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Abstract

Streptococcus pneumoniae is an opportunistic human bacterial pathogen that usually colo-

nizes the upper respiratory tract, but the invasion and survival mechanism in respiratory

epithelial cells remains elusive. Previously, we described that acidic stress-induced lysis

(ASIL) and intracellular survival are controlled by ComE through a yet unknown activation

mechanism under acidic conditions, which is independent of the ComD histidine kinase

that activates this response regulator for competence development at pH 7.8. Here, we

demonstrate that the serine/threonine kinase StkP is essential for ASIL, and show that StkP

phosphorylates ComE at Thr128. Molecular dynamic simulations predicted that Thr128-phos-

phorylation induces conformational changes on ComE’s DNA-binding domain. Using non-

phosphorylatable (ComET128A) and phosphomimetic (ComET128E) proteins, we confirmed

that Thr128-phosphorylation increased the DNA-binding affinity of ComE. The non-phos-

phorylated form of ComE interacted more strongly with StkP than the phosphomimetic form

at acidic pH, suggesting that pH facilitated crosstalk. To identify the ComE-regulated genes

under acidic conditions, a comparative transcriptomic analysis was performed between the

comET128A and wt strains, and differential expression of 104 genes involved in different cel-

lular processes was detected, suggesting that the StkP/ComE pathway induced global

changes in response to acidic stress. In the comET128A mutant, the repression of spxB and

sodA correlated with decreased H2O2 production, whereas the reduced expression of murN

correlated with an increased resistance to cell wall antibiotic-induced lysis, compatible with

cell wall alterations. In the comET128A mutant, ASIL was blocked and acid tolerance

response was higher compared to the wt strain. These phenotypes, accompanied with low

H2O2 production, are likely responsible for the increased survival in pneumocytes of the

comET128A mutant. We propose that the StkP/ComE pathway controls the stress response,
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thus affecting the intracellular survival of S. pneumoniae in pneumocytes, one of the first

barriers that this pathogen must cross to establish an infection.

Author summary

Streptococcus pneumoniae is a major human pathogen and is the causal agent of otitis

(media) and sinusitis. It is also responsible for severe infections such as bacteremia, pneu-

monia, and meningitis, associated with 2 million annual deaths. Although this bacterium

is part of the human nasopharynx commensal microbiota, it can become a pathogen and

cross the epithelial cell barrier to establishing infections of varying intensity. Although S.

pneumoniae is considered to be a typical extracellular pathogen, transient intracellular life

forms have been found in eukaryotic cells, suggesting a putative survival mechanism.

Here, we report that the serine-threonine kinase StkP was able to phosphorylate the

response regulator ComE to control different cellular processes in response to environ-

mental stress. Moreover, the phosphorylation of ComE on Thr128, and the consequent

conformational and functional changes resulting from this event, extended the current

knowledge of molecular activation mechanisms of response regulators. In this report, we

provide evidence for the regulatory control exerted by the StkP/ComE pathway on acid-

induced autolysis (associated with pneumolysin release), the acid tolerance response, and

H2O2 production to modulate tissue damage and intracellular survival, which are ulti-

mately linked to pneumococcal pathogenesis.

Introduction

Sensing and transducing external (or internal) signals into an appropriate physiological

response is part of a microorganism strategy to survive in a constantly changing environment.

Signal transduction is mainly carried out by protein kinases, which autophosphorylate upon

sensing stimuli and then catalyze the phosphorylation of a specific substrate that initiates an

adaptive cellular response. In prokaryotes, signaling pathways are mainly mediated by two-

component systems (TCS) consisting of sensor histidine kinases (HK) that phosphorylate

response regulators (RR) on a receiver domain, thereby activating the effector domains of

these regulators to induce a physiological event in bacterial cells. Generally, the RR effector

domains bind regions of DNA that control gene expression in response to environmental

changes [1,2]. Each particular HK presents a remarkable specificity for its cognate RR and is

capable of identifying particular RRs.

Eukaryotic-like Ser/Thr protein kinases (STKs) are also present in prokaryotes, where they

play key roles in several cellular processes, including the central or secondary metabolism,

developmental processes, cell division and virulence [3]. The major human bacterial pathogen

Streptococcus pneumoniae (S. pneumoniae or the pneumococcus) encodes a single copy of

StkP, a eukaryotic-like serine/threonine protein kinase gene [4]. StkP is a membrane protein

composed of an N-terminal kinase domain facing the cytoplasm, a short transmembrane

region, and an extracellular C-terminal region containing four PASTA (Penicillin-binding

protein and Ser/Thr protein kinase Associated) domains [4–6]. Comparison of the global

expression profile of the wild-type and ΔstkP strains has revealed that the transcription of

genes involved in the cell wall metabolism, pyrimidine biosynthesis, DNA repair, iron uptake,

and oxidative stress response are controlled by StkP, which explain why stkP mutations have
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pleiotropic effects [7]. It has also been described that StkP phosphorylates several target pro-

teins, mainly on threonine residues, with PASTA domains being essential for kinase activity

[8–10]. However, phosphorylation on serine residues seems to be independent of StkP [11].

Immunofluorescence microscopy of pneumococcal cells localized StkP to the cell division

apparatus [12], with phenotypic studies having demonstrated its impact on several cellular

functions [13,14]. In fact, the stkP mutant displayed morphological and growth defects, cell

division alterations, increased LytA-dependent autolysis (induced by either antibiotics or

growth at an alkaline pH of 7.8), reduced tolerance to stress conditions (including acidic

stress), and pilus-mediated adherence in endothelial cells [4,7,11,15–17]. StkP is also essential

for virulence, being necessary for lung infection and for invading and growing in the blood-

stream of intranasally infected mice [4].

In S. pneumoniae, transient competence development (ability to take up exogenous DNA)

in exponentially growing cells is considered a stress response to alkaline pH [2], with its core

regulatory circuit being controlled by the TCS ComDE. In this quorum sensing system, the

membrane-integrated HK ComD senses the extracellular accumulation of a 17 amino acid

competence stimulating peptide (CSP)[2]. Upon activation by a critical concentration of CSP,

ComD phosphorylates the response regulator ComE at Asp58 [18], which consequently initi-

ates the transcription of comCDE, comAB, and comX (a gene encoding an alternative sigma

factor) [19,20]. ComX turns on the transcription of genes whose products are involved in

DNA binding, uptake, and recombination [21]. In this sense, the competence development is

considered to be a type of stress response to alkaline pH [2]. It has been reported that StkP can

also regulate competence at pH 7.8. Cells lacking StkP do not develop natural competence [4]

and show severely reduced CSP-induced competence [7,22], despite having increased expres-

sion of many genes of the CSP-regulated competence regulon [7].

To invade tissues, S. pneumoniae must overcome a variety of stress situations, such as acidic

pH, as a consequence of host inflammatory responses against the invading pathogen [23]. This

characteristic local acidosis is caused by infiltration of neutrophils and activation of inflamma-

tory cells, which leads to increased energy and oxygen demand, accelerated glucose consump-

tion via glycolysis and thus increased lactic acid secretion [24–26]. For instance, pH values

obtained from pleural fluids from patients with acute bacterial pneumonia caused by S. pneu-
moniae showed an acidic pH close to 6.80 [27]. Interestingly, the lowest pH value that S. pneu-
moniae has been shown to be tolerant to is around 4.4 in phagosomal vesicles during the first

few minutes after phagocytosis [28]. Although S. pneumoniae is considered a typical extracellu-

lar pathogen, a transient intracellular life was described, suggesting that it can survive inside

eukaryotic cells. S. pneumoniae can cross brain microvascular endothelial cells inside vesicles

derived from early and/or late endosomes [29] [30]. It is well accepted that acidification is

essential to endosome/lysosome maturation, with early endosomes having a pH in the 6.8–6.1

range, late endosomes in the 6.0–4.8 range, whereas lysosomal pH values can drop to 4.5 [31].

In the case of a putative endosomal survival, S. pneumoniae must survive acidic conditions.

Martin-Galiano et al [32] described that S. pneumoniae is able to induce an acid tolerance

response (ATR) mechanism. Previously, we also showed that F0.F1-ATPase, a proton pump

that controls intracellular pH, is relevant for ATR induction in S. pneumoniae. In addition, we

demonstrated that the F0.F1-ATPase and ATR are necessary for the intracellular survival of the

pneumococcus in macrophages [33].

As part of the acidic stress response, we have reported that exposure of S. pneumoniae to

acidic culture conditions triggers a lytic response by the major autolysin LytA. The acidic-

stress induced lysis (ASIL) response is promoted by ComE and repressed by the CiaRH TCS.

Despite requiring ComE, ASIL does not depend on CSP or ComD. Curiously, the comE gene

is induced by acidic stress, but the competence-related ComX sigma factor, whose expression
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is regulated by ComE, does not participate in this signaling pathway [34]. We have also

reported that ComDE and CiaRH control pneumococcal survival in pneumocytes in contrast-

ing ways, CiaRH was essential for ATR and intracellular survival, whereas ComE repressed its

activation. Moreover, ComE in a CSP-independent manner, was necessary for ASIL, whereas

CiaRH protected against its induction by modulating LytA autolysin expression on the pneu-

mococcal surface. These results suggest that both TCSs control the acidic stress response and

establish either a survival or a suicidal response by independent pathways, either in acidified

culture media or in pneumocyte cultures [33]. These findings indicate that ComE is activated

under acidic conditions by an alternative signaling pathway that differs from the quorum sens-

ing mechanism reported during competence development at alkaline pH. Alternatively, it was

proposed that StkP is involved in competence at pH 7.8, by the fact that cells lacking StkP do

not develop natural competence [4,7,22]. StkP is also essential for virulence, to establish infec-

tions in the lung and for invading and growing in the bloodstream of intranasally infected

mice [4].

