST against the cor-
responding RNA-seq data using the gag-derived regions as
queries with an e cut-off value of 10�5. 252 and 1712 raw
reads mapped to the gag-derived regions of Crtg10 and Crtg14
with the identity of 100% and the query covery of 100%,
respectively.

Selection Pressure Analyses
For each Crtg gene, we used sequences without any prema-
ture stop codon and frameshift mutation to perform selec-
tion analyses. The one ratio model (M0) in PAML 4.9j was
used to estimate the overall dN/dS ratio (Yang 2007). Two
pairs of site models, M1a versus M2a and M8a versus M8, in
PAML 4.9j were used to detect sites under purifying selection
and positive selection. For data sets with more than two
nonidentical sequences, the BUSTED method and the
FUBAR method implemented in HyPhy package were
employed to identify gene-wide selection signal and sites un-
der natural selection, respectively (Murrell et al. 2013, 2015).
All the nucleotide sequences were aligned based on codons
using MUSCLE, and the ambiguous regions were removed
manually (Kumar et al. 2016). Phylogenetic trees used in se-
lection analyses were reconstructed using IQ-TREE 2.0
(Nguyen et al. 2015).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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