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Abstract

Traumatic Brain Injury (TBI) and persistent post-concussion syndrome (PCS) including

chronic migraine (CM) are major health issues for civilians and the military. It is important to

understand underlying biochemical mechanisms of these conditions, and be able to monitor

them in an accurate and minimally invasive manner. This study describes the initial use of a

novel serum analytical platform to help distinguish TBI patients, including those with post-

traumatic headache (PTH), and to help identify phenotypes at play in these disorders. The

hypothesis is that physiological responses to disease states like TBI and PTH and related

bodily stresses are reflected in biomolecules in the blood in disease-specific manner. Leave

one out (serum sample) cross validations (LOOCV) and sample randomizations were uti-

lized to distinguished serum samples from the following TBI patient groups: TBI +PTSD +

CM + severe depression (TBI “most affected” group) vs healthy controls, TBI “most affected”

vs TBI, TBI vs controls, TBI + CM vs controls, and TBI + CM vs TBI. Inter-group discrimina-

tory p values were� 10−10, and sample group randomizations resulted in p non-significant

values. Peptide/protein identifications of discriminatory mass peaks from the TBI “most

affected” vs controls and from the TBI plus vs TBI minus CM groups yielded information of

the cellular/molecular effects of these disorders (immune responses, amyloidosis/Alzhei-

mer’s disease/dementia, neuronal development). More specific biochemical disease effects

appear to involve blood brain barrier, depression, migraine headache, autoimmunity, and

autophagy pathways. This study demonstrated the ability for the first time of a novel, accu-

rate, biomarker platform to monitor these conditions in serum, and help identify biochemical

relationships leading to better understanding of these disorders and to potential therapeutic

approaches.
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Introduction

Traumatic brain injury (TBI) is a major health issue for civilians and for the military. Approxi-

mately 1.7 million TBIs are reported annually in the United States, with 275,000 hospitaliza-

tions, and 53,000 deaths [1]. A significant number of TBIs likely go unreported. TBI is

problematic for the military with 15–20% of Soldiers deployed to Afghanistan and/or Iraq

wars experiencing a deployment-related TBI (D-TBI) [2, 3]. A majority of TBIs, including in

the military, are mild with loss of consciousness (LOC) <30 minutes [1–4]. TBI is often associ-

ated with the post-concussion syndrome (PCS) which can include chronic daily headache

(CDH), post-traumatic stress disorder (PTSD), and/or depression, all of which are health con-

cerns for both military personnel and civilians [5–7]. These PCS conditions can occur for

extended periods of time after the D-TBI [1–4, 7–9]. Headache (HA) is the most frequent PCS

symptom (referred to as post-traumatic headache-PTH), and is a problem that can persist/

reoccur for months to years after the TBI [8–12]. Studies of veterans at 2–11 years after D-TBI,

98% reported continuing HA of which 45% had CDH (occurring� 15 days/month); two

thirds of these had chronic migraine (CM) [headache occurring� 15 days/month with� 8 of

these being migraine]) [4, 13]. The prevalence of CM in deployed veteran controls (8%) was

about four times the reported prevalence of CM in the civilian population of 1–2% [14, 15]. In

these analyses 2–11 years after D-TBI, PTSD was found in about 60% of TBI patients and

about 10% of controls [4]. Severe depression (SDep) was noted in 43% of the D-TBI patients

and only in 6% of controls. D-TBI subjects with a combination of PTSD and/or severe depres-

sion was found in approximately 60% of those with CM. In patients with D-TBI and CM, the

addition of PTSD and/or SDep make the headache severity worse and the diagnosis and treat-

ment more complicated. These observations indicate in studies of TBI and PTH (including

CM), especially associated with deployed veterans, consideration should be given to these

related factors (PTSD and/or SDep) in an effort to better understand TBI PCS patient symp-

toms and their persistence and potential biochemical/physiological inter-relationships.

It is important to develop accurate molecular aids useful for monitoring these conditions,

and for revealing mechanistic clues that could possibly aid in the development of therapies for

individuals with these conditions, especially in their persistent state. Peripheral blood, plasma,

and/or serum are ideal bodily fluids to learn detailed information about TBI and PCS disorders

including PTH since minimally invasive procedures are used to procure this biomaterial in a

quick, efficient and accurate manner. Molecular information gleaned from such material is

hypothesized to be able to help classify these conditions, understand any underlying associa-

tions/biochemical mechanisms, and provide possible targets for future biomarkers and thera-

peutic interventions. A number of studies have provided evidence indicating the analysis of

peripheral blood (e.g., serum, plasma, blood cells) holds promise as minimally invasive aid or

tool to study and understand TBI and associated PCS sequelae. In a study of acute TBI fol-

lowed up to 90 days post-TBI using plasma immuno-analysis, increased levels of glial fibrillary

protein, Tau, and Amyloid beta were observed in mild TBI patients versus healthy controls,

providing evidence for physiological connections between TBI and Alzheimer’s disease (AD)

[16]. A plasma micro RNA (miRNA) study of acute TBI identified several specific miRNA

molecules whose levels decreased over 30 days after the TBI [17]. PTSD was found to be associ-

ated with increased blood levels of cytokines and suggests neuro-inflammation may be a key

component in developing/maintaining this disorder [18]. Higher levels of serum inflammatory

marker, C-reactive protein, were associated with severe depression (SDep) suggesting an

inflammatory component of SDep [19]. Several blood biomarkers were reported to be associ-

ated with migraine headaches including CM. The calcitonin gene-related peptide (CGRP) is

one such serum marker reported for acute migraine and CM [20]. An inflammatory
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connection to migraine has been alluded to with the observations that serum acute phase pro-

teins pentraxin-3 and fibrinogen are found associated with migraine duration [21].

Currently there are no biomarkers in clinical use approved to assist in distinguishing and

monitoring patients with TBI and related PCS symptoms including CM, PTSD, and/or SDep.

Evidence indicates these potential post-concussion effects of TBI can be observed >30 years

after initial brain concussion [4, 22]. Most molecular studies on TBI and PCS biomarkers are

performed in the early acute phases of the disorders and have ignored long-term variations.

The present study is unique in that TBI and PCS including CM are being studied in a 5–14

year window after the initial concussion event. In this regard, it is important to see if such con-

ditions can be monitored in an extended time frame in an accurate, robust, and straight-for-

ward manner. In addition, molecular analysis of such a prolonged window may yield possible

mechanisms to help explain the persistence of these disease states over time. One unique

aspect, of this study, is the patient recruitment strategy which seeks out a narrow source of

patients (veterans deployed to Mideast war theaters) with a large swath (plus or minus a

D-TBI) of symptoms but with no recruiting emphasis on PTH and PCS. This created two

pools of subjects from which subgroups based on occurrence of D-TBI, severity of TBI, type of

headache, and presence of PTSD and/or depression could be created. A third unique feature of

this study Is the use, for the first time in the TBI and headache field, of a minimal serum elec-

trospray ionization mass spectrometry (ESI-MS) platform as a potential tool to help monitor

and understand TBI and PTH. This platform has had success in the cancer field being able to

distinguish both early-stage lung cancer and pancreatic cancer as well as provide mechanistic

information about the diseases [23, 24]. The large number of different identifiers (serum mass

peaks) used by this methodology, which differs from a number of other biomarker platforms

which use far fewer identifiers, appear to provide the highly specific disease discrimination

and elucidation ability of this platform. It is anticipated that this unique property of this plat-

form will be successful in this present study [23, 25, 26].