The main aim of this work was to elucidate whether ComE is part of a novel activation

pathway used by S. pneumoniae to induce the acidic stress response and to control its intracel-

lular survival mechanism in pneumocytes. Here, we demonstrate that StkP controls ComE

activation by phosphorylation of the Thr128 residue of the latter, increasing both its dimeriza-

tion capacity and its DNA-binding affinity. Under acidic conditions, the StkP/ComE HK-

independent pathway regulated 104 genes involved in different cellular processes, such as

H2O2 production and oxidative stress tolerance. The StkP/ComE pathway is independent of

the HK-dependent ComD/ComE system, which regulates more than 180 genes at pH 7.8 [35].

The participation in HK-independent and HK-dependent stress regulatory systems places

ComE as a global regulator. This newly discovered StkP/ComE signaling pathway triggered

the acidic stress response by inducing ASIL and inhibiting ATR and the intracellular survival

of S. pneumoniae in pneumocytes, one of the first barriers that this pathogen must overcome

to establish an infection.

Results

The ComE response regulator is activated under acidic conditions by a

histidine-kinase independent pathway

We previously reported that ComE was required in the acidic stress induced lysis (ASIL)

mechanism, which was independent of its cognate histidine kinase ComD at pH 6.0 [34]. This

is in contrast to the ComD/quorum-sensing dependence on ComE activation at pH 7.8 neces-

sary for competence development [19]. This initial observation led us to investigate whether

other pneumococcal TCS-associated HKs could be activating ComE by a crosstalk mechanism,

as described for other bacteria [36]. We hypothesized that if other HKs were involved in

ComE activation by phosphorylation, the corresponding hk mutant should display alterations

in the ASIL induction. Thus, the lytic phenotype was determined under acidic stress condi-

tions for all the pneumococcal hk mutants that we had previously constructed in the back-

ground of the R801 strain by insertion-duplication mutagenesis (S1 Table) [33]. We observed

that all the hk mutants showed the same lytic response as the parental R801strain, indicating

that none of the tested HKs was involved in ASIL (S2 Table). In addition, the comDF183X

mutant was used because it lacks the HK domain due to a stop codon at residue 163 (S2 Table)

and therefore it is unable to activate ComE [33]. This mutant was constructed to avoid putative

alterations in the comCDE operon expression, and it showed the same ASIL phenotype than

the ΔcomDmutant (S2 Table), indicating that the truncated ComD protein expressed by the

comDF183X mutant has not impact on the ASIL activation. In order to avoid a putative residual
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effect of comDF183X on the ComE activation, we determined ASIL in the double comDF183X hk
mutants, which were constructed by transforming the comDF183X mutant with individual plas-

mids containing the different hk mutations. Despite the low transformability of the comDF183X

mutant, all the double comDF183X hk mutants displayed the same ASIL phenotype as those

obtained for each individual hk mutant (S2 Table). Taken together, these results indicated that

HKs were not responsible for activation of ComE and the resulting ASIL.

Although ASIL is controlled by ComE activation without HK participation, this finding

does not exclude the potential that ComE could have been phosphorylated by another phos-

phodonor at the Asp58 residue, typically the target of ComD phosphorylation [18]. Prokaryotic

response regulators can be phosphorylated in vivo by acetyl-phosphate at the conserved aspar-

tate residue of the receiver domain, resulting in similar activation to that exerted by the cog-

nate HK [37]. In addition, phosphorylation crosstalk between HK and RR that belong to

different TCSs has been reported [38]. Therefore, we first analyzed the possibility that Asp58

phosphorylation could be required for ASIL, and tested the comED58A mutant that encodes for

the ComED58A protein, in which the phosphorylatable Asp58 residue is replaced by alanine

[18,33]. The presence of this mutation was phenotypically corroborated under competence

development conditions, confirming that CSP-induced competence was eliminated in the

comED58A mutant (S1 Fig and [18]). Like the wt R801 strain, the comED58A mutant autolysed

under acidic conditions (Fig 1A) indicating that Asp58 phosphorylation is not necessary for

ASIL. The comED58A phenotype is similar to the phenotype displayed by the hk mutants.

Taken together, these results suggest ComE activation under acidic conditions is independent

of both Asp58 phosphorylation and HK activity.

The serine/threonine kinase StkP is essential for ASIL activation and

participates in the ComE pathway

Since it has been shown that StkP is involved in comCDE expression during competence devel-

opment at pH 7.8 [4], and that ComE is indispensable for the induction of ASIL [34], we evalu-

ated whether StkP participated in ASIL development. Thus, the ΔstkPmutant strain did not

autolyze when cultured under acidic conditions (Fig 1A), strongly suggesting that StkP is nec-

essary for ASIL induction. To further confirm whether StkP kinase activity was required for

ASIL, we also constructed the stkPK42R mutant, which encodes for StkP with reduced enzy-

matic activity, as previously described [39]. This reduced kinase activity produces multiple

septa, peripheral peptidoglycan biosynthesis and elongated cells [8], and these alterations were

confirmed in our mutant and compared with the wt strain (S2A and S2B Fig). As expected, the

stkPK42R mutant strain showed ASIL with a degree of autolysis inferior to the wt strains but

higher than the ΔstkP strain, indicating that the residual kinase activity in the stkPK42R mutant

[39] was likely responsible for ASIL induction. These observations strongly suggest that StkP

kinase activity is essential for ASIL activation.

To exclude the possibility that the ASIL blockage observed in the ΔstkPmutant is a side

effect due to hampered cell division and/or compromised cell wall structure [13], we con-

structed another mutant that presents cell division alterations, such as the ΔmapZmutant [9].

We verified these alterations by Van-Fl staining (S2C Fig) and found that the ΔmapZmutant

showed an ASIL phenotype similar to the wt strain (S2D Fig), indicating that the ASIL effect

showed by the ΔstkPmutant is independent of cell division alterations.

We have previously demonstrated that ASIL is controlled by two independent signaling

pathways, CiaRH and ComE. While CiaRH plays a protective function, the ComE acts by pro-

moting ASIL [34]. To determine whether StkP participated in the CiaRH-controlled ASIL

pathway, the ΔstkP and ΔciaRmutations were backcrossed, and the lytic phenotype of the

StkP/ComE crosstalk controls stress response and intracellular survival
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resulting double mutants was analyzed. The ΔstkP ΔciaR strain showed enhanced autolysis,

similar to the ΔciaR single mutant, demonstrating that the ciaRmutation had an epistatic effect

on the non-autolytic stkP phenotype and that StkP activity did not participate in the signaling

events of the CiaRH-controlled ASIL pathway (Fig 1B).

It has been previously described that the comDT233I mutation produces a hyperactive

ComD HK, which in turn hyperphosphorylates ComE, activates comCDE transcription, and

results in high intracellular levels of ComE [40]. Although our results suggested that ComD

was not involved in ComE-mediated ASIL, we constructed the comDT233I mutant to artificially

produce high levels of ComE and competence, as described [34,40]. The comDT233I mutant

showed constitutive high levels of comE transcripts, at 1000-fold higher compared to the wt
strain. This mutant displayed accelerated ASIL compared to the wt strain, however, we previ-

ously reported that ASIL was blocked in the double comDT233I ΔcomE double mutant [34].

These results demonstrated that ASIL induction was ComE-dependent and that increase

Fig 1. Evaluation of ASIL and comE expression in S. pneumoniae mutants. Autolysis was measured as a change in OD620nm over 6 hours. Lytic curves

corresponding to specific mutants are indicated in each panel (A-C), with data being representative of at least three independent experiments. (A) ASIL is

controlled by StkP but it does not require Asp58-phosphorylation in ComE. (B) StkP does not participate in the CiaRH-regulated ASIL pathway. (C) StkP is involved

in the ComE-regulated ASIL pathway. References: �p< 0.05; ��p< 0.01; ���p< 0.001, these p-values were referred to the wt strain in each panels. (D) Transcription

levels of the comE gene measured in cells exposed to pH 6.0. To avoid autolysis, all mutants were constructed in a ΔlytA (autolysin deficient) background. The ΔlytA,

comED58A ΔlytA,ΔstkP ΔlytA, comDT233I ΔlytA and comET128A ΔlytA cells were grown in ABM/pH 7.8 to the mid-exponential phase and resuspended in ABM/pH

6.0. Total RNA was extracted at 0 min, 10 min, and 30 min. The fold change in gene expression was measured by quantitative real-time PCR and calculated using

the 2–ΔΔCT method. The gyrB gene was used as the internal control and the reference condition was time 0 min of strain ΔlytA. Error bars indicate the standard

deviation of the mean. INSTAT software was used to perform Dunnet’s statistical comparison test for each strain with its respective basal condition (time 0 min).

