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A human papillomavirus type plays an important role in the early diagnosis of cervical cancer. Most of the prediction methods use
protein sequence and structure information, but the reduced amino acid modes have not been used until now. In this paper, we
introduced the modes of reduced amino acids to predict high-risk HPV. We first reduced 20 amino acids into several
nonoverlapping groups and calculated their structure and physicochemical modes for high-risk HPV prediction, which was
tested and compared with the existing methods on 68 samples of known HPV types. The experiment result indicates that the
proposed method achieved better performance with an accuracy of 96.49%, indicating that the reduced amino acid modes might
be used to improve the prediction of high-risk HPV types.

1. Introduction

Cervical cancer is a cancer with a higher morbidity and
mortality rate among women worldwide [1]. There are about
500,000 new cases of cervical cancer each year, with 280,000
deaths [2], which has become the second largest female can-
cer [3, 4]. Studies have indicated that human papillomavirus
(HPV) infection is closely related to the occurrence and
development of cervical cancer, and certain types of HPV
cause abnormal tissue growth in the form of papilloma [5–7].

Human papillomavirus belongs to the papillomavirus
family. It is an icosahedral, uncoated particle composed of
double-stranded DNA of approximately 8,000 nucleotide
base pairs [8, 9]. The circular DNA is about 55nm in diame-
ter [10–13]. To date, there are more than 150 types of human
papillomavirus (HPV), and some new HPV types will be
found when there are significant homologous differences
between some new HPV types and defined HPV types
[14–16]. Epidemiological studies have shown a strong cor-
relation between genital HPV and cervical cancer. Genital
HPV can be divided into three types according to its rela-
tive malignancy: low-risk type, intermediate-risk type, and

high-risk type. The clinical association studies usually use
two types of HPV: high-risk and low-risk. Low-risk types
are associated with low-grade lesions, while high-risk viral
types are more closely related to high-grade cervical lesions
and cancer [17]. High-risk types included HPV-16, HPV-
18, HPV-26, HPV-31, HPV-33, HPV-35, HPV-39, HPV-
45, HPV-51-53, HPV-56, HPV-58, HPV-59, HPV-66,
HPV-68, HPV-70, HPV-73, HPV-82, and HPV-85 [18].
HPV-16 and HPV-18 accounted for 62.6% and 15.7% of
cervical cancers [19], respectively. Therefore, the identifica-
tion of high-risk HPV has become an important part of the
diagnosis and treatment of cervical cancer.

Up to now, many epidemiological and experimental
methods can identify HPV types [5, 20–22], mainly using
polymerase chain reaction (PCR) technology, and be applied
to rapid detection of clinical samples. With the rapid growth
of human papillomavirus (HPV) data and sensitivity require-
ments, we need a reliable and effective calculation method to
predict the high-risk types of HPV directly.

In recent years, several computational models have been
proposed to predict high-risk HPV types. Eom et al. studied
the sequence fragments and introduced genetic algorithms
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to predict the HPV types [23]. Joung et al. used support vec-
tor machines to predict the HPV types based on the hidden
Markov model [24, 25]. Park et al. proposed to use decision
trees to predict human papillomavirus types [26]. Kim and
Zhang calculated the distance of amino acid pairs and further
predict the risk types of HPV based on E6 proteins [7, 9].
Kim et al. proposed a set of support vector machines (GSVM)
for the classification of HPV types using the differential
molecular sequence of protein secondary structure [13].
Esmaeili et al. used ROC to classify HPV types based on
Chou’s pseudo amino acid composition [27]. Alemi et al.
compared the physicochemical properties between the high-
and low-risk HPV types, and they used support vector
machines to predict the high-risk HPV types [28].

These methods have performed well in the prediction of
high-risk HPV types, but the challenge of extracting HPV
information remains. The information widely used in the
prediction of high-risk types of HPV is based on sequence
information, but the information limited to the characteris-
tics of 20 AAs and their reduction groups has not been
explored so far. In this paper, we proposed a novel method
to predict high-risk types of HPVs based on the reduced
amino acid modes. We classified 20 amino acids into several
groups and extract their structure and chemical properties.
These extracted features were used to predict the high-risk
type of HPVs based on a support vector machine. Through
some experiments and comparative analysis, we want to eval-
uate the efficiency of the proposed method, as well as the effi-
ciency of various reduced amino acid modes.

2. Materials and Methods

2.1. Datasets. There are eight open reading frames that
encode early and late genes of the HPVs [11]. The early
and late genes have polyA signal 1 and polyA signal 2. The
produce of the late genes are L1 and L2 proteins which affect
the viral capsid structure [12], while early genes are trans-
formed into E1-E7 proteins. We constructed seven protein
databases of the HPVs whose sequences are downloaded
from the Los Alamos National Laboratory (LANL). Each
protein has 72 HPV types. If a certain type of protein lacks
the sequences of HPVs, we downloaded the missing sequence
from the National Biotechnology Information Center. Since
the E4 protein cannot be found in the National Biotechnol-
ogy Information Center, its total number is 71. According
to an HPV compendium, seventeen HPV types are classified
as high-risk types (HPV-16, HPV-18, HPV-31, HPV-33,
HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-56,
HPV-58, HPV-59, HPV-61, HPV-66, HPV-67, HPV-68,
and HPV-72), and the remaining is low-risk type [13].

2.2. Reduced Amino Acids (RedAAs). 20 amino acids have
subtle differences, but some of them have similar basic struc-
tures and functions. AAindex is a database of physical and
biochemical indicators of amino acids established by Tomii
and Kanehisa [29]. It mainly includes three parts: AAindex
1, AAindex 2, and AAindex 3. AAindex 1 is a database that
describes the physicochemical and biological properties of
amino acids. AAindex 2 is the matrix of amino acid muta-

tion, and AAindex 3 is the protein contact potential statistics.
These data are from published articles. We mainly used
AAindex 1 to calculate the correlation coefficient as the dis-
tance between the two indicators. AAindex 1 currently con-
tains 544 indexes, and this article selected 522 indexes.
These 522 characteristics are further divided into 7 categories:
(A)—alpha and turn propensities, (B)—beta propensity,
(C)—composition, (H)—hydrophobicity, (P)—physicochem-
ical properties, and (O)—other properties [29].

Here, we introduced BLOSUM62 to classify amino acids
to simplify sequence analysis [30]. We denote the ith
group as Xi and denote its jth amino acid as XiðjÞ. Using
BLOSUM62, we calculated the similarity score SðXiðjÞ, RkÞ
between XiðjÞ and the kth amino acid Rk as follows:

S Xi jð Þ, Rkð Þ = Blosum Xi jð Þ, Rkð Þ, ð1Þ

where BlosumðXiðjÞ, RkÞ denotes the substitution value
between XiðjÞ and Rk. Then, we summed up all scores of
different groups as the score between Seqs and Seq0:

S = 〠
N

i=1
〠
gs ið Þ

j=1
〠
g0 ið Þ

k=1
mi kð ÞS Xi jð Þ, Rkð Þ

" #
/gs ið Þ, ð2Þ

where g0ðiÞ is the ith group size of Seq0, gsðiÞ is the ith
group size of Seqs, miðkÞ is the total number of Rk occur-
rences in Seq0, and N is the group size. S measures the
degree of retention of parent sequence information. Given
a size N group, we analyzed all amino acid groups and
calculated the similarity score between the parent sequence
and the reduced sequence. The reduced alphabets were
selected according to their scores. For example, 20 AAs
are reduced into 9 RedAAs ({C}, {G}, {P}, {IMLV}, {AST},
{NH}, {YFW}, {DEQ}, and {RK}) in the BLOSUM62 matrix.

2.3. Reduced Amino Acid Modes (RedAA Modes). 20 amino
acids were divided into the following nonoverlapping groups
according to their physicochemical properties in AAindex,
and four types of the reduced amino acid modes were calcu-
lated as protein structural and physicochemical features.

2.3.1. Content Modes. The first mode is associated with the
content-specific features, including the distribution of the
RedAA and RedAA pattern in protein sequences.

(1) K-mer. Protein sequences and peptides can be seen as a
collection of symbols, and their characteristics can be ana-
lyzed by the frequency of their small fragments. k-mers are
k consecutive characters in reduced proteins, and a sliding
window of length m can be used to calculate their frequen-
cies [31–33], moving from position 1 to m − k + 1 with one
base at a time. It allows the overlaps of the k-mers and is cal-
culated as

f wRedAA
=

CountwRedAA

∑x∈RCountx
, ð3Þ
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where CountwRedAA
is the occurrence number of the k-mer

wRedAA and R is k-mer set of the RedAAs.

(2) RCTD. “Composition (C),” “Transition (T),” and “Distri-
bution (D)” are three descriptors of RedAAs, which are
defined as follows [34, 35]:

Composition: it can be regarded as a single monomer of
the reduced sequence, and the sequence components are
described by calculating the percentage of each RedAA.

Transition: it can be used as the conversion of RedAA I
and A by calculating the frequency of I followed by A:

TIA =
CountIA + CountAI

N − 1 , ð4Þ

where CountIA and CountAI are the “IA” and “AI” numbers,
respectively, in the reduced sequence with length N .

Distribution: it describes the RedAA distribution in the
reduced sequence, including the specified coding categories:
25%, 50%, 75%, and 100%.

(3) PRseAAC. Type I PRseAAC and type II PRseAAC are
widely used pseudoreduced AA compositions (PRseAAC)
[36–38].

Type I PRseAAC was proposed by Kuo-Chen Chou,
which is defined as follows:

PRseAAC1u =
f u

∑R
i=1 f i +w∑λ

j=1θj
, u ≤ R,

PRseAAC1u =
wθu

∑R
i=1 f i +w∑λ

j=1θ j
, R ≤ u ≤ R + λ,

ð5Þ

where f i is the RedAA frequency and w is the weighting fac-
tor. θi is calculated as

where HiðRedAAÞ is the RedAAs’ property and R is the
RedAA size.

Type II PRseAAC can be calculated as

PRseAAC2u =
f u

∑R
i=1 f i +w∑λ

j=1τj
, u ≤ R,

PRseAAC2u =
wτu

∑R
i=1 f i +w∑λ

j=1τj
, R ≤ u ≤ R + λ,

τ2λ−1 =
1

N − λ
〠
N−λ

i=1
H1

i,i+λ,

τ2λ =
1

N − λ
〠
N−λ

i=1
H2

i,i+λ,

H1
i,j = SH1 RedAAið ÞSH1 RedAAj

� �
,

H2
i,j = SH2 RedAAið ÞSH2 RedAAj

� �
,

ð7Þ

where f i is the RedAA frequency, w is the weighting factor,
SHiðRedAAÞ is the RedAAs’ property, R is the RedAA size,
and N is the sequence length.

2.3.2. Correlation Mode. The second RedAA mode is based
on the characteristics of correlation, which describes the corre-
lation among the RedAAs. In the proposed RedAA mode,
three different autocorrelation features are implemented: nor-
malized Moreau–Broto autocorrelation (NMB) [39], Moran
autocorrelation (M) [40], and Geary autocorrelation (G) [41].

(1) NMB. The RedAA NMB is defined as

NMB dð Þ = ∑N−d
i=1 PRedAA

i PRedAA
i+d

N − d
, ð8Þ

where PRedAA
i denotes the RedAA property at position i of the

sequence, d is the autocorrelation lag, and N is the sequence
length.

θλ =
1

N − λ
〠
N−λ

i=1
Θ Ri, Ri+λð Þ

 !
,

Θ Ri, Rj

� �
=

SH1 Rið Þ − SH1 Rj

� �� �2 + SH2 Rið Þ − SH2 Rj

� �� �2 + SH3 Rið Þ − SH3 Rj

� �� �2
3 ,

SHi RedAAið Þ =
Hi RedAAð Þ − ∑R

j=1Hi jð Þ/R
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑R

t=1 Hi tð Þ − ∑R
j=1Hi jð Þ/R

� �� �2
/R

r ,

ð6Þ
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(2) M. The RedAA M can be calculated as

M dð Þ =
1/ N − dð Þ∑N−d

i=1 PRedAA
i − �PRedAA

� �
PRedAA
i+d − �PRedAA

� �
1/N∑N

i=1 PRedAA
i − �PRedAA

� �2 ,

�PRedAA = 1
N
〠
N

i=1
PRedAA
i ,

ð9Þ

where PRedAA
i denotes the RedAA property at position i of the

sequence, d is the autocorrelation lag, and N is the sequence
length.

(3) G. The RedAA G is defined as

G dð Þ = 1/ 2 N − dð Þð Þ∑N−d
i=1 PRedAA

i − PRedAA
i+d

� �2
1/N∑N

i=1 PRedAA
i − �PRedAA

� �2 ,

�PRedAA = 1
N
〠
N

i=1
PRedAA
i ,

ð10Þ

where PRedAA
i denotes the RedAA property at position i of the

sequence, d is the autocorrelation lag, and N is the sequence
length.

2.3.3. Order Mode. The order mode reflects the physical and
chemical interaction among the RedAA pairs. There are two
kinds of order modes: sequence coupling score and quasi-
sequence score [42].

(1) Sequence Coupling Score. The sequence coupling score is
calculated:

τRedAAd = 〠
N−d

i=1
dRedAAi,i+d , ð11Þ

where dRedAAi,i+d is the Schneider-Wrede physicochemical dis-
tance or Grantham chemical distance between the RedAAs
at positions i and i + d and 1 ≤ d ≤N .

(2) Quasi-Sequence Score. The quasi-sequence score of the
RedAA is defined:

κRedAA = f RedAA
∑R

i=1 f RedAAi
+w∑M

d=1τ
RedAA
d

, ð12Þ

where f RAAi
is the RedAA frequency and w denotes the

weighting factor.

The quasi-sequence score can be calculated as

κτ =
wτRedAAd

∑R
i=1 f RedAAi

+w∑M
d=1τ

RedAA
d

, ð13Þ

where τ is the sequence coupling score, f RAAi
is the RedAA

frequency, and w denotes the weighting factor.

2.3.4. Position Mode. The position mode represents the dis-
tribution of RedAA positions of protein sequences based on
the coefficient of variations [32, 43]. First, we converted the
protein sequence into a digital sequence NðRedAAÞ and cal-
culated the probabilities PRedAAðξÞ of the separation distance
ζ between two adjacent RedAAs. The mean EðRedAAÞðξÞ and
variance DðRedAAÞðξÞ are defined:

E RedAAð Þ ξð Þ =〠
ξ

ξ × P RedAAð Þ ξð Þ,

D RedAAð Þ ξð Þ = E RedAAð Þ ξ2
� �

− E RedAAð Þ ξð Þ
h i2

:

ð14Þ

We then calculated the positional informationCðRedAAÞðξÞ:

C RedAAð Þ ξð Þ = E RedAAð Þ ξð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D RedAAð Þ ξð Þ

q , ð15Þ

where CðRedAAÞðξÞ is the reciprocal of the coefficient of varia-
tion (CV) which compares the degree of change between two
datasets, even if there are large differences between their
means. In this paper, it was denoted as the RedAA position
characteristics.

2.4. Prediction Algorithm. Y = ½y1,  y2,  ⋯, yn�T is an HPV
label set, yi = 1 is from the high-risk type, and yi = 2 is from
the low-risk type. We used xij to represent the jth features of
the RedAA modes of the ith HPV sample, where j = 1, 2,⋯,
m. All of the features of the RedAAmodes for all HPV samples
are denoted as

X =

x1

x2

⋮

xn

x11 x12 ⋯ x1m

x21 x22 ⋯ x2n

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnm

2
666664

3
777775

index1 index2 ⋯ indexm

: ð16Þ

We used a support vector machine (SVM) to predict the
HPV type, which is expressed as follows:

min
w,b,ξ

  J w, b, ξð Þ = 1
2 wTw
� �

+ C〠
n

i=1
ξi

subject to 
yi w

Tφ xið Þ + b
� �

≥ 1 − ξi, i = 1, 2,⋯, n,
ξi ≥ 0, i = 1, 2,⋯, n,

(

ð17Þ
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wherew is a linear combination of a set of nonlinear data con-
version:

w = 〠
n

i=1
αiyiφ xið Þ, ð18Þ

where b denotes the bias term, C denotes some regularization
parameters, and ξi is the training error. The above problem
can be expressed:

max
α

  J αð Þ =max
α

〠
n

i=1
αi −

1
2〠

n

i=1
〠
n

j=1
αiαjyiyjφ xið ÞTφ xj

� �

subject to 
〠
n

i−1
αiyi = 0, i = 1, 2,⋯, n,

0 ≤ αi ≤ C, i = 1, 2,⋯, n:

8><
>:

ð19Þ

Here, the Gaussian kernel function is used to calculate φ

ðxiÞTφðxjÞ instead of φðxiÞ and φðxjÞ. The separation problem
can be expressed:

f xð Þ = 〠
n

i=1
αiyiK xi, xð Þ + b,

y xð Þ = sign f xð Þ½ �:
ð20Þ

The training model can predict the risk type of the test
sample x ∈ Rm according to the following formula:

y xð Þ =
1, if f xð Þ > 0,
2, if f xð Þ ≤ 0:

(
ð21Þ

yðxÞ = 1 indicates that the sample x belongs to the high-
risk type; otherwise, it belongs to the low-risk type. In order
to obtain a better model, we used a simple grid search strategy
based on 10-fold cross-validation to find the optimal model
for each dataset.

3. Results and Discussion

3.1. Evaluation Measures. There are three popular methods
to evaluate the efficiency of prediction models: subsampling
test, independent test, and jackknife test. Since the jackknife
test can evaluate the efficiency of various predictor variables,
we used it to evaluate the efficiency of the proposed method
and calculated the class accuracies and overall accuracies:

specificity accuracy of high‐risk typeð Þ = a
a + c

,

sensitivity accuracy of low‐risk typeð Þ = d
b + d

,

accuracy of totality = a + d
a + b + c + d

⋅ 100%,

ð22Þ

where a denotes true positives, c denotes false positives, d
denotes true negatives, and b denotes false negatives.

3.2. HPV Classification.We used the jackknife test to evaluate
the performance of the proposed RedAA modes. We divided
the 20 amino acids into 5 to 19 groups and calculated their
RedAA modes as protein features and then input them into
the support vector machine to predict the HPV type.
Table 1 shows the tagged HPV types and the predicted
results.

It can be seen from Table 1 that the 65 HPV types pre-
dicted by our method are consistent with the actual types
and have better performance. However, HPV-72 is predicted
to be low-risk but is actually high-risk, and HPV-30 is pre-
dicted to be high-risk but is actually low-risk. For further
comparison, we compared our results with Kim et al.’s results
[13]. For Kim et al.’s prediction, HPV-56 was predicted to be
potentially high-risk, and we predicted it to be high-risk;
HPV-53 and HPV-73 were predicted to be potentially high-
risk, but in our results, they were low-risk. Phylogenetic anal-
ysis showed that HPV-30 was closely related to the estab-
lished oncogenic type HPV-56, suggesting that HPV-30 was
more likely to be a high-risk type. The results show that the
proposed method is more consistent with the actual risk type.

We further compared our method with the following
method: SVM based on the mismatch [24], SVM classifier
based on the linear kernel [13], SVM based on the gap spec-
tral kernel (Gap) [7], BLAST model [13] and integrated SVM
(Ensemble) [13], and two text prediction methods based on
AdaCost [26] and naive Bayes [26]. The accuracy of our
method reaches 96.49%, while the accuracy of the integrated
SVM is 94.12%, the accuracy of the SVM based on the
unmatched kernel is 92.70%, the accuracy of the SVM based
on the linear kernel is 90.28%, and the accuracy of BLAST
reaches 91.18%. As for the text prediction method, AdaCost
[26] has an accuracy rate of 93.05%, while naive Bayes [26]
has an accuracy rate of 81.94%. The comparison also shows
that the RedAA model is more effective in classifying the risk
types of human papillomaviruses.

3.3. The Performance of the Early and Late Proteins in HPV
Type Prediction. Early HPV proteins contain E1, E2, E4, E5,
E6, and E7, and late proteins include L1 and L2 [3, 5]. Infor-
mation commonly used for high-risk and low-risk HPV
prediction includes information on protein sequences, sec-
ondary structure, and pseudoamino acid composition, in
which most of them use E6, E7, or L1 protein [23–28]. In this
paper, we used seven protein datasets of early and late pro-
teins in HPV type prediction and compared their perfor-
mance. Figure 1 compares the accuracy of each category
and the overall accuracy based on early and late proteins.

Figure 1 shows that the prediction accuracy of low-risk
types is higher than that of high-risk types, except for E5 pro-
tein. L1 protein outperforms other HPV proteins in the pre-
diction of low-risk types. L2 protein performs best in high-
risk type predictions. The above research shows that E6, E7,
L1, and L2 proteins are closely related to high-risk HPV
and play an important role in the occurrence and develop-
ment of diseases [14]. The function of L1 protein in low-
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risk and high-risk types is not exactly the same. L1 protein in
the high-risk type exists in the form of integration, and L1
gene product self-assembly efficiency is low. L1 protein in
the low-risk type exists in the form of free tissue, with high
self-assembly efficiency. In high-risk typing, if L1 protein
mutates, L1 protein cannot combine with L2 protein to form
capsid protein and then cannot assemble HPV-infected virus
particles. When HPV enters the host cell, the viral DNA rep-
licates in large quantities and can integrate with the host cell
DNA, resulting in host cell infection, infinite value addition,

and cell immortalization. The results show that L1 protein
performs better in the prediction of high-risk HPV types,
while L2 protein is more suitable for low-risk HPV types.

3.4. Influence of the Physicochemical Properties of Amino
Acids. The proposed method reduced 20 AAs into several
nonoverlapping groups, which relies heavily on the physical
and biochemical indices of amino acids. The 522 characteris-
tics of AAindex are divided into seven categories according to
their physical and biochemical features [29]. The largest
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Figure 1: Comparison of prediction accuracy of each class based on all the early and late proteins.

Table 1: Comparison of the real risk types (REAL) and the prediction results using the proposed approach.

Types Real Predicted Types Real Predicted Types Real Predicted Types Real Predicted

HPV-39 High High HPV-7 Low Low HPV-34 Low Low HPV-50 Low Low

HPV-72 High Low HPV-30 Low High HPV-44 Low Low HPV-5 Low Low

HPV-33 High High HPV-73 Low Low HPV-43 Low Low HPV-20 Low Low

HPV-51 High High HPV-6 Low Low HPV-32 Low Low HPV-23 Low Low

HPV-16 High High HPV-27 Low Low HPV-24 Low Low HPV-19 Low Low

HPV-56 High High HPV-13 Low Low HPV-8 Low Low HPV-47 Low Low

HPV-18 High High HPV-55 Low Low HPV-48 Low Low HPV-22 Low Low

HPV-59 High High HPV-2 Low Low HPV-12 Low Low HPV-25 Low Low

HPV-52 High High HPV-10 Low Low HPV-49 Low Low HPV-9 Low Low

HPV-35 High High HPV-42 Low Low HPV-15 Low Low HPV-36 Low Low

HPV-68 High High HPV-28 Low Low HPV-21 Low Low HPV-41 Low Low

HPV-58 High High HPV-40 Low Low HPV-4 Low Low HPV-63 Low Low

HPV-31 High High HPV-3 Low Low HPV-65 Low Low HPV-1 Low Low

HPV-66 High High HPV-11 Low Low HPV-37 Low Low HPV-80 Low Low

HPV-45 High High HPV-29 Low Low HPV-38 Low Low HPV-77 Low Low

HPV-61 High High HPV-74 Low Low HPV-60 Low Low HPV-76 Low Low

HPV-67 High High HPV-53 Low Low HPV-17 Low Low HPV-75 Low Low
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group is hydrophobicity and the second largest group is
alpha and turn propensities, and the sizes of the other four
groups are relatively small. For each HPV protein, we used
522 physicochemical properties to calculate six kinds of
reduced AA modes. For each class of the physicochemical
properties of amino acids, we calculated their mean of the
overall accuracies of HPV type prediction. The comparison
of different physicochemical property classes and the RedAA
modes is shown in Figure 2.

From Figure 2, it can be found that the proposed predic-
tion has no obvious preference among 7 classes of physico-
chemical properties for E1 proteins. As for E2 proteins,
composition is the best of the six reduced AA modes. For
E4 proteins, the physicochemical properties of beta and com-
position are better. For the reduced AA mode position and
RCTD, the physicochemical properties of beta are better in
prediction, but composition is better for the other four

modes. The results of E5, E6, E7, L1, and L2 proteins are sim-
ilar to those of E2 proteins, and the six reduced AA modes
show better performance in beta physicochemical properties.
These results indicate that E5, E6, E7, L1, and L2 proteins
have a preference for beta physicochemical properties to
reduce amino acids and calculate the six reduced AA modes
in HPV type prediction.

3.5. Comparison of the Reduced Amino Acid Modes. In order
to evaluate the performance of different modes, we used 522
physicochemical properties to calculate the RedAA modes of
all the early and late proteins and calculated their average of
the overall accuracies of HPV type prediction, which is
shown in Figure 2. Figure 2 shows that six RedAA modes
have the same preference trend among seven classifications
of the physicochemical properties. As for E1, E2, E4, E5,
and E7 proteins, PRseAAC is better than the other RedAA
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Figure 2: Comparison of the mean of the overall accuracies of HPV type prediction based on seven physicochemical property classes and six
RedAA modes for all the early and late proteins.
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modes, and the average accuracy of its prediction of HPV
typing is also significantly higher than the average of other
RedAAmodes. As for E6, L1, and L2 proteins, RTCD outper-
forms the other five RedAA modes. In addition, PRseAAC
and RTCD show better performance in beta physicochemical
properties of the amino acids.

3.6. Influence of the Number of Reduced Amino Acids. The
proposed method used the structural and physicochemical
features of reduced amino acids, which reduces the dimen-
sion of input information and improves the efficiency of the
prediction model. However, it should be noted that the
RedAA modes are associated with the number of reduced
amino acids. In order to discuss the influence of the RedAA
size, we reduced 20 amino acids into 5-19 classes based on

522 physicochemical properties and calculated their RedAA
modes PRseAAC and RTCD for of all the early and late pro-
teins. The average accuracies of the RedAA modes PRseAAC
and RTCD with 5-19 RedAAs are summarized in Figure 3.

Figure 3 shows the accuracy of HPV type prediction with
the increase in reduced amino acids when combining the
PRseAAC and physicochemical properties of amino acids
for E1 proteins, and the best-performing PRseAAC achieves
95.378% accuracy with 19 reduced amino acids. For E2 pro-
teins, the prediction model achieves the best performance
with the PRseAAC and the physical and physicochemical
properties of the composition class when amino acids are
reduced to 14 classes. As for E5 and E7, PRseAAC achieves
87.18% and 75.07% accuracies when 20 amino acids are
reduced to 7 and 12 classes, respectively. For E6, L1, and L2
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Figure 3: Performance comparison of the RedAAmodes PRseAAC and RTCDwith different reduced amino acids: (a) the average accuracies
of the PRseAAC and RTCD with 5-19 reduced amino acids for E1, E2, E4, E5, and E7 and (b) the average accuracies of the PRseAAC and
RTCD with 5-19 reduced amino acids for E6, L1, and L2.
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proteins, the combination of the RCTD and beta physico-
chemical properties achieves best performances with 8, 15,
and 11 reduced amino acids, respectively.

4. Conclusion

Genital papillomavirus is closely related to cervical cancer,
especially high-risk HPV. Therefore, the identification of
the HPV risk type is of great significance for the cervical can-
cer. We proposed a computational method for the prediction
of the high-risk HPV based on the RedAA modes. With the
help of the physicochemical properties of the amino acids,
we reduced 20 amino acids into several nonoverlapping
groups and calculated the structure and physicochemical
characteristics of reduced AAs (RedAA) as the RedAA
modes. We used reduced sequence information to predict
high-risk types of HPV. Experiments with 68 known HPV
types show that the proposed method has better performance
than previous methods.

The first contribution is that L1 protein performs better
in the prediction of high-risk HPV types, while L2 protein
is more suitable for low-risk HPV types. The second contri-
bution can be indicated from the influence of the physico-
chemical properties of amino acids; we noticed that E5, E6,
E7, L1, and L2 proteins have a preference for beta physico-
chemical properties to reduce amino acids. The third contri-
bution can be deduced from the comparison of the reduced
amino acid modes; we found that the PRseAAC and RTCD
outperform the other four RedAA modes and show better
performance in beta physicochemical properties of the
amino acids. The final contribution can be seen from the
influence of the number of reduced amino acids; we noticed
that the combination of the RCTD and beta physicochem-
ical properties achieves the best performances with 8, 15,
and 11 reduced amino acids for E6, L1, and L2 proteins,
respectively.
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