Materials and methods

Patients and clinical samples

All study subjects were recruited from a listing of Operation Enduring Freedom (OEF) and

Operation Iraqi Freedom (OIF) veterans in the Oklahoma City Veterans Administration Med-

ical Center (VAMC) catchment area. This list was constructed from the VA Veterans Inte-

grated Service Network (VISN-16 & VISN-19) Data Repository and contained 6,470 OEF/OIF

veterans who had suffered a confirmed D-TBI and 16,345 possible control subjects who had

not suffered a D-TBI (Fig 1). Of these totals, 4445 Subjects who lived within 100 miles of the

Oklahoma City VA Medical Center or, if located farther away but received medical care at the

OKC VAMC, were identified and contacted randomly to request their participation in the

study. No other criteria were applied in selection for initial contact. The major inclusion crite-

ria for this study were: (a) deployment to a war zone, (b) absence of major organ disease or

infectious/inflammatory disease at the time of the D-TBI and at the time of interview, and (c)

occurrence of a D-TBI for the TBI subjects, and absence of a D-TBI for controls. 167 subjects

were recruited into the study from the above VISN list. Participants provided written consent

(at the time of the blood draw) via a signed consent document approved by the University of

Oklahoma Health Sciences Center Institutional Review Board of Human Subjects Research

(IRB # 6839). During the scheduled appointment the individuals were interviewed, completed

the required questionnaires (described in the next section and in S1 Appendix), and provided

a peripheral blood sample from an arm vein. These study volunteers resulted from 319 sched-

uled appointments of individuals who fulfilled all the requirements of the study and who
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responded to our initial contacts (mailings or phone calls). Not all individuals scheduling

appoints appeared for the consenting, interview, questionnaire, and blood draw process. 162

volunteers completed this entire process. Six of the 162 patients were females, and two were

included in the present analysis of 65 volunteers, analysis method outlined in Fig 2, and with

one female in Figs 3 and 4, and a different female in Fig 5. The remaining study subjects were

males. The study breaks down with 47 subjects in the D-TBI group and 20 subjects in the

Fig 1. Study volunteer numbers, health characteristics, groupings, and figure inclusions. The number of patients

available for recruitment, number of patients recruited, number of patients utilized, and the identification of the

figures where these patients were utilized, are indicated.

https://doi.org/10.1371/journal.pone.0215762.g001

Fig 2. Experimental approach for discriminating sera from control individuals and patients with TBI and post- concussion syndrome (PCS)

sequelae. (A) Flow chart for serum sample handling and mass spectrometry for binary patient/subject group analysis. Distinguishing control samples

from TBI “most affected” samples is exhibited. (B) Peak Scoring for LOOCV (leave [one serum sample] out cross validation) procedure to classify mass

peaks either “most affect” or control from a “left out” sample, over a narrow range (600–660 m/Z is displayed) of significant group discriminatory mass

peaks. The PCV (peak classification value) example is exhibited on peak 635 which is used to classify “left out” peaks as either most affected (peak area

above this PCV) or control (peak area at or below this PCV).

https://doi.org/10.1371/journal.pone.0215762.g002
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control, non D-TBI group. The final N values for the experiments and respective figures

depicted in this study are also given in Fig 1. D-TBI subjects were recruited from veterans seen

and diagnosed in the Oklahoma City VAMC (Veterans Administration Medical Center) TBI

clinic. All TBI subjects had suffered their D-TBIs between 5 and 14 years prior to entering this

study. The Volunteers consented to participate in the study and their blood samples were col-

lected between January 1, 2017 to December 31, 2017.

Specific and pertinent patient/subject characteristics (e.g., PTSD and depression presence)

for the 65 veteran serum samples used in the group comparison figures are given in Table 1.

Patients are partitioned with respect to sera presence in the respective figures (far left col-

umn). Individuals and their sera in figure column were deemed appropriate on the basis of

having the most homogeneity for the following sample groupings: a) patients with TBI plus

PTSD plus SDep plus CM (most affected), b) healthy control individuals (least affected: no

TBI, no PTSD, no SDep, no CM), c) TBI alone (with minimal/no PTSD, SDep, CM contribu-

tions), d) TBI plus CM (with minimal/no PTSD, SDep, CM contributions). The 20 healthy

controls used in this study out of the total of 70 were selected for best age-matching to the TBI

“most affected” patients. All TBI subjects and control subjects were administered the same

questionnaires (QS) which included: (1) TBI QS, (2) headache QS, (3) PTSD (civilian) QS, and

(4) Beck Depression Inventory 2 (BDI 2). TBI was graded by duration of loss of consciousness

(LOC) as mild—LOC of 1–30 minutes; moderate—LOC 30–360 minutes, and severe—LOC

>6 hours. The majority of the D-TBI subjects in this study were graded “mild”. Headache

type was classified by criteria of International Classification of Headache disorders as

migraine, tension, cluster, probable migraine or no headache [13]. PTSD civ score ranges

assessed were� 35, none, 36–49, possible PTSD,� 50, highly probable PTSD. BDI 2 score

ranges were� 11, none, 12–19, mild depression, 20–28, moderate depression,� 29, severe

depression (SDep). Additional comprehensive patient characteristics are provided in S1–S6

Tables. Peripheral blood was obtained from consented control subjects or D-TBI patients in

identical fashion at the Veterans Administration (VA) Hospital in Oklahoma City before any

treatments. Blood (5 cc) was collected in no additive non-separator red stopper vacutainer

Fig 3. Distinguishing sera from TBI “most affected” patients versus controls using LOOCV and sample randomization

analyses. Male veterans of the United States Iraq and Afghanistan Wars were age-matched selected for these two different

groups with similar war theater experiences but either having mild TBI and post-concussion sequelae PTSD and CM and

SDep (most affected group) or lack of all these maladies (control group). (A) Serum discrimination of TBI most affected

patients (dark circles) from controls (squares) by % of LOOCV classified mass peaks. A cut off value is present (- or + SDs

from the most affected or control groups respectively) to determine test metric values (e.g. true positives). (B) Non-serum

sample discrimination when the two different sample groups are mixed together randomly followed by the same LOOCV

mass peak analysis. An � indicates a female volunteer and no experimental segregation is observed from the male volunteers in

this analysis.

https://doi.org/10.1371/journal.pone.0215762.g003
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tubes. Samples were allowed to clot at room temperature for 30 to 60 minutes and then spun at

4 ˚C for 10 minutes at 2,500 rpm. Serum aliquots of 250 μl were stored at -80 ˚C and thawed

only once [27]. Patient protocols were reviewed and approved (# 6839) by a Human Subjects

Institutional Review Board (IRB), at the University of Oklahoma Health Sciences Center and

the Oklahoma City VA Hospital.

Electrospray mass spectrometry of sera from TBI and PCS veteran patients and from

control veterans. A serum sample (4 μl) was diluted 1 to 300 into a solution of 50% methanol

and 2% formic acid and separated into 3 aliquots. Triplicate mass spectra (20 minute averages)

were collected from each TBI patient or control individual sera in random fashion. Spectra

were sampled at a m/Z (mass divided by charge) resolution of two hundredths over a m/Z

range of 400 to 2000 as previously described [24, 28] and in S2 Appendix. For tandem MS/MS

structural analysis, ten serum samples from each patient/control group (TBI “most affected”,

control, and TBI plus CM, TBI minus CM) were selected randomly and analyzed in the ion-

trap MS instrument as described previously [23, 24] and in S2 Appendix. Peak peptide/protein

identifications were determined as described previously [23,24] and in S2 Appendix. Identified

sequences were also searched using Basic Local Alignment Search Tool (BLAST) against NCBI

human non-redundant database. Sequences were also compared against a Taenia solium

Fig 4. Analysis of blinded sera samples: Comparing patients with TBI+PCS versus controls or TBI alone. (A)Training set

of serum discrimination of TBI most affected patients (triangles) from controls (circles) by % of LOOCV classified mass peaks;

correct true positives and true negatives are observed. (B) Non-serum sample discrimination observed when the two different

sample groups in panel A are mixed together randomly followed by the same LOOCV mass peak analysis. (C) Assessing the

ability of the training set in panel A to correctly discriminate a blinded group of ten samples; 9 out of 10 samples were correctly

identified. (D) Discrimination of sera from TBI most affected patients (dashes) from patients with TBI alone (dark squares),

and assessment of 6 “left out” group of TBI most affected patients (triangles); 5 out of 6 blinded most affect patients were

identified. An � indicates a female volunteer and no experimental segregation is observed from the male volunteers in this

analysis.

https://doi.org/10.1371/journal.pone.0215762.g004
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database to help rule out non-specific identifications. For Ingenuity Pathway Analysis (IPA,

QIAGEN Redwood City, “www.qiagen.com/ingenuity”), identified gene/protein names, when

present in 3 or more sera samples out of 10, and their corresponding numbers of Identified

MS/MS peptide sequence “hits”, were imported as log2 ratios for the control versus most

affected TBI disorder comparison following similar work [23] and S3 Appendix. Proteins were

also manually inspected for protein function and disease relatedness using PubMed/Medline.

For IPA exhibited in Figs 6 and 7 in the main text, a neurological/immunological overview

was incorporated into the IPA parameters used for those analyses. For IPA S1 and S2 Figs and

in S3 Appendix, a TBI overview alone was incorporated for those figures. MS acquisition files

are provided in S1–S17 Data. MS/MS acquisition files are provided in S18 Data.

Statistical and data processing/analysis

Data analyses are described here and in more detail in S2 Appendix. Mass spectral data were

exported into Microsoft Excel in a format providing rounded unit m/Z and intensity values,

and normalized/scaled to the highest m/Z sum intensity value in segments of 10 m/Z from

400–2000. Leave one out [serum sample] cross validation (LOOCV, described previously, was

used to distinguish mass peaks in serum samples between the various binary groups, for exam-

ple to distinguish mass peaks between the “most affected”patient group vs the control individ-

ual group (“least affected) [24]. LOOCV is employed to help mitigate “over-fitting” of large

data sets [29, 30]. Mass peak area differences between the various binary group comparisons

Fig 5. Distinguishing sera of TBI patients with and without chronic migraine (CM). (A) Sera discrimination of

patients with TBI alone (diamonds) versus sera from control individuals (dark squares) by % of LOOCV classified

mass peak analysis. (B) Sera discrimination of patients with TBI plus CM (triangles) versus sera from control

individuals (dark squares). (C) Non-serum sample discrimination observed when the two different sample groups in B

are mixed together randomly followed by the same LOOCV mass peak analysis. (D) Sera discrimination of patients

with TBI plus CM (dashes) versus TBI alone (dark squares) by % of LOOCV classified mass peak analysis. An
� indicates a female volunteer and no experimental segregation is observed from the male volunteers in this analysis.

https://doi.org/10.1371/journal.pone.0215762.g005
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used in the LOOCV analysis were identified as differing significantly at individual m/Z values

using Student’s t -tests (one-tailed, unequal variance, significance designated at p< 0.05, see

Fig 2 panel B). A peak classification value (PCV) metric is assigned at the area midpoint

between the two group means of each m/Z peak differing significantly in the “left in” binary

Table 1. Patient characteristics.

Group characteristics and Figure identifier Age in years TBI (N) PTSD (N): Depression (N) Headache (N) Years since TBI

Mean ±SD (range) n, v-M, M, Mod n, Poss, Prob n/m, M, Mod, SDep n, FH, CM Mean ±SD (range)

All Patients

All Patients, N = 65 43.29 ±8.38 (29–64) 20, 19, 21, 5 22, 9, 34 14, 27, 4, 20 33, 1, 31 10.89 ±2.48 (5–14)

All Controls, N = 20 44.05 ±8.8 (34–64) 20, 0, 0, 0 10, 0, 10 0, 20, 0, 0 20, 0, 0 na

All TBI, N = 45 42.96 ±8.26 (29–61) 0, 19, 21, 5 12, 9, 24 14, 7, 4, 20 13, 1, 31 10.89 ±2.48 (5–14)

Fig 3 panel A & Fig 3 panel B

TBI (MA), N = 21 41.24 ±8.51 (29–61) 0, 7, 11, 3 6, 2, 13 0, 1, 0, 20 0, 1, 20 11.67 ±2.33 (6–14)

Controls, N = 20 44.05 ±8.8 (34–64) 20, 0, 0, 0 10, 0, 10 0, 20, 0, 0 20, 0, 0 na

RND: TBI (MA), N = 21 42.62 ±8.74 (30–64) 10, 5, 4, 2 8, 1, 12 0, 11, 0, 10 10, 1, 10 11.09 ±2.39 (6–14)

RND: Controls, N = 20 42.6 ±8.81 (29–61) 10, 2, 7, 1 8, 1, 11 0, 10, 0, 10 10, 0, 10 12.3 ±2.21 (7–14)

Fig 4 panel A & Fig 4 panel C

TS TBI, (MA), N = 16 41.25 ±9.58 (29–61) 0, 7, 6, 3 4, 2, 10 0, 1, 0, 15 0, 1, 15 11.56 ±2.56 (6–14)

TS Controls, N = 15 43.87 ±10.23 (34–64) 15, 0, 0, 0 8, 0, 7 0, 15, 0, 0 15, 0, 0 na

TS RND: TBI (MA), N = 16 42.31 ±9.67 (29–64) 8, 1, 5, 2 6, 0, 10 0, 8, 0, 8 8, 0, 8 12.25 ±2.25 (7–14)

TS RND: Controls, N = 15 42.73 ±10.32 (30–61) 7, 6, 1, 1 6, 2, 7 0, 8, 0, 7 7, 1, 7 10.88 ±2.8 (6–14)

Blinds TBI (MA), N = 5 41.2 ±4.21 (37–47) 0, 0, 5, 0 2, 0, 3 0, 0, 0, 5 0, 0, 5 12 ±1.58 (10–14)

Blinds Control, N = 5 44.6 ±1.34 (43–46) 5, 0, 0, 0 2, 0, 3 0, 5, 0, 0 5, 0, 0 na

Fig 4 panel D

TS TBI (MA), N = 15 43.73 ±8.15 (33–61) 0, 3, 10, 2 5, 1, 9 0, 0, 0, 15 0, 0, 15 12.33 ±1.54 (9–14)

TS TBI, N = 12 44.58 ±7.93 (30–57) 0, 7, 3, 2 3, 7, 2 7, 4, 1, 0 12, 0, 0 10.5 ±2.68 (5–14)

TS RND: TBI (MA), N = 15 44.07 ±7.1 (30–51) 0, 7, 5, 3 6, 3, 6 4, 2, 1, 0 7, 0, 8 10.87 ±2.47 (5–14)

TS RND: TBI, N = 12 44.17 ±9.15 (34–61) 0, 3, 8, 1 2, 5, 5 3, 2, 0, 7 5, 0, 7 12.33 ±1.78 (8–14)

Blinds TBI (MA), N = 6 35 ±6.16 (29–43) 0, 4, 1, 1 1, 1, 4 0, 1, 0, 5 0, 1, 5 10 ±3.22 (6–14)

Fig 5 panel A

TBI, N = 12 45.25 ±6.85 (37–57) 0, 6, 4, 2 4, 7, 1 7, 4, 1, 0 12, 0, 0 11.17 ±2.12 (8–14)

Controls, N = 20 44.05 ±8.8 (34–64) 20, 0, 0, 0 10, 0, 10 0, 20, 0, 0 20, 0, 0 na

RND: TBI, N = 12 47 ±6.28 (37–57) 6, 3, 2, 1 8, 2, 2 3, 8, 1, 0 12, 0, 0 10.83 ±1.94 (8–13)

RND: Controls, N = 20 43 ±8.72 (34–64) 14, 3, 2, 1 6, 5, 9 4, 16, 0, 0 20, 0, 0 11.5 ±2.43 (8–14)

Fig 5 panel B & Fig 5 panel C

TBI with CM, N = 11 44.91 ±8.37 (34–59) 0, 5, 6, 0 2, 0, 9 7, 2, 2, 0 0, 0, 11 9.64 ±2.16 (6–13)

Control, N = 20 44.05 ±8.8 (34–64) 20, 0, 0, 0 10, 0, 10 0, 20, 0, 0 20, 0, 0 na

RND: TBI with CM, N = 11 46.27 ±10.32 (34–64) 7, 1, 3, 0 3, 0, 8 3, 8, 0, 0 7, 0, 4 11.25 ±1.5 (10–13)

RND: Control, N = 20 43.3 ±7.44 (34–58) 13, 4, 3, 0 9, 0, 11 4, 14, 2, 0 13, 0, 7 8.71 ±1.98 (6–12)

Fig 5 panel D

TBI with CM, N = 11 44.91 ±8.37 (34–59) 0, 5, 6, 0 2, 0, 9 7, 2, 2, 0 0, 0, 11 9.64 ±2.16 (6–13)

TBI, N = 12 45.25 ±6.85 (37–57) 0, 6, 4, 2 4, 7, 1 7, 4, 1, 3 12, 0, 0 11.17 ±2.12 (8–14)

RND: TBI with CM, N = 11 43.18 ±7.48 (34–56) 0, 5, 5, 1 0, 4, 7 6, 4, 1, 0 5, 0, 6 11.36 ±2.06 (8–14)

RND: TBI, N = 12 46.83 ±7.27 (36–59) 0, 6, 5, 1 6, 3, 3 8, 2, 2, 0 7, 0, 5 9.58 ±2.11 (6–13)

MA (most affected); TS (training set); SD (standard deviation); TBI (traumatic brain injury); PTSD (post-traumatic stress disorder); n (none); v-M (very mild); M

(mild); Mod (moderate); Poss (possible); Prob (probable); n/m (none/minimal); SDep (severe depression); FH (frequent headache); CM (chronic migraine); na (not

applicable)

https://doi.org/10.1371/journal.pone.0215762.t001
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peak comparison dataset (e.g., peak 635, Fig 2 panel B). This midpoint is used to assign the

group LOOCV classification for any “left out” peak in the LOOCV analysis. For example, if a

“left out” samples identical m/Z peak has an area above this midpoint then that peak is classi-

fied as the larger peak area class. In the case of peak 635 this would be the most affected classifi-

cation; if the area is equal to or below this value the peak classification would be “control”. In

this way a % of significantly changed mass peaks classified (e.g., as most affected) is assigned

each “left out” sample and plotted on the y axis vs the individual serum samples on the x-axis

(e.g., in Fig 3 panel A). Randomization of serum samples from subject groups compared in

binary fashion (another method to assess data over-fitting) was obtained using the RAND

function in Excel 2016 but retaining group number and age ratios [31]. Upon randomization,

the identical mass peak LOOCV database was created and the same analysis described above

was performed. To obtain potential statistical powers for group sample sizes (ability to detect

type II errors-false negatives), Cohen’s d effect size values are calculated from the binary group

% LOOCV means and standard deviations in Table 2 [32, 33]. Statistical power using given

sample sizes is calculated as described [33]. S1–S19 Tables provide spectral data, pre-averaged

raw values and MS/MS data. Processing step result values are in S16, S17, S18 and S19 Tables.

Fig 6. Physiological/cellular pathways of serum proteins found to distinguish TBI most affected patients from

controls. Affected physiological/cellular pathways and serum protein assignments from Table 3 (top panel) that were

found to distinguish TBI most affected patients from control individuals. The next top 58 proteins for each group (TBI

most affected or control) not exhibited in Table 3 were added to the 48 in this table for this analysis. Analysis

performed by using Ingenuity Pathway Analysis (IPA) bioinformatics software (Qiagen, Inc.).

https://doi.org/10.1371/journal.pone.0215762.g006
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Test metrics

The diagnostic value of a test/procedure is defined by its sensitivity, specificity, predictive

value, and efficiency [34, 35]. Test sensitivity was determined from TP/(TP+FN) where TP was

the number of true positives for disease presence, and FN was the number of false negatives

for disease presence. Specificity was calculated from TN/(TN+FP) where TN is the number of

true negatives and FP is the number of false positives. For example, TBI “most affected” and

control TP, FP, TN, and FN values in Table 2 were determined using cutoffs of 2.28 standard

deviations (SD) below the mean “% of TBI most affected LOOCV classified serum mass peaks,

or 2.28 SD above the mean % control mass peaks (both cutoffs are represented by the single

line in Fig 3 panel A).

Results

Using ESI-MS serum mass peak profiling to help distinguish “most

affected” TBI patients from healthy control individuals

TBI in military veterans can occur in a clinical presentation involving other PCS sequelae

including PTSD, SDep, and/or CM. It is important to study TBI and these sequelae together

and individually to better understand these conditions and their interrelatedness and contri-

butions to the overall clinical presentation. One goal of the present study is to examine whether

Fig 7. Physiological/cellular pathways of serum proteins found to distinguish TBI with CM from TBI only

patients. Affected physiological/cellular pathways and serum protein assignments from Table 3 (bottom panel) that

were found to distinguish patients with TBI alone versus patients with TBI plus CM. The next top 58 proteins for each

group (TBI alone and TBI plus CM) not exhibited in Table 3 were added to the 48 in this table for this analysis.

Analysis performed by using Ingenuity Pathway Analysis (IPA).

https://doi.org/10.1371/journal.pone.0215762.g007
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the ESI-MS serum mass peak profiling methodology that has been successful in distinguishing

early stage cancer patients from healthy controls as well as from different cancers, is able to dis-

tinguish TBI with PCS sequelae from healthy controls as well as distinguish TBI plus and

minus PCS sequelae.

Fig 2 panel A is a flow chart outlining how serum mass peak profiling is employed to distin-

guish control individuals (least affected) from subjects with TBI, PTSD, SDep, and CM (most

affected). The procedure requires a serum sample dilution (no pre-treatment or fractionation),

and is a straight-forward biomolecule profiling platform. The complete mass peak database

used here in Fig 2 (and also in Figs 3, 4 and 5, mean area values normalized) is provided in S6

Table. “Leave one out [serum sample] cross validation” (LOOCV) and group randomizations

are employed to help mitigate and assess possible “over-fitting” of large data sets [29, 30]. Fig 2

panel B illustrates a small number of the significant ESI- MS mass peaks from 600 to 660 in m/

Z units (mass divided by charge) able to discriminate sera from TBI “most affected” patients

(solid line) from control individuals (dash line). This m/Z region is one of many analyzed

(total range 400–2000 m/Z); the large number of significant peak differences likely is contrib-

uting to the disease discrimination ability of this technology [23, 25, 26]. These individual peak

area means differ significantly (p value< 0.05) between 21 “most affected” patient sera samples

and 20 control-“least affected” individual sera samples. Peak 635 exhibits a Peak Classification

Value (PCV) metric area midpoint used for all peaks in the “left in” LOOCV database and is

used to classify the group designations (either “most affected” or control-least affected) for the

mass peaks in individual “left out” serum samples. A “left out” peak area above this midpoint

is assigned to the higher value classifier (“most affected” for this peak, 635) and a “left out”

peak equal to and below this midpoint is assigned to the lower value classifier (control for this

peak). In this way individual “left out” serum samples are assigned a “% of total TBI most

affected LOOCV classified mass peaks” or a “% of total control classified mass peaks” and that

% value is plotted on the y-axis for each patient (x-axis, e.g., in Fig 3 panel A).

Table 2. LOOCV serum mass profiling test metrics.

Group 1 vs. Group 2 Mean (SD)

Group 1

Mean (SD)

Group 2

TP TN FP FN P-Value,

Cohen’s d
Random Grouping:

P-Value

Figure #:

panel

TBI (most affected), N = 21 vs.

Controls, N = 20

58.16%

(4.24%)

39.87%

(3.80%)

21/21

(100%)

20/20

(100%)

0/20

(0%)

0/21

(0%)

1.3 x 10−17,

4.54

0.42 3: A & B

Training Set A: TBI (most affected),

N = 16 vs. Controls, N = 15

58.50%

(5.33%)

39.87%

(4.07%)

16/16

(100%)

15/15

(100%)

0/15

(0%)

0/16

(0%)

1.4 x 10−13,

3.92

0.42 4: A & B

Blinded Set A: TBI (most affected),

N = 16 vs. Controls, N = 15

51.90%

(2.00%)

44.56%

(3.28%)

5/5

(100%)

4/5 (80%) 1/5

(20%)

0/5

(0%)

2.1 x 10−3,

2.70

na 4: C

Training Set B: TBI (most affected),

N = 15 vs. TBI, N = 12

60.80%

(6.49%)

26.28%

(5.18%)

15/15

(100%)

12/12

(100%)

0/12

(0%)

0/15

(0%)

1.50 x 10−14,

5.87

0.07 4: D

Blinded Samples B: (most affected),

N = 6

46.71%

(4.06%)

na 5/6 (83%) na na 1/6

(17%)

na na 4: D

TBI; N = 12 vs. Controls, N = 20 73.13%

(4.38%)

44.77%

(4.31%)

12/12

(100%)

20/20

(100%)

0/20

(0%)

0/12

(0%)

2.81 x 10−15,

6.52

0.49 5: A

TBI +CM; N = 11 vs. Controls,

N = 20

75.81%

(5.28%)

40.91%

(6.09%)

11/11

(100%)

20/20

(100%)

0/20

(0%)

0/11

(0%)

8.84 x 10−15,

6.12

0.04 5: B

TBI +CM; N = 11 vs. TBI; N = 12 67.41%

(4.49%)

35.99%

(7.62%)

11/11

(100%)

12/12

(100%)

0/12

(0%)

0/11

(0%)

1.98 x 10−10,

5.02

0.39 5: C

Mean of the % Total LOOCV Sera Mass Peaks (Standard Deviation [SD]); True Positives (TP); True Negatives (TN); False Positives (FP); False Negatives (FN);

Traumatic Brain Injury (TBI); Chronic Migraine (CM); Post Traumatic Stress Disorder (PTSD); not applicable (na); TBI Most Affected (TBI, plus CM, plus PTSD, plus

severe depression); Controls (minus TBI, no CM, minus PTSD, minus Depression); TBI +CM (TBI, plus CM, minimal/no PTSD, minimal/no Depression); TBI (TBI,

minimal/no PTSD, no CM, plus minimal/no depression)

https://doi.org/10.1371/journal.pone.0215762.t002
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Fig 3 panel A illustrates the application of this LOOCV process for distinguishing patients

with TBI “most affected” from healthy control individuals. When this “% of TBI most affected

patient classified mass peaks value” (y axis) is plotted versus subject number (x-axis), a distri-

bution plot is obtained (in which a clear demarcation is observed between most affected

patients (darkened circles) versus controls (open squares). Individual LOOCV mass peaks

identified and scored, on a per patient basis used in all the LOOCV binary group comparisons,

are provided in S7–S10 Tables. The p value for this group discrimination is very low (10−17

range), and that value becomes non-significant (0.42) when these two different subject groups

are mixed together in random fashion followed by the identical LOOCV mass peak analysis

(Fig 3 panel B). This very large increase in p value upon inter-group sample randomization is

consistent with minimal over-fitting of the original data set and with the presence of a physio-

logical basis for the original TBI most affected versus control discriminations.

Distinguishing sera of TBI “most affected” patients from controls via

blinded “test” sample analyses

A blinded validation experiment of the discriminatory power of ESI-MS in distinguishing sera

from most affected TBI patients from that of healthy controls was performed by removing ran-

domly 5 TBI most affected patient sera and 5 control individual sera (10 total) from each of the

N = 21 and 20 subject groups. A “training set” was then assembled with N = 16 for the “most

affected” and N = 15 for the control group (“most affected” vs control) with significant peaks

selection using the LOOCV procedure. Fig 4 panel A exhibits the ESI-MS discrimination of

the training set for these two groups based on % of TBI most affected patient sera LOOCV

mass peaks (y axis) classified for each TBI and each control serum sample (x axis). For the

training database, a very low discriminatory p value is obtained (10−13 range), and a p value of

0.42 (non-significance) is observed upon sample randomization of the known pathology

group with the control group followed by the same LOOCV analysis. The p value 0.42 random

“non-discrimination” is exhibited in panel B, and results of this “leave 10 serum samples out”

blinded pathology” test validation in panel C. As can be observed, 9 out of the blind group of

10 “left out” serum samples were classified correctly with only one false positive for “most

affected” (solid circle, above cut off value of 46.1% of “most affected” classified mass peaks).

Another type of blinded analysis was performed by randomly removing 6 of the “most

affected” samples and then test those samples against the same selected peak and area values

from the training database constructed using the previously described LOOCV method on a

“most affected” (N = 15) and TBI only (N = 12) patient set. Resulting data of the blinded sam-

ple testing are reported in Fig 4 panel D along with the training database patient scores (“most

affected” in solid bars; TBI only solid squares) against the cutoff value of 55.7%. Five out of six

samples were identified correctly (open triangles).

ESI-MS serum discrimination of patients with TBI plus or minus chronic

migraine from each other and from control individuals

In order to examine the contribution of CM to the overall TBI clinical presentation, and con-

versely, to single out TBI and the CM phenotype from each other, the ability of ESI-MS serum

mass profiling to discriminate these groups as well as controls was assessed. Exhibited in Fig 5

are binary ESI-MS LOOCV comparisons between serum samples from 20 control individuals,

12 TBI patients with no CM, and 11 TBI patients plus CM. Panel A of Fig 5 depicts ESI-MS

distinguishing the TBI no CM patient serum sample set from the control serum set. A very low

“true pathology” discrimination is obtained (p-value 10−15) with a random grouping value of

0.49. Discriminating serum samples from patients with TBI plus CM from control individuals
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is exhibited in panel B. One control false positive is observed (darkened square). The true

pathology group discriminatory p value is very low (10−15) but the random grouping value is

slightly significant (0.04). Plotting this still significant group value in panel C indicates no real

group discrimination is taking place (samples are indicated as true positives for the random

(RND) TBI + CM group if above the solid line and also indicated as true negatives for the

RND Control group if below the dashed line), as samples are identified as members of both

random groups. Importantly, the ESI-MS profiling methodology is able to discriminate serum

from TBI patients with CM (dashes) from TBI patients without CM (darkened squares, panel

D). The true pathology p value is quite low (10−10) and the random grouping value is non-sig-

nificant (0.39).

Test metrics

Table 2 is a summary of the test metrics for the discriminatory mass peak data exhibited in

Figs 3, 4 and 5. These metrics include the % LOOCV classified mass peak means and standard

deviations (SD) for all the group comparisons (far left column) with respect to the specific fig-

ure panels (far right column). Nomenclature from predictive value theory is presented, e.g.,

test sensitivity, specificity, etc., as well as true pathology and random grouping p values [34,

35]. The pathological groups tested in binary fashion from these Figures are listed in the far-

left column. The “% LOOCV MS peaks” means and their standard deviation (SD) are all well

separated and have narrow SD boundaries for all the groups tested. Test sensitivities (true

positive rate) range from 1.0 to 0.83 and test specificities (true negative rate) range from 1.0 to

0.80 for all groups. Physiological values in the original distribution differences are indicated by

the very large increases in p values when the groups are randomized. A Cohen’s d effect size

value is provided in Table 2. “Effect size” refers to the mean differences for the binary group

LOOCV discriminations observed in Figs 3, 4 and 5, taking into consideration the SD values

[32]. This Cohen’s d value is an indirect measure of statistical power (ability to detect type II

errors-false negatives) of the sample sizes employed in a study. The large Cohen’s d values

exhibited here bolster the reliability and power (estimated from these effect sizes to be> 0.90)

for the sample sizes used in this study (Table 2).

Serum peptide/protein identifications using MS/MS of LOOCV TBI “most

affected”, CM, and control group discriminatory mass peaks and

bioinformatics cell pathway analysis

Table 3 exhibits MS/MS identified peptides listed by their protein name/abbreviations, their

serum presence, and their numbers of MS/MS “hits” for the Fig 3 panel A TBI “most affected”

versus control “least affected” binary LOOCV comparison (panel I, top 48 proteins) and for

the Fig 5 panel D TBI plus and minus CM comparison (pane II, top 48 proteins). Individual

selected LOOCV mass peaks identified and analyzed by MS/MS, on a per patient basis used in

all the LOOCV binary group MS/MS comparisons, are provided in S11–S15 Tables. Notable

serum peptide/protein changes (levels up or down in the two comparative groups) observed in

panel I [shaded] with respect to post-traumatic neurological issues include GRM4 (glutamate

receptor-4) and PCLO (protein Piccolo) which were previously suggested as biomarkers for

major depression and possibly PTSD [36–38]. VWF (Von Willebrand Factor) was previously

shown to have a role in maintaining blood brain barrier (BBB) flexibility, and ATRN has roles

in myelination events which have been shown to be important in BBB protection and mainte-

nance [39–41]. LRP1 is a major regulator of blood-brain barrier integrity [42]. Genetic evi-

dence also indicates LRP1 is a susceptibility factor for migraine headache [43]. In addition,

changes in LRP1 may have roles in dementia and Alzheimer’s disease (AD) progression, as
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does NOTCH4 [44, 45]. TBI has previously been shown to increase risks for dementia includ-

ing AD in some cases 30 plus years after the initial injury [16, 25]. Of added interest, an auto-

immunity pathway is present in Panel I with proteins LRP1 and POLA1 [46, 47]. Panel II

exhibits the peptides/proteins identified by MS/MS whose serum levels are changing in TBI

plus CM versus TBI minus CM patient comparison. A number of protein similarities are

observed with Panel I including LRP1, a marker for migraine headache, and PCLO a possible

marker for depression [37, 38, 43]. Also with respect to migraine is ITGB3 which was shown

to influence serotonin blood levels, serotonin being previously implicated in migraine etiology

[48, 49]. Dementia and AD potential markers are present in panel II, RXFP1, RELN, EGF and

the previously mentioned LRP1 [50, 51]. TBI and dementia associations were previously dem-

onstrated [16, 22]. HUWE1 mediated Notch signaling is involved in neuroprotection after

injury [52]. Like in panel, I autoimmunity appears to be in play with proteins AFF3, SMYD3,

and LRP1 [46, 53, 54]. Also of interest in panel II is autophagy with DUOX1, a protein

involved in autophagic degradation pathways [55].

Fig 6 exhibits cellular/biochemical pathways that the bioinformatic software Ingenuity

Pathway Analysis (IPA, QIAGEN Redwood City) indicated are being affected by including the

list of 48 proteins in the TBI “most affected” versus “controls” exhibited in Table 3, panel I plus

the next 58 ranked proteins not listed in that table. Neurological and immunological focuses

were programmed into the IPA software pathway search for both Figs 6 and 7. Also included

Table 3. Peptides/proteins identified using LOOCV discriminatory mass peaks in TBI+PTSD+CM+SDep versus controls and TBI+CM versus TBI.

Least affected vs. Most affected (no. sera/10, no. MS/MS “hits”-least: no. MS/MS “hits” -most)

IGH (8, 9: 38) SYNE1 (3, 57: 0) TENM2 (3, 23: 11) SIMC1 (3, 0: 15)

TTN (5, 54: 57) FBN2 (3, 17: 32) ATRN (3, 27: 0) TNRC18 (3, 15: 0)

SSPO (4, 36: 44) IGK (3, 21: 27) PRUNE2 (3, 27: 0) TCF20 (3, 13: 0)

NOTCH4 (4, 38: 36) FAT4 (3, 13: 33) FBN3 (3, 18: 8) POLA1 (3, 8: 0)

IGL (4, 39: 26) GRM4 (3, 0: 41) ITGA8 (3, 0: 22) DNAJC5 (2, 155:18)

PCLO (4, 4: 37) LRP1 (3, 7: 33) MALRD1 (3, 0: 19) ADGRL2 (2, 171:0)

TRB (4, 15: 11) MT-ND4 (3, 23: 16) CSMD1 (3, 0: 17) DNAJC5B (2, 6:151)

MUC19 (4, 0: 17) HECTD4 (3, 23: 15) PKD1 (3, 0: 16) OTOGL (2, 38:90)

SON (3, 95: 0) ZNRF3 (3, 36: 0) C18orf15 (3, 15: 0) EBF4 (2, 62:38)

LAMA5 (3, 39: 52) NSD1 (3, 0: 35) CNNM1 (3, 0: 15) MUC2 (2,0:62)

MUC5AC (3, 24: 49) USH2A (3, 19: 16) PTPRM (3, 0: 15) VWF (2, 13:45)

ZNF268 (3, 28: 34) FCGBP (3, 22: 2) SERINC2 (3, 0: 15) TENM4 (2, 32:26)

TBI—CM vs TBI + CM (no. sera/10, no. MS/MS “hits”-CM: no. MS/MS “hits” + CM)

IGH (5, 31: 5) MUC5B (3, 0:16) PCLO (2, 0: 38) DNAH9 (2, 20: 0)

MUC19 (4, 13: 12) LSM12 (3, 9:0) MAN1B1 (2, 36: 0) IGFN1 (2, 6: 20)

EBF4 (3, 9: 107) PCDH8 (3, 16: 0) DKC1 (2, 32: 0) ITGB3 (2, 19:0)

SYNE2 (3, 19: 75) TRB (3, 14: 6) SMYD3 (2, 21: 9) SBF1 (2, 18: 0)

FBN2 (3, 76: 12) RUNX2 (3, 13: 0) RNF219 (2, 0: 28) RELN (2, 0:18)

MT-ND5 (3, 12: 75) MUC6 (3, 10: 0) ARID1B (2, 28: 0) PLOD1 (2, 0: 16)

IGL (3, 23: 46) AFF3 (2, 200: 0) FREM2 (2, 26: 0) SLC12A1 (2, 16: 0)

TTN (3, 13: 41) MT-ND1 (2, 20: 85) CCDC18 (2, 24: 0) DUOX1 (2, 0: 15)

HUWE1 (3, 33: 0) PXN (2, 0: 45) PADI3 (2, 24: 0) TANC1 (2, 15: 0)

RXFP1 (3, 0: 21) MAPRE2 (2, 42: 0) ZKSCAN7 (2, 0: 23) EGF (2, 5: 14)

TNRC6B (3, 34:14) LAMA1 (2, 0:41) ZNF571 (2, 0: 23) LRP1 (2, 14: 4)

CCDC148 (3, 29:15) ING2 (2, 40: 0) PSD3 (2, 22: 0) PLP1 (2, 0:14)

Shaded cells indicate neurological relationship

https://doi.org/10.1371/journal.pone.0215762.t003

Serum monitoring of TBI and PCS in veterans

PLOS ONE | https://doi.org/10.1371/journal.pone.0215762 April 26, 2019 14 / 24

https://doi.org/10.1371/journal.pone.0215762.t003
https://doi.org/10.1371/journal.pone.0215762


in this pathway analysis as well as in Fig 7 are related functional inputs from literature searches

on the 108 proteins described above using Medline and PubMed. Major pathways affected (by

numbers of connections) in this TBI “most affected” versus control comparison include

immune responses, central nervous system, neuron development/vision, and dementia/Alz-

heimer’s disease. Also a depression pathway is identified involving aforementioned proteins

GRM4, PCLO, plus protein PTPN5/STEP which has previously been associated with major

depression and neuroinflammation [56]. As noted above a blood brain barrier phenotype is

present as well as autoimmunity and autophagy with ANO2, HLA-DQB1, MTMR3, and

SEC16A [57–60]. IPA analysis of the 48 proteins listed in panel II plus the next 58 ranked pro-

teins for the TBI plus and minus CM comparison (Fig 5 panel D) is displayed in Fig 7. Major

pathways identified as affected in this binary group comparison include immune responses,

brain injury, dementia, and ion transport, similar to that observed in Fig 6. In addition, a

migraine headache pathway of related proteins also appears in this comparison, most notably

ITGB3, KCNK18, NOTCH4, and LRP1 which could be interacting with glutamate receptors

[43, 48, 61–63]. Also the autoimmunity connections are present with AFF3, SMYD3, and

LRP1 as well as autophagy with DUOX1, TECPR1, and ZHHX3 [64, 65]. It is noted that the

IPA analysis illustrated in Figs 6 and 7 also include protein inputs from literature searches on

disease relatedness of the proteins exhibited in Table 3 as well as the next top 58 proteins. IPA

analysis including these proteins described above with a TBI focus is exhibited in S1 and S2

Figs. A TBI focus alone yields fewer pathway connections but possibly more direct information

concerning the TBI condition. Additional IPA results and discussion and detail are provided

in S4–S6 Appendices.

Discussion

Much research in the TBI and PCS field is focused on identifying short-term changes associ-

ated with TBI, while less attention has been paid to the long-term effects on patients. By

observing individuals 5–14 years after the initial TBI, this present study focuses on the long-

term physiological changes of PCS potentially induced by the TBI. By studying such long-term

effects, it might be possible to obtain clues about mechanisms responsible for long-term persis-

tence of PCS symptoms like chronic migraine headache. There are a number of unique aspects

of this molecular and translational long-term study. The current experiments employ well-

controlled subject group comparisons. The initial goal was to provide groups of D-TBI subjects

who were recruited randomly from a listing, provided by the VA VISN 19 Data Repository, of

approximately 6,000 Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) vet-

erans who had suffered a confirmed D-TBI, and control veterans drawn from the same reposi-

tory of approximately 12,000 OEF/OIF individuals who did not have a D-TBI. Thus, the non-

TBI group of deployed veterans experienced the same war theater conditions as the veteran

volunteers who suffered a deployment-related TBI. This also holds for the deployed veterans

who did not manifest PCS associated PTSD, severe depression, and/or CM versus those

deployed veterans who did. And as described above, these D-TBI veterans are in the persistent

phases of their PCS disorders (5–14 years after their D-TBI) versus most previous studies on

these disorders were in the earlier initial acute phase (less than 90 days). Therefore, veteran

sera biomolecule analyses performed in this study should be able to provide additional clues

concerning the underlying mechanisms for maintaining such persistence. Patient health and

demographic data are provided in Table 1 in the main text and in S1–S3 Tables. The minimal

serum mass profiling platform utilized in this study, employing leave one out (serum sample)

cross validation [LOOCV] was able to uniquely discriminate groups of TBI and PCS sequelae

patients from each other and from controls, as well as provide a set of discriminatory LOOCV
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serum mass peaks whose identification should provide additional mechanistic clues about the

biochemical nature of these disorders.

With respect to these patient groupings, it is important to develop such robust, accurate,

and minimally invasive testing aids to assist researchers and clinicians in diagnosing, classify-

ing, and monitoring individuals who sustained a TBI and developed PCS sequelae. Such aids

will allow more vigilant screening of these conditions, helping with patient prognoses and

treatments, and assist in the understanding of these disorders. This study reports progress in

distinguishing individual serum samples from patients with D-TBI and post-concussion

sequelae including PTSD, CM, and severe depression from each other and from control indi-

viduals, in retrospective and blinded fashion with high sensitivity and specificity test metrics

(Table 2) 5–14 years after the initial TBI. In looking for possible independent variable effects

on our LOOCV binary group comparisons, we assessed a number of such variables using R2

variance analysis. We were not able to demonstrate a consistent R2 association (observed

range 0.0001 to 0.145) between the number of TBIs per patient and influence on the LOOCV

binary comparison results. The one comparison with the higher R2 value (0.749) was the blind

analysis in Fig 4 panel C containing a small sample size which likely influenced the results.

This information is provided in S4 Table. An R2 analysis was performed showing no effect of

age on any of the LOOCV binary comparisons in the study (observed range 0.0014 to 0.1998,

S6 Table). Six of the 162 patients were females, and two were included in the present analysis

of 65 volunteers in the Figures (one in Figs 3 and 4, and a different one in Fig 5). The remain-

ing study subjects were males. The two female volunteers with TBI segregated with the male

volunteers with TBI in the binary analyses. There were not enough females to make a direct

male to female comparison. It was difficult to accumulate large N values for the matched

groups in this study. However, the large “effect sizes” for these binary group comparisons (dif-

ferences in mean mass peak areas/standard deviations for the two different groups in question

which is proportional to statistical power-ability to detect false negatives) does lend credibility

to the success of these discriminations even at the reduced sample sizes, and helps establish

their validity and portends well for future studies with larger sample sizes [32]. Although the

present study is a retrospective analysis, experiments were performed to begin to address the

ability of this test procedure to discriminate blinded samples against a training set. In one

blind test set (equal numbers of TBI “most affected” samples and controls) an analogous train-

ing set was able to correctly identify 9 out of 10 samples (Fig 4 panel C).

With respect to identifying underlying physiological process at play in these disorders, this

ESI-MS platform also has the ability to “target” the unique binary group discriminatory set of

LOOCV mass peaks for MS/MS structural determination which can lead to biochemical and

phenotype elucidations. This represents a third and another unique aspect of this ESI-MS meth-

odology: disease understanding through identification of a wide variety of biomolecules

involved in disease mechanisms which can be performed with a very small sample of mini-

mally-invasive bodily fluid. The identification of such biomolecules and biochemical pathways

can aid in further biomarker and therapeutic development. Such analyses are presented in

Table 3 and in Figs 6 and 7 for the TBI “most affected” versus controls and the TBI plus and

minus CM comparisons, respectively. The biochemical/cellular pathway phenotypes identified

playing a role in these disorders include inflammation/immune responses, neurological issues,

and dementia/Alzheimer’s disease inferences in Fig 6 and Fig. These observations are in line

with previous evidences that TBI and associated post-concussion sequelae are triggering neuro-

inflammation events, and the dementia/AD similarities observed in this study were noted

before. Observing these known phenotypes lends credence to the ability of this serum profiling

methodology and platform to help decipher these pathologies. These results indicate that we are

separating/distinguishing these different groups based on actual physiological and pathological
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differences which is consistent with the serum mass profiling hypothesis guiding these studies.

Such disease differences reflected in the peripheral blood likely stem from systemic processes in

response to such disease states as well as direct diseased tissue inputs [66, 67].

More novel and specific biochemical/cellular pathway affects observed in this study include

a potential blood brain barrier (BBB) phenotype in the TBI “most affected” vs control and in

the TBI plus and minus CM comparisons (Table 3, Figs 6 and 7). These observations about

BBB effects in the present TBI study are in line with a previous analysis concerning effects of

concussion on the BBB in humans and in rats [68]. Notably, a depression phenotype was

observed in the TBI “most affected” vs control comparison (Table 3, Fig 6), and a migraine

headache phenotype was observed in the TBI plus vs minus CM comparison (Table 3 and Fig

7). With respect to the persistence phenomenon associated with studies on the long-term

pathologies of patients with TBI and associated PCS, the autoimmunity phenotype appearing

in both the TBI “most affected” versus controls and the TBI plus versus minus CM IPA analy-

ses (Figs 6 and 7) could provide a potential explanation for such persistence. Autoimmunity

has recently been associated with stress-related disorders, and is known to have roles in other

chronic diseases [69]. The long term persistence of TBI and associated PCS sequelae can be

described as chronic diseases. Also the autophagy phenotype (cell degradation of intra-cellular

constituents) is appearing in both Figs 6 and 7 IPA analyses, and autophagy was previously

reported as a possible mechanism underlying TBI [70]. And of added interest, autophagy and

autoimmunity are linked biochemically and physiologically [71]. This combination would be

an ideal mechanism(s) to promote the persistence seen in long-term patients with TBI PCS

related sequelae. By providing initial evidence of potential autoimmunity and autophagy

mechanisms, this study provides basic observations which could open up new avenues of

thought and future possible research concerning TBI and associated PCS sequelae including

chronic migraine.
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