References: ��p< 0.01; ���p< 0.001.

https://doi.org/10.1371/journal.ppat.1007118.g001
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expression of the latter leads to accelerated autolysis [34]. More importantly, when the stkP
gene was disrupted in the comDT233I mutant, ASIL was also completely blocked (Fig 1C), sug-

gesting that StkP is essential for ASIL activation despite the high ComE levels expressed in the

comDT233I mutant.

comE expression is induced in response to acidic conditions

It is known that comE is part of the comCDE operon, with the transcription of this operon initi-

ated at the pcomC promoter (bp 2035421–2035806, S. pneumoniae R6 genome, NCBI refer-

ence: NC_003098.1) during competence development at alkaline pH [41]. To test whether

pcomC was responsible for the increase in comE observed under acidic conditions, we con-

structed the pcomC-lacZ reporter fusion (S1 Table), which was integrated via a single cross-

over event upstream of comC in a bgaAmutant (deficient in β-galactosidase activity). When

the bgaAmutant strain carrying the pcomC-lacZ fusion was incubated at pH 6.0 for 30 min., a

1.7-fold increase in β-galactosidase activity was observed. No such increase was detected in a

ΔcomE knocked out mutant (S3 Fig). To further confirm this observation, the levels of comE
transcript in the wt strain were determined by qPCR, which showed a 4-fold increase in cells

exposed for 30 min at pH 6.0 (Fig 1D). These results indicate that the increased number of

comE transcripts was caused by acidic stress, with this activation being dependent on ComE.

Similarly, the levels of comE transcript in the comED58A mutant were increased 4.5-fold after 30

min incubation at pH 6.0. This result indicates that ComED58A was able to induce ASIL under

acidic stress conditions (Fig 1D). Consequently, these results suggest that ComE is activated by

an alternative signaling pathway that does not require phosphorylation of Asp58.

We previously reported that induction of comE transcripts by acidic stress is a characteristic

of the ComE-mediated pathway that controls ASIL [34]. To examine whether StkP could be

involved in this pathway, we analyzed the comE transcript levels by qPCR in the ΔstkP and

stkPK42R mutants constructed in a lytA background to avoid autolysis (S1 Table). After incuba-

tion of ΔstkP cells for 30 min at acidic pH 6.0, we observed a five-fold reduction in the levels of

comE transcripts in the ΔstkPmutant (Fig 1D). In contrast, the stkPK42R mutant showed a

2-fold decrease in comE transcripts, likely due to reduced kinase activity of StkPK42R. In addi-

tion, we observed that StkP was capable of controlling pcomC activation by acidic stress since

increased β-galactosidase activity was observed from the pcomC-lacZ reporter fusion presence

in the ΔstkPmutant in the bgaA background (S3 Fig). Taken together, these results indicate

that StkP kinase activity was required for comE induction under acidic conditions.

In the comDT233I ΔstkP double mutant, the levels of comE transcript increased 50 times over

those in the ΔstkP strain and 10 times over those in the wt strain (Fig 1D). These results suggest

that StkP kinase activity is required for full activation of ComE in order to induce ASIL under

acidic conditions, regardless of the presence of high levels of ComE unnaturally induced by

the ComDT233I kinase. Such observations led us to speculate that StkP activates ComE by an

alternative mechanism other than the classical ComD HK-mediated Asp58 phosphorylation.

ComE is phosphorylated in vitro and in vivo by StkP

We hypothesized that StkP controls ComE by a crosstalk phosphorylation event. To test this

hypothesis, we carried out an in vitro phosphorylation assay using purified recombinant

Hisx6-ComE fusion protein, in the presence or absence of purified recombinant GST-StkP.

The phosphorylation reactions were examined by immunoblotting using either anti-phospho-

serine or anti-phospho-threonine antibodies. No signal was detected with the anti-phospho-

serine antibody, in contrast, positive reactions were detected with the anti-phosphothreonine

antibody (Fig 2A), with the phosphorylation reaction occurring at a molar ratio range of

StkP/ComE crosstalk controls stress response and intracellular survival
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Fig 2. ComE is phosphorylated by StkP. (A) ComE is phosphorylated at a threonine residue by StkP. Top:

nitrocellulose membrane stained with Ponceau S as a loading control. Bottom: Immunodetection of phosphorylated

proteins. Phosphorylation reactions were carried out with purified GST-StkP and substrate proteins (0.5 μg each)

mixed in kinase buffer and incubated at 37˚C for 1 hour. Phosphorylated proteins were detected with an anti-

phosphothreonine polyclonal antibody. Lane 1: Hisx6-ComE. Lane 2: Hisx6-ComE + GST-StkP. Lane 3: Hisx6-GFP.

Lane 4: Hisx6-GFP + GST-StkP. Lane 5: LytA(N)-Hisx6. Lane 6: LytA(N)-Hisx6 + GST-StkP. Lane 7: Hisx6-DivIVA.

Lane 8: Hisx6-DivIVA + GST-StkP. (B) ComE phosphorylation assays with different StkP:ComE molar ratios.

GST-StkP and Hisx6-ComE were mixed at different molar ratios in kinase buffer and incubated at 37˚C for 1 hour.

Detection of phosphorylated proteins was performed as described above. (C) In vivo StkP-dependent and acid-

induced ComE phosphorylation. C-terminal His-tagged ComE was purified from wt and ΔstkP strains grown in ABM

(pH 7.8), and exposed to acidic stress in medium MD5, pH 6.0. Protein samples were separated by SDS-PAGE and

phosphorylated or total ComE-His was detected with Pro-Q Diamond and SYPRO Ruby staining, respectively.

https://doi.org/10.1371/journal.ppat.1007118.g002
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GST-StkP/Hisx6-ComE between 1:2 and 1:20 (Fig 2B). The GST-GFP or Hisx6-GFP were

included as controls of reaction specificity, and Hisx6-DivIVA was used as a positive control of

a StkP target, as previously described [8,11] (Fig 2A). We also evaluated the possibility that

StkP could trigger ASIL by phosphorylating the major pneumococcal autolysin LytA. As over-

expression of the full-length LytA protein was toxic in E. coli cells, the N-terminal region of

LytA, which contains the catalytic domain was expressed instead fused to a Hisx6-tag (N-LytA-

Hisx6)[42]). Incubation with or without GST-StkP, resulted in no evidence of N-LytA-Hisx6

phosphorylation (Fig 2A), suggesting that LytA was not phosphorylated by StkP, at least under

the experimental conditions described here.

To determine whether StkP-mediated ComE phosphorylation occurs in vivo and because

response regulators are usually expressed at low level in bacteria, we constructed by insertion-

duplication mutagenesis wt and ΔstkP strain derivatives that express ComE fused to the Hisx6-

epitope tag at the C-terminus (ComE-His6x) to improve ComE detection. Cells were incubated

at either pH 7.8 or pH 6.0 and ComE-Hisx6 was purified from protein lysates as described in

Material and Methods and separated by SDS-PAGE. Phosphoproteins were detected by ProQ

Diamond staining while total proteins were detected by SYPRO Ruby staining. We observed

that phosphorylated form of ComE in wt cells grown at pH 7.8, that increases 2.3 times when

cells are grown at pH 6.0 (Fig 2C). In contrast, ComE remained unphosphorylated in the

ΔstkPmutant, confirming that ComE is phosphorylated by StkP in vivo.

StkP phosphorylates ComE at the Thr128 residue to regulate ASIL

To determine the amino acid residues in ComE that are targeted for phosphorylation by StkP,

we performed HPLC-MS/MS analysis of the in vitro StkP-phosphorylated ComE-His6x recom-

binant protein. A single amino acid was identified as a target for StkP-mediated phosphoryla-

tion in His6x-ComE, Thr128, located inside the trypsin-digested 121IEQNIFYTK129 ComE

peptide (Fig 3A). To further confirm this observation, we created the non-phosphorylatable

ComET128A-His6x recombinant mutant protein that remained unphosphorylated in the pres-

ence StkP in vitro (Fig 3B). To evaluate the role of Thr128 phosphorylation on ComE activity in

vivo, we constructed the comET128Amutant, which showed significantly blocked autolysis com-

pared to the wt (Fig 3C). Using the comET128A mutant, we produced the revertant comEA128T

strain, which showed an ASIL phenotype similar to the wt strain (Fig 3C). To further support

the role of ComE Thr128 phosphorylation in ASIL activation, we attempted to replace Thr128

by Glu128 to construct the phosphomimetic comET128E protein, which is typically used to

mimic the phosphorylated form of Thr residues [43]. In vitro, the phosphomimetic ComET128E-

Hisx6 protein was hyper-activated, as demonstrated by EMSA assays (see next), which may

explain our inability to produce a viable comET128E mutant. These assays confirmed that Thr128

phosphorylation is essential for the StkP-mediated ComE activation that controls ASIL and that

ComE hyper-activation is likely lethal to S. pneumoniae.

Competence regulation is independent of Thr128 phosphorylation in ComE

StkP is involved in competence in response to stress conditions such as pH 7.8 [2,4,7]. Since,

our results indicated that a signaling pathway that involves StkP and ComE controls autolysis

in response to acidic stress at pH 6, we investigated whether this crosstalk mechanism could

also regulate competence development at pH 7.8. We have previously described that the stkP
mutant showed no competence development at pH 7.8 [4]. In contrast, the comDT233I mutant

shows a hypercompetent phenotype, accompanied by constitutively high levels of ComE

expression [34]. We observed that the competence phenotype of the comDT233I ΔstkP double

mutant was similar to the comDT233I single mutant (S1 Fig), indicating an epistatic effect of the
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Fig 3. StkP phosphorylates ComE on the Thr128 residue to control ASIL. (A) To identify the phosphorylation site,

tryptic peptides obtained from ComE previously incubated with StkP were analyzed by nano-LC-MS/MS. The figure

shows the MS/MS spectrum of the di-charged ion of m/z 618.8 corresponding to the phosphorylated sequence

IEQNIFYTK. C-terminal y ions are labeled in blue, while N-terminal a or b fragment ions are labeled in red. Ions

containing pT residue present the phosphorylation characteristic neutral loss of 98 Da. Thr128 is unequivocally

identified as the phosphorylated residue (Xcorr 3, 45; pRS score 148). (B) StkP phosphorylates ComE at Thr128. In vitro
phosphorylation assays were performed with purified GST-StkP and Hisx6-ComEwt or Hisx6-ComET128A proteins

mixed in kinase buffer at a StkP/ComE ratio of 1:20. Phosphorylated proteins were detected with an anti-phospho-

threonine polyclonal antibody. Lane 1: Hisx6-ComE. Lane 2: Hisx6-ComE + GST-StkP. Lane 3: Hisx6-ComET128A. Lane

4: Hisx6-ComET128A + GST-StkP. (C) ASIL requires the Thr128 residue in ComE for lysis induction. Autolysis was

StkP/ComE crosstalk controls stress response and intracellular survival
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comDT233I mutation on the ΔstkPmutation. We also observed that the competence of the non-

phosphorylatable comET128A and revertant comEA128T mutants were similar to the wt strain (S1

Fig).

These observations suggest that StkP regulates competence at an early stage, which is inde-

pendent of ComE Thr128 phosphorylation. Furthermore, StkP was not essential for compe-

tence once ComE was activated by ComD at pH 7.8. In contrast, StkP is necessary to activate

ComE and to trigger autolysis under acidic conditions.

StkP-mediated Thr128 phosphorylation increases ComE dimerization

Response regulators are composed by a conserved receiver domain, which is phosphorylated

on an aspartate residue by their cognate histidine kinase, and DNA-binding domains [44]. In

ComE, the receiver domain corresponds to the first 130 residues [43]. Thr128 is located at the

end of the α-5 region (Asp114-Ser130) of the receiver domain of ComE, next to the α-4 region

(Ala94-Gln101), and near the loop between α-4 and β-5 (Val102-Leu105) that is involved in

ComE dimerization and considered as a dimerization interface [43] (Fig 4A). The proximity

between the dimerization interface and the two phosphorylated residues (Asp58 and Thr128)

suggest a putative influence on the dimerization capacity of ComE, which was confirmed by in

vitro dimerization assays using the phosphomimetic mutants. The ComED58E-His6x, ComET128E-

His6x, and ComET128A-His6x mutants showed dimer steady-state levels, which were 70, 72 and 2.9

times higher, respectively, than ComEwt-His6x (reference level). In addition, when the ComEwt-

His6x protein was incubated with StkP, the dimerization rate increased 8.9 times, whereas

ComET128A-His6x showed only a 3.3-fold increase (Fig 4B). The different dimerization capabilities

found for ComEwt/StkP (8.9 times) compared to the phosphomimetic ComET128E-His6x (70

times) suggest that ComEwt-His6x is partially phosphorylated by StkP (~12%). These observations

suggest that Thr128 phosphorylation modifies ComE in a manner that strongly affects its dimeriza-

tion interface, which is a condition sine qua non for the response regulator activation.

Thr128 phosphorylation changes conformation of the ComE DNA-binding

domain

In order to determine how Thr128 phosphorylation affected ComE’s conformation, we per-

formed molecular dynamic simulations at 40–150 ns comparing ComEwt (PDB ID: 4CBV,

[43]) and the in silico phosphomimetic ComET128E-His6x protein (S4 Fig, video). The simula-

tions clearly indicated that 3 loops spanning the DNA-binding domain (Lys218-Asn219-Leu220,

Thr164-Gly165-Val166-Ser167-His168, and Ser200-Pro201-His202-Lys203) presented different

dynamics in the ComET128 mutant compared to ComEwt (Fig 4B and accompanying video

shown in S4 Fig). ComE is a member of the AgrA/LytTR family of bacterial response regula-

tors, which present certain structural homologies. Coincidently, two of these three loops have

been described for the AgrA RR in S. aureus [45], as key residues that determine the DNA

binding affinity for promoters in the phosphorylated form of AgrA (Fig 4B). ComE also

revealed positively charged or polar residues (His168 and Lys169 in loop 1; His202 and Lys203 in

loop 2; Arg217 and Lys218 in loop 3), which are shown in AgrA to have a direct contact with

DNA bases [45]. These results suggest that after Thr128 phosphorylation ComE may undergo

conformational changes. Consistent with this notion, limited proteolysis assays revealed struc-

tural differences between ComE-His6x and ComET128E-His6x (S5 Fig). Treatment with trypsin

determined as indicated in the legend of Fig 1. Lytic curves corresponding to specific mutants are indicated, which

data is representative of at least three independent experiments. References: ���p> 0.001.

https://doi.org/10.1371/journal.ppat.1007118.g003
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Fig 4. Thr128-phosphorylation increases the dimeric state of ComE. (A) Localization of Thr128 residue in the ComE structure. Based on the crystal

structure of ComE reported by Boudes et al [43], this figure reveals the localization of the Thr128 residue, as well as the alternative phosphorylation

site Asp58. The three loops in the DNA-binding domain are also shown, which are apparently altered when ComE is phosphorylated on Thr128. At

the bottom of this image, a sequence alignment between the DNA-binding domains of ComE and AgrA is also shown. Positively charged or polar

residues, which are described in AgrA to have a direct contact with DNA bases [45], are indicated in red. (B) The dimerization capacity of

recombinant ComE proteins, such as the phosphomimetic ComED58E and ComET128E proteins, as well as the non-phosphorylatable ComET128A
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showed more contrasting proteolytic patterns than proteinase K treatment. These findings

confirmed that Thr128 phosphorylation causes evident changes in ComE conformation, likely

in the DNA-binding domain of ComE, that may modify its DNA-binding affinity, and we

explored this possibility with electrophoretic mobility shift assays (EMSAs).

StkP-mediated Thr128 phosphorylation in ComE increases its DNA-

binding affinity in a pH-dependent manner

During competence development at alkaline pH, Asp58 phosphorylation by ComD results in

increased binding of ComE to pcomC and transcriptional activation of the comCDE operon

[2,46,47]. We have observed that at acidic pH, pcomC activation and induction of comE tran-

scription depended both on ComE and on StkP (Fig 1D and S3 Fig) suggesting that Thr128

phosphorylation by StkP influences the binding of ComE to pcomC. Electrophoretic mobility

shift assays (EMSAs) proved that the phosphomimetic ComET128E-His6x protein bound

pcomC 5-fold stronger than ComEwt-His6x (Kd 74 nM vs Kd 371 nM, respectively). The DNA

binding affinity of the non-phosphorylatable ComET128A-His6x mutant was unaffected (Kd
375 nM) whereas ComED58E-His6x affinity for pcomC was 17- fold greater that ComEwt-His6x

(Fig 5 and Table 1). Curiously, when ComEwt-His6x was pre-incubated with StkP in phosphor-

ylation buffer at pH 7.8 no binding to pcomC was observed (S6 Fig, Table 1). As ASIL is regu-

lated by StkP-mediated phosphorylation of ComE Thr128 residue under acidic conditions, we

tested if ComE DNA-binding affinity could be affected by pH. When ComEwt-His6x was previ-

ously incubated with StkP at pH 6.0, its affinity for pcomC increased (Kd 64 nM) and was simi-

lar to that shown by ComET128E-His6x (S6 Fig, Table 1). To determine which of these

contrasting effects actually depended on StkP phosphorylation, similar assays were performed

with an inactive StkP enzyme (StkPK42M) [8] and ComEwt-His6x.

Binding to pcomC was comparable in ComEwt-His6x pre-treated with StkPK42M at pH 6.0

and untreated ComEwt (Kd 300 nM vs Kd 371 nM) but was still absent after incubation at pH

7.8 (S7 Fig, Table 1). These results indicate that StkP phosphorylation at pH 6.0 underlied the

enhanced pcomC-binding affinity of ComE, but not the blocking of ComE-pcomC interaction

observed at pH 7.8, which suggests that at a slightly alkaline pH, StkP makes a complex with

ComE masking its DNA-binding sites. The DNA-binding affinity of the phosphomimetic

ComET128E-His6x and the non-phosphorylatable ComET128A-His6x proteins were not affected

when preincubated with StkP at either pH 6.0 or pH 7.8 (S7 Fig, Table 1), indicating that

Thr128 mediated the observed StkP effects on ComE: (1) at pH 6.0, Thr128 phosphorylation by

StkP increases ComE DNA binding affinity; (2) at pH 7.8 Thr128 mediates the StkP-ComE

interaction that blocks DNA binding. Thus, these experiments indicate that pH modulates the

interplay between StkP and ComE.

The StkP/ComE interaction increases at acidic pH

To test for a putative protein-protein interaction between StkP and ComE, a sandwich fluores-

cence-linked immunosorbent assay (FLISA) was utilized, in which the StkP-coated surface of a

microtiter plate was incubated with increasing amounts of His-tagged ComE at either pH 6.0

or pH 7.8. This assay clearly showed that acidic pH augmented the number of binding sites

between ComE and StkP, as reflected by a 3-fold increase in Fmax (maximum fluorescence

mutant, was analyzed and compared with ComEwt (left panel). ComEwt and ComET128A were also pre-incubated with GST-StkP (right panel).

Dimerization states were assessed by native PAGE/Tris-MOPS buffer. Proteins were electroblotted onto PVDF membranes, and Hisx6-ComE was

detected using anti-His antibody.

https://doi.org/10.1371/journal.ppat.1007118.g004
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when binding is saturated) at pH 6.0 compared to pH 7.8 (Table 2, S8 Fig). The interaction

between ComEwt and the StkPK42M mutant revealed the same Fmax as the ComE/StkP at differ-

ent pH values, indicating that kinase activity did not alter the saturation of this protein com-

plex. However, for the StkPK42M mutant, the K1/2 values were lower, indicating that StkPK42M

bound more tightly to ComE at any pH value. In comparison with ComEwt, the interaction

between non-phosphorylatable ComET128A mutant and StkP or StkPK42M was 3-fold stronger

and was not affected by pH. In contrast, the phosphomimetic ComET128E protein produced a

3-fold increment in K1/2 at pH 7.8, which further raised to 9-fold at pH 6.0, demonstrating that

the phosphorylated form of ComE had a lower affinity for StkP (Table 2, S8 Fig).

These data confirm that the StkP/ComE interactions are mediated by ComE residue Thr128

and favored by acidic conditions, which may facilitate ComE phosphorylation.

ComE induces global changes in the transcriptome of S. pneumoniae
To understand the effect of the StkP/ComE signaling pathway on pneumococcal physiology,

we compared the transcriptomes of the comET128A mutant and wt by RNAseq analysis. Three

Fig 5. The phosphomimetic ComET128E protein shows an increased DNA-binding affinity. The DNA-binding affinity for the

promoter region of the comCDE operon (pcomC) of ComEwt (A), the non-phosphorylatable (by StkP) ComET128A mutant (B) and the

phosphomimetic ComET128E (C) and ComED58E (D) proteins was determined by EMSA. Binding interactions were examined by

incubating variable amounts of the different ComE versions with Cy5-labeled pcomC, followed by electrophoretic separation of the

protein-DNA complexes. Black or white triangles are indicating the free or ComE-bound probe, respectively. Images were obtained with

a fluorescence scanner as described in Materials and Methods. The Kd values are indicated in each panel.

https://doi.org/10.1371/journal.ppat.1007118.g005

Table 1. ComE binding affinities to pcomC.

ComE/pcomC dissociation constants (nM)

ComE Variant - StkP/pH 6.0 StkP/pH 7.8 StkP/pH 6.0 StkPK42M /pH 7.8 StkPK42M/pH 6.0

WT 371 ± 34 >1000 64 ± 9 >1000 300 ± 17

T128A 375 ± 35 315 ± 29 311 ± 28 383 ± 36 336 ± 31

T128E 74 ± 7 93 ± 9 104 ± 9 ND ND

D58E 21 ± 2 >800 38 ± 4 ND ND

https://doi.org/10.1371/journal.ppat.1007118.t001
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replicates of each strain strains were grown in ABM (pH 6.0) for 1 hr at the exponential growth

phase (OD620nm 0.3) and analyzed. In total, the differential expression of 104 genes was

detected, 51 were down-regulated genes and 53 were up-regulated, considering relevant genes

to be those with expressions higher than 2 fold and p values<0.05 (Fig 6A). The full list of

these genes is shown (S3 Table). Based on this differential gene expression analysis, we

observed that the StkP/ComE pathway affected, directly or indirectly, the expression of genes

involved in oxidative stress, and the purine/pyrimidine, amino-acid and central metabolisms,

as well as the ribosomal and translation structures, metabolite transport, molecular chaperones

and cell wall biosynthesis, among others (Fig 6B). The list of genes regulated by Thr128-phos-

phorylated ComE indicated that this new signaling pathway induces global changes in the

pneumococcal transcriptome, such as the physiological response to acidic stress. Bioinformatic

analysis of the promoter regions (240 bp upstream of the start codon) of 22 ComE-regulated

genes obtained from RNAseq assays predicted a putative DNA binding motif (S9A Fig). Mar-

tin et al [47] described a potential ComED58~P binding site (CEbs, 32 bp) in the comC promoter

constituted by two repeats (DR1 and DR2) separated by 12 bp. In this report, we established

that the putative ComET128~P binding site (26 bp) only partially overlaps with theses repeats

suggesting a different consensus binding sequence to that described for ComED58~P (S9B Fig).

The StkP/ComE pathway controls H2O2 production and oxidative stress

response

Using RT-qPCR we confirmed decreased expression of oxidative stress genes spxB, sodA [48]

and tpxD [49] in comET128A mutant compared to wt (Fig 6C). The spxB gene encodes the pyru-

vate oxidase that produces H2O2 from O2, sodA encodes the superoxide dismutase that pro-

duces H2O2 from superoxide, and tpxD encodes the thiol peroxidase that catalyzes the H2O2

oxidation and contributes to the oxidative stress response. In the comET128A mutant, we found

that the spxB, sodA, and tpxD transcripts were downregulated 18, 2.8 and 2.7 times, respec-

tively (Fig 6C). These findings were also corroborated by H2O2 production and H2O2 suscepti-

bility assays. The comET128A, ΔcomE, and ΔstkPmutants showed a 4-fold decrease in their

H2O2 production compared to the wt and comEA128Tstrains (Fig 7A), which is likely caused by

the reduced expression of spxB and sodA protein products. In addition, we observed a 10-fold

reduction in the susceptibility to H2O2 by the comET128A, ΔcomE, and ΔstkPmutants compared

to the wt strain (Fig 7B), likely due to reduced expression of the TpxD peroxidase. These

Table 2. Estimates of ComE binding affinities for StkP and StkPK42M.

Binding to StkP(a) Binding to StkPK42M(a)

ComE variants pH K1/2 (ng)(b) Fmax
(c) K1/2 (ng)(b) Fmax

(c)

WT 7.8 330 ± 60(d) 4700 ± 300 140 ± 20 4600 ± 200

WT 6.0 94 ± 8 11000 ± 200 55 ± 3 11800 ± 200

T128A 7.8 110 ± 20 4800 ± 300 80 ± 10 5000 ± 200

T128A 6.0 100 ± 10 11100 ± 400 100 ± 20 10800 ± 400

T128E 7.8 900 ± 100 5300 ± 600 ND(e) ND

T128E 6.0 3200 ± 500 13300 ± 800 ND ND

a) Fluorescence data was fit to F = Fmax [ng ComE/(K1/2 + ng ComE)]

b)K1/2 is the amount of ComE (ng) required to reach half Fmax

c) Fmax is the maximum fluorescence when the binding is saturated

d) Standard error calculated from at least 3 independent experiments

e) Not determined (ND)

https://doi.org/10.1371/journal.ppat.1007118.t002
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Fig 6. ComE is a global regulator that controls gene expression during the stress response. (A) Gene expression scatter plot in the

wt and comET128A samples, with the x-axis representing the gene expression values for the control condition (wt) and the y-axis

representing those for the treated condition (comET128A). Each black dot represents a significant single transcript, with the vertical

position of each gene representing its expression level in the experimental conditions and the horizontal one representing its control

strength. Thus, genes that fall above the diagonal are over-expressed whereas genes that fall below the diagonal are underexpressed as

compared to their median expression levels in the experimental groups. (B) Volcano plot of gene expression in wt vs comET128A

samples measured by RNAseq. The y-axis represents the mean expression value of the log10 (p-value), while the x-axis displays the

StkP/ComE crosstalk controls stress response and intracellular survival

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007118 June 8, 2018 16 / 33

https://doi.org/10.1371/journal.ppat.1007118


findings support the notion that the StkP/ComE pathway is essential for the control of H2O2

production and for H2O2 tolerance.

The StkP/ComE pathway regulates murN expression and modulates

susceptibility to antibiotic-induced lysis

Although RNAseq analysis showed that themurN gene was overexpressed in the comET128A

mutant, its expression by qPCR was actually found to be 4-fold lower than in wt in three inde-

pendent assays (Fig 6C), suggesting a typical case of false positive that is commonly found in

RNAseq studies. Regarding the physiological impact of the murN mutation, Filipe et al [50]

described that amurMN mutant had cell wall alterations and presented increased susceptibility

to lysis when exposed to cell wall antibiotics. To test whether an altered murN expression in

the comET128A mutant could modify the susceptibility to cell wall antibiotics, we determined

log2 fold change value. Black dots represent genes with an expression 2-fold higher in the comET128A mutant relative to strain wtwith

a p-value< 0.05, with red dots signifying genes with an expression 2-fold lower in the comET128Amutant, which are relative to strain

wtwith a p< 0.05. (C) Categories of ComE-regulated genes obtained from an RNAseq analysis. An RNAseq generated distribution

in functional categories of genes that are regulated in the comET128Amutant relative to strain wt under acidic conditions. (D) ComE-

regulated genes expressed under acidic conditions in the comET128A mutant relative to strain wt. Gene expression determined by

RNAseq was confirmed by qPCR. The comET128A ΔlytA and ΔlytA (referred as wt for this assay) strains were grown in ABM/pH 6.0 to

the mid-exponential phase in triplicate, with the fold change in gene expression measured by RT-qPCR and calculated using the 2–

ΔΔCT method. The gyrA gene was used as the internal control. References: �� p< 0.01; ��� p< 0.001.

https://doi.org/10.1371/journal.ppat.1007118.g006

Fig 7. The StkP/ComE pathway controls oxidative stress and cell wall biosynthesis. (A) The H2O2 production is

altered in the comE and stkPmutants. Cells were grown in BHI at 37˚C to an OD620nm of 0.3, then diluted in either

ABM (pH 6.0) and incubated at 37˚C to an OD620nm of 0.3. The H2O2 concentration was determined by the peroxidase

test as described in Material & Methods. Values were calculated as the H2O2 concentration in mM and normalized

against the number of viable cells. (B) The comE and stkPmutants were more susceptible to H2O2 than wt.
Susceptibility to H2O2 is indicated as a percentage of bacterial survival at different time points. C-D) The comET128A

mutant was more resistant to cell-wall antibiotic-induced lysis than wt. Cells were grown in BHI/pH 7.2 at 37˚C to an

OD620nm of 0.3, and fosfomycin (C) and vancomycin (D) were added in independent cultures at final concentrations

of 50 μg/ml and 0.4 μg/ml, respectively. Cell lysis of bacterial cultures was determined by turbidimetry at OD620nm for

more than 3 h. References: ��� p< 0.001.

https://doi.org/10.1371/journal.ppat.1007118.g007
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the MIC values of the comET128A and wt strains in the presence of either fosfomycin, vancomy-

cin, penicillin, cefotaxime, cefazolin, or piperacillin. The fosfomycin MIC in the comET128A

(170 μg/ml) was higher than the wt strain (50 μg/ml), whereas the MICs for vancomycin, peni-

cillin, cefotaxime, cefazolin, and piperacillin were similar between these strains. The typical

lytic effect of fosfomycin (50 μg/ml, 1xMIC; Fig 7C) and vancomycin (0.4 μg/ml, 1xMIC; Fig

7D) on the wt strain was inhibited in the comET128A strain. The diminished susceptibility to

cell wall antibiotics in the comET128A strain suggests cell wall alterations consistent with the

ASIL repression showed by this mutant.

Pneumococcal survival in pneumocytes is controlled by the StkP/ComE

pathway

We previously described that ComE is involved in the acidic stress response and in the pneu-

mococcal intracellular survival mechanism in pneumocytes [33]. Here, we demonstrate that

StkP phosphorylates ComE, and in order to determine whether this crosstalk affects the pneu-

mococcal survival, we measured the intracellular survival capacities in A549 pneumocyte cells

of the ΔstkP, stkPK42R (reduced kinase activity), ΔcomE, comET128A and comEA128T (revertant)

strains compared to the wt in A549 pneumocyte cells [33]. Mutations in either the stkP or

comE genes conferred increased survival compared to comEA128T or wt (Fig 8A), indicating

that the StkP/ComE pathway controlled pneumococcal survival in pneumocytes. To discrimi-

nate whether this phenotype could result from increased ATR or decreased ASIL, we tested

the ΔlytAmutant, which lacks autolysin and presented a blocked ASIL [33], but its intracellular

survival was similar to the wt strain (Fig 8A). Thus, a blocked ASIL is not enough to increase

intracellular survival of S. pneumoniae in pneumocytes. Consequently, the increased survival

showed by either the ΔstkP, ΔcomE, or comET128A mutants (Fig 8A) is likely due to higher ATR

capacity. To test this hypothesis, we determined the ATR phenotype of the comET128A mutant,

but in a lytA deficient background in order to discard residual autolysis. As expected, ATR of

the ΔlytA strain increased 2-fold at pH 6.0 compared with cells cultured at pH 7.8, whereas the

comET128A ΔlytA cells showed a 20-fold increase under the same conditions (Fig 8B), support-

ing the notion that increased ATR explains the increased survival rate displayed by the

comET128A mutant in pneumocytes.

Discussion

Two-component systems (TCSs) represent one of the most important mechanisms of gene

regulation in bacteria. Alternatively, eukaryotic-like serine-threonine kinases (STKs) consti-

tute another signaling mechanism that bacteria utilize to regulate different cellular functions,

such as stress response and pathogenesis. STKs are more promiscuous than the TCS-associated

kinases and can phosphorylate different protein substrates producing pleiotropic effects

[16,51,52]. STKs are also able to interact with TCSs by direct phosphorylation of RRs, as

reviewed in [3,53]. STK-mediated RR activation takes place on either serine or threonine resi-

dues, instead of aspartate, which is the typical residue target for HK phosphorylation. STK-

mediated phosphorylation on DNA-binding domains of RR have been reported, as described

for GraR in S. aureus [54], YvcK in Listeria monocytogenes [55] and RitR in S. pneumoniae
[56]. STKs may also phosphorylate on receiver domains, as observed for CovR in S. pyogenes
[57], WalR in B. subtillis [58], DosR inM. tuberculosis [59], or in both domains, as demon-

strated for VraR in S. aureus [60].

ComE is the most studied RR in S. pneumoniae and belongs to the AlgR/AgrA/LytTR tran-

scription factor subfamily, showing a typical receiver domain and a DNA-binding (or LytTR)

domain. When phosphorylated by the ComD histidine kinase at the Asp58 residue, ComE
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undergoes conformational changes that increase their DNA affinity and modify transcription

regulation of competence genes by binding to their promoter regions [2,47,61]. In the present

work, we show that S. pneumoniae utilizes an alternative signal transduction pathway to con-

trol acidic stress response (ASIL and ATR), oxidative stress, cell wall biosynthesis, and intracel-

lular survival in pneumocytes. Under acidic conditions, a phosphorylation crosstalk between

StkP and ComE involving phosphorylation at Thr128 in the receiver domain resulted in activa-

tion of this RR.

Using the crystal structure of ComE [43], a molecular dynamic simulation of ComE permit-

ted a comparison with the phosphomimetic ComET128E protein, predicting that the Thr128

phosphorylation produces structural changes in the DNA-binding domain. These putative

conformational changes were confirmed by limited proteolysis assays that revealed differences

between ComE and ComET128E. In this sense, we observed that phosphorylation at either

Asp58 or Thr128 increases the dimerization and DNA-binding capacity of ComE. These results

were coincident with the activation model proposed by Boudes et al [43], where the most plau-

sible activation mechanism of ComE is first a phosphorylation reaction to induce its dimeriza-

tion, which occurs at the canonical receiver domain of ComE, followed by binding to DNA via

the LytTR domain. It remains to be elucidated how phosphorylation at alternative sites in the

receiver domain (Asp58 or Thr128) modifies the DNA-binding domain of ComE.

Because ComE Thr128 activation is independent of CSP/ComD activation by a quorum

sensing mechanism, this RR requires alternative factors to act as a sensor and/or an environ-

mental signal to trigger an adaptive stress response. We propose that StkP senses an alternative

environmental signal, acidic pH. Our results are consistent with such notion: the level of comE
transcripts induced under acidic conditions is the indicator of ComE activation due to the

comCDE operon is autoregulated.

Fig 8. The StkP/ComE pathway modulates intracellular survival and the acid tolerance response of S. pneumoniae.

(A) The ΔstkP and ΔcomEmutants showed increased intracellular survival compared with wt in A549 pneumocytes.

Bacteria cells were initially incubated for 3 h in monolayers of A549 pneumocytes, and survival progression of different

strains was monitored using a typical protection assay. Survival percentages were calculated by considering the total

amount of internalized bacteria after 30 min of extracellular antibiotic treatment as representing 100% for each strain.

After antibiotic treatment, samples were taken at 0 (white bars), 3 (grey bars) and 7 (black bars) hours, and

pneumocytes were lysed to release pneumococci. Samples were diluted in BHI spread on BHI-blood-agar plates and

incubated at 37˚C for 16 h. (B) The ΔstkP and ΔcomEmutants displayed an augmented ATR compared with wt. To

determine the survival percentage of bacterial strains, the non-induced cells (white bars) were directly exposed for 2 h

at pH 4.4 (lethal pH) in THYE medium, with the acid-induced cells (grey bars) being previously incubated for 2 h at

pH 6.0 (sub-lethal pH) in THYE medium. After exposition to lethal pH, pneumococcal survival was determined by

spreading dilutions in BHI-blood-agar plates and incubating these at 37˚C for 16 h. For both panels, data are

representative of at least three independent experiments and statistically significant differences are indicated as p<0.01

(��) or p<0.001 (���).

https://doi.org/10.1371/journal.ppat.1007118.g008
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An additional aspect to consider in the StkP/ComE crosstalk phosphorylation is the effect

of pH on protein-protein interactions. We observed that the non-phosphorylated forms of

both proteins show strong interaction at acidic pH. Once StkP auto-phosphorylates, it

becomes metastable complex until it dissociates from the phosphorylated ComE form. Such

cycle is favored at pH 6.0 and evidence for the outcome of such cycle is shown by the fact that

phosphorylation of ComE at Thr128 by StkP prevents further interaction between these two

proteins. We propose the following cycle for StkP/ComE interaction:

StkPþ ComE ➔ StkP=ComE ➔ StkP� P=ComE ➔ StkPþ ComE� P
ðstable complexÞ ðtransient complexÞ

Pneumococcal H2O2 production is one of the most significant among bacterial pathogens,

and S. pneumoniae utilizes this intermediate metabolite to compete with the respiratory tract

microbiota and to produce cytotoxic effects on the host tissues [62–64]. In this investigation,

the transcriptome analysis of the comET128A mutant revealed a marked decrease in the ex-

pression of spxB and sodAwhen cells were grown under acidic conditions. These results corre-

lated with very low H2O2 production by the comET128A mutant associated with low expression

of SpxB and SodA. Considering that H2O2 is toxic for eukaryotic cells, we propose that reduc-

tion H2O2 production in the comET128A mutant facilitates its intracellular survival in pneumo-

cytes. S. pneumoniae generates hyper-virulent mutants with defective spxB during infection

[65], supporting the hypothesis that the H2O2 levels are controlled during pneumococcal

pathogenesis.

Because S. pneumoniae lacks catalase, and H2O2 overproduction must be controlled for this

pathogen to survive, this pathogen induces an oxidative stress resistance that is induced by

endogenous H2O2 [66]. In this sense, the transcriptome analyses of the comET128A mutant

revealed a decreased expression of tpxD, which encodes the thiol peroxidase. These findings

correlate with the increased H2O2 susceptibility by the comET128A mutant. Similarly, a previous

study showed that a tpxD (or psaD) mutant eliminated the H2O2-mediated response to high

H2O2 levels [67]. Previously, a microarray analysis of the stkP mutant revealed that tpxD
expression is repressed, which is correlated with a low H2O2 resistance of this mutant, but the

putative regulatory mechanism was not mentioned [7]. In the present study, we have shown

for the first time that the StkP/ComE pathway controls oxidative stress resistance and H2O2

production under acidic conditions, which are probably responsible for the intracellular sur-

vival of S. pneumoniae in pneumocytes.

In a previous study, we proposed that ASIL may be activated under acidic conditions by a

translocation of LytA from an intracellular to an extracellular compartment probably due to

cell wall alterations by an unknown ComE-dependent mechanism [68]. Here, the comET128A

mutant displayed a decreased expression ofmurN, which encodes one of the first enzymes

involved in the cell wall biosynthesis of S. pneumoniae [69]. Filipe et al [70] described that the

murMN mutant showed an increased susceptibility to lysis whenmurMN cells were exposed to

cell wall antibiotics, such as fosfomycin and vancomycin, which are involved in the inhibition

of both the early and late stages of cell wall biosynthesis, respectively. Following this line of

thinking, an altered expression ofmurN in the comET128A mutant should cause a misbalance in

the peptidoglycan biosynthesis and modify susceptibility to cell wall antibiotics. Accordingly,

we observed that this mutant had an increased MIC of fosfomycin compared with wt, as well

as a greater tolerance to autolysis induced by fosfomycin or vancomycin. The putative cell wall

alterations indicated by antibiotic susceptibility tests may explain the autolysis inhibition

shown by the comET128A mutant under acidic stress, which probably interfered with LytA acti-

vation. Work is in progress to try to determine the nature of such cell wall alterations.
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We also demonstrated that Thr128 phosphorylation is not involved in competence. Regard-

ing this topic, Guiral et al [71] described a phenomenon of lysis of non-competent cells trig-

gered by competent cells, named allolysis, which involves bacteriocins and the autolysins LytA,

LytC, and CbpD. Allolysis is considered to be a competence-induced mechanism of predation

of non-competent cells that contributes to virulence by releasing pneumolysin [72]. Here, we

show that the StkP/ComE signaling pathway can also trigger autolysis of noncompetent cells

in acidic biological niches, such as inflammatory foci or endosomal compartments. This phe-

nomenon occurred without the activation of a quorum sensing mechanism, a situation that

allows bacterial cells to lyse even under low population density conditions.

StkP and ComE have already been shown to be involved in pneumococcal pathogenesis in

different studies using animal models, with StkP appearing to be involved in bacterial survival

in vivo [4,73]. On the other hand, ComE-mediated competence for DNA transformation has

been also associated with virulence [74,75]. As mentioned above, pneumolysin release by com-

petence-mediated autolysis was considered to be essential for pneumococcal pathogenesis

[71]. Concerning the impact of StkP/ComE pathway regulation on pneumococcal pathogene-

sis, we propose that two different scenarios should be considered. In extracellular niches, a

subpopulation of pneumococci exposed to acidic stress may cause tissue damage by overpro-

duction of H2O2 and induction of ASIL to release pneumolysin, with this suicidal situation

being promoted by StkP-mediated phosphorylation of ComE. On the other hand, the Thr128-

nonphosphorylated form of ComE might facilitate pneumococcal survival at either the extra-

cellular or the intracellular level in host tissues. We focused our attention on the first barrier

that this pathogen must cross to establish an infection, and we hypothesized that intracellular

survival in pneumocytes should be important for S. pneumoniae. The ΔstkP, ΔcomE, and

comET128A mutants were tested in the pneumococcal infection model in A549 pneumocytes,

and they revealed an increased survival compared with wt. Thus, we conclude that this survival

could have been caused by increasing their capacity of ATR, decreasing the H2O2 production

and modifying the cell wall biosynthesis to repress ASIL (Fig 9). Establishing how the balance

Fig 9. Proposed model for crosstalk between StkP and ComE that impacts on the acidic stress response and intracellular survival

mechanisms in S. pneumoniae exposed to acidic conditions.

https://doi.org/10.1371/journal.ppat.1007118.g009
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between H2O2 resistance mechanism and H2O2 production affects intracellular survival is

beyond the scope of this report, but this work is in progress. Finally, we propose that the StkP/

ComE pathway is relevant in the genetic regulation of physiological adaptation to environ-

mental stress, which is necessary for pneumococcal survival in pneumocytes. This is one of the

first steps in the pathogenic process that S. pneumoniae must overcome to produce infection.

Materials and methods

Bacterial strains, plasmids, cell lines, and growth conditions

All strains, plasmids, and oligonucleotides used in this study, as well as cloning and mutagene-

sis procedures, are listed in the supplementary material (S1 Table). The growth conditions and

stock preparation for the pneumococcal and Escherichia coli strains have been reported else-

where [34], and the transformation assays have also been previously described [76,77].

ASIL and ATR assays

ASIL was performed as described previously [33]. Firstly, bacterial cells were grown in Todd-

Hewitt/yeast extract medium. When cultures reached OD600nm ~0.3, cells were centrifuged at

10,000 g for 5 min, the pellet was resuspended in ABM pH 6.0 and cultures were re-incubated

at 37˚C. Autolysis was measured as a change in OD600nm at different time points over 6 h.

ATR was performed as described previously [24]. For non-acid-induced conditions, bacte-

rial cells were first grown in THYE (pH 7.8) at 37˚C, and when cultures reached OD600nm~

0.3, 100 μl aliquots were taken and added to 900 μl of THYE (pH 4.4) and incubated for 2 h at

37˚C. Then, serial dilutions were made in THYE (pH 7.8) and plated onto 5% of sheep blood

tryptic-soy agar (TSA) plates. After 24 h of incubation at 37˚C, colonies were counted to deter-

mine the number of survivors, with the total CFU being obtained by plating serial dilutions of

cells grown THYE pH 7.8 onto 5% sheep blood TSA, made just before cells were switched to

pH 4.4. In parallel, to determine survival under acidic-induced conditions, bacterial cells were

grown in THYE (pH 7.8) until OD600nm ~ 0.3, centrifuged at 10,000 g for 5 min, resuspended

in THYE (pH 6.0) and incubated for 2 h at 37˚C. Culture aliquots were taken and serially

diluted in THYE pH 7.8 for total cell counting, while other aliquots were diluted ten times in

THYE (pH 4.4) and incubated for 2 h at 37˚C to determine the survival percentage as

described above. For both assays (acid-induced and non acid-induced conditions), this was

calculated by dividing the number of survivors at pH 4.4 by the number of total cells at time

zero (before incubation at pH 4.4). For the ASIL and ATR assays, data were expressed as the

mean percentage ± standard deviation (SD) of independent experiments performed in

triplicate.

Cell lines and culture conditions

The A549 cell line (human lung epithelial carcinoma, pneumocytes type II; ATCC CCL-185)

was cultured at 37˚C, 5% CO2 in Dulbecco’s modified Eagle medium (DMEM) with 4.5 g/l of

glucose and 10% of heat-inactivated fetal bovine serum (FBS)(Gibco BRL, Gaithersburg, Md.).

Fully confluent A549 cells were split once every two or three days via trypsin/EDTA treatment

and diluted in fresh media before being cultivated in Filter cap cell flasks of 75 cm2 (Greiner

Bio-one no. 658175) until passage 6.

In vitro phosphorylation assays

In vitro phosphorylation was carried out with 0.5 μg of purified recombinant substrate protein

and 0.5 μg of purified GST-StkP in 30 μl of kinase buffer (50 mM Tris-HCl, 5 mM MgCl2,
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100 μM ATP, 1mM DTT, pH 7.5). The reaction was started by the addition of ATP and

stopped after 60 min of incubation at 37˚C by the addition of 5x Laemmli SDS sample buffer.

Samples were separated by standard Tris-glycine-SDS polyacrylamide gel electrophoresis

(PAGE) gels and electroblotted onto a nitrocellulose membrane. Phosphorylated proteins

were detected with an anti-phosphothreonine polyclonal antibody (1∶1,000; Cell Signaling)

and a goat anti-rabbit immunoglobulin G secondary antibody conjugated to horseradish per-

oxidase (1∶2,500; Invitrogen). Detection was performed with an enhanced chemiluminescence

substrate (SuperSignal West Pico Chemiluminescent Substrate; Pierce) and Hyperfilm CL film

(GE) using exposures of between 1 and 10 min. The pRSET-divIVA spn plasmid was generously

provided by Dr. Orietta Massidda (Università degli studi di Cagliari, Italy) [78].

In vivo phosphorylation assays

The RC838 (comE-his) and RC839 (ΔstkP comE-his) strains (S1 Table) were grown in 2 l of

ABM (pH 7.8) at 37˚C until OD600nm 0.3. Half of the cultures (1 l) were centrifuged for 10 min

at 5,000 x g, snap-frozen in liquid-air and stored at -80˚C. The remaining 1 l was centrifuged

as before, resuspended in ABM (pH 6.0), incubated at 37˚C for 10 min, and finally centrifuged

for 10 min at 5,000 x g, snap-frozen in liquid-air and stored at -80˚C. Cell pellets were thawed

in ice and resuspended in 10 ml of L8 buffer (100 mM NaH2PO4/10 mM Tris�HCl, pH 8.0/150

mM NaCl/20 mM imidazole/20mM PMSF/8 M urea) supplemented with MS-SAFE protease/

phosphatase inhibitor cocktail (Sigma-Aldrich) and lysed by stirring for 1 h followed by soni-

cation. The lysate was cleared by centrifugation at 15,000 g for 20 min, and the supernatant

was added to a column packed with to 0.5 ml of Ni-NTA resin (Qiagen) equilibrated in L8

buffer. The column was washed sequentially with 10 ml of LX buffer (L buffer with X = 8, 6, 4,

2, and 0 M urea), and bound ComE-His6x protein was eluted with 2 ml of L0 buffer containing

500 mM imidazole. Protein samples (approximately 0.5 μg ComE-His) were separated by

SDS-PAGE, and the gels were stained with ProQ Diamond (Invitrogen) to detect phosphory-

lated ComE-His, followed by SYPRO Ruby (Invitrogen) total protein staining. Gels were

imaged under fluorescence mode in a Typhoon FLA 9500 scanner (GE) and protein bands

were quantified using ImageQuant software (GE).

Identification of phosphorylated residues by nano-LC-MS/MS analysis

Identification of the phosphorylation site was carried out by nano-LC-MS/MS analysis as previ-

ously described [79]. Protein bands were in-gel-digested overnight with sequencing grade tryp-

sin (Promega) at 37˚C, desalted using micro-reverse phase columns (C18 Omix tips, Varian),

vacuum dried and resuspended in 0.1% formic acid (v/v) in water. Tryptic peptides were

injected into a nano-HPLC system (Proxeon Easy nLC, Thermo) fitted with a trap column

(Easy-column C18 2 cm x 100 um ID). Posteriorly, the samples were separated on a reverse

phase nano-column (Easy-Column C18 10 cm x 75 um ID; Thermo) using a linear gradient of

acetonitrile 0.1% formic acid (0–45% in 70 min) at a flow rate of 400 nL/min. Mass analysis was

performed using a linear ion trap mass spectrometer (LTQ Velos, Thermo) in a data-dependent

mode (full scan followed by MS/MS of the top 5 peaks)[79]. Raw data was analyzed using the

Proteome Discoverer software package (v.1.3.0.339, Thermo), and Sequest search engine, with

the following parameters: enzyme: trypsin; maximum missed cleavage: 2; precursor mass toler-

ance: 1 Da; fragment mass tolerance: 0.8 Da; Ser/Thr/Tyr phosphorylation and methionine oxi-

dation as dynamic modifications. Searches were performed using a Streptococcus pneumoniae
database downloaded from UniProt (17/5/2017) and including the His tag-ComE sequence.

For phosphosite localization, the phosphoRS algorithm was used and the spectra of phosphory-

lated peptides were manually inspected to corroborate the phosphosite assignment [80].
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EMSA

The promoter region of comCDE (255 bp; pcomC)was PCR-amplified using the 5’-Cy5 labeled

oligonucleotides NGEP516 and NGEP517 (IDT) and purified using the QIAquick PCR Puri-

fication Kit (QIAGEN). DNA-binding assays were performed in a total volume of 10 μl con-

taining 50 mM NaCl, 50 mM Tris/HCl pH 7.5, 5% (v/v) glycerol, 7.5 nM Cy5-labeled PCR

fragments, 1 mM MgCl2, 0.15 mg Poly(dI-dC) (as the non-specific competitor), and varying

concentrations of untreated or StkP-treated ComE proteins. In the latter case, phosphorylation

of ComE-Hisx6 by StkP was carried out with an equimolar amount of StkP in kinase buffer (50

mM Bis-Tris propane, 5 mM MgCl2, 1mM DTT, 0.1 μM ATP, pH 7.8 or pH 6.0) for 60 min at

37˚C. Protein-DNA binding reactions were incubated at room temperature for 30 min, and

“frozen” with an equal volume of 2X Stop Solution [40% (v/v) Triethylene Glycol, 10 mM Tris,

pH 7.5]. DNA-protein complexes were resolved by electrophoresis in native Tris-Borate-

EDTA polyacrylamide gels [10% (w/v)] containing 30% Triethylene Glycol. Gels were run

at 4˚C for 120 min at constant voltage (25 V cm-1) in a 0.5X TBE buffer and scanned in a

Typhoon FLA 9500 biomolecular imager (GE) under fluorescence mode. Free and protein-

bound DNA were quantified using ImageQuant (GE). The fraction of DNA bound (FB) at

each ComE concentration was fit with a standard binding isotherm using Kaleidagraph (Syn-

ergy Software), according to the equation: FB = [ComE]/(Kd +[ComE]), where Kd is the appar-

ent equilibrium dissociation constant and reflects the protein concentration required to shift

50% of the labeled DNA fragment.

Molecular dynamics simulation

MD simulations were carried out with the NAMD program [81], using the CHARMM27 force

field [82]. Spherical boundary conditions and a non-bonded cut-off of 12.0 Å with a switching

function of 10.0 Å were used. All systems were submitted to structural minimization in vac-

uum, and then embed in a water sphere for the MD. The temperature was set to 310 K by a

Langevin thermostat. MD simulations were run for 40 ns with an integration step of 2 fs. Anal-

ysis of the trajectories was performed using VMD software [83]. Crystal structure images were

analyzed using PyMOL [84].

StkP and ComE interaction by FLISA

StkP and ComE binding interactions were assessed by a sandwich fluorescence-linked immu-

nosorbent assay (FLISA) in black 96-well high binding capacity microplates with clear flat-bot-

toms (Corning #3601). Each well was filled with 50 μL of 10 μg/ml GST-StkP (500 ng of

GST-StkP) dissolved in a 0.1 M coating buffer (0.1 M NaHCO3/Na2CO3, pH 9.4) and incu-

bated overnight at 4˚C to allow protein adsorption. Wells were rinsed five times with Tris-

buffered saline, 0.05% Tween 20, pH 7.4 (TBS-T) and the reactive sites were blocked with 2%

w/v bovine serum albumin dissolved in TBS-T for 2 h at room temperature. Wells were

washed three times with TBS-T. Different amounts of ComE-Hisx6 (200–1200 ng) were dis-

solved in 50 μL of 50 mM Bis-Tris-Propane-HCl, 1 mM MgCl2, pH 7.8, or in the same buffer

but at pH 6.0, and added to StkP-coated wells and incubated for 1h at 37˚C. Wells were washed

5 times with TBS-T and incubated for 1h at RT with 50 μL of a Dylight 650-conjugated anti-

6X His antibody (Invitrogen MA1-21315-D650) diluted 100-fold in TBS-T. After 5 washes

with TBS-T, plates were read in a Typhoon FLA 9500 scanner (GE) under fluorescence mode.

Fluorescence (F) was fit using a Kaleidagraph to a standard binding isotherm with the form

F = Fmax [ng ComE/(K1/2 + ng ComE)], where Fmax is the maximum fluorescence at binding

saturation and reflects the maximum binding capacity (Bmax), and K1/2 is the amount of ComE
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(ng) required to reach half Fmax. The inverse of K1/2 represents an estimate of ComE affinity

for the StkP binding sites.

Protein expression and purification

The comE gene was amplified from R801 genomic DNA with the primer pair FhkE/RhkE and

cloned into the BamHI/EcoRI sites of the pRSET-A expression plasmid (Invitrogen), yielding

pRSET-ComE. stkP and stkP-KD (kinase domain, amino acids 1–282) were amplified with

primer pairs FstkP-ex/Rstk-ex and FstkP-ex/ Rstk-kd, respectively, and cloned into BamHI/

EcoRI sites of pGEX-4T1 expression plasmid (GE) to generate pGEX-StkP and pGEX-StkP-

KD. Plasmid pTrc-LytA(N) expressing the amino-terminal region of LytA (1–206) was

obtained by cloning a lytA fragment generated by PCR amplification with primers FlytA1/RlytA2

into the BamHI/EcoRI sites of pTrcHis2A (Invitrogen). Mutations were introduced in

pRSET-ComE by Quickchange site-directed mutagenesis (Agilent), employing primer pairs

NGEP514/NGEP515, NGEP75/NGEP76 and NGEP77/NGEP78 to obtain pRSET-ComE

(D58E), pRSET-ComE(T128A), and pRSET-ComE(T128E), respectively. In the same way, the

K42M mutation was introduced in pGEX-StkP with primers NGEP770/771 to give pGEX-

StkP(K42M).

Soluble His6X-tagged LytA(N) and ComE-Hisx6 proteins were purified from the E. coli
BL21(DE3) strain co-transformed with either pTrc-LytA(N) or pRSet-ComE derivatives and

chaperone expression plasmids pBB540 and pBB550 [2,85]. E. coli cells were grown on 800 ml

of Terrific broth and induced with 100 μM IPTG according to de Marco [85]. His-tagged

proteins were purified from protein lysates obtained by sonication using an NTA-Ni2+ resin

(Qiagen) following the manufacturer’s protocol. Eluted protein was further purified by gel fil-

tration using a HiPrep 16/60 Sephacryl S-200 HR column mounted in a ÄKTA purifier system

(GE). ComE containing fractions were pooled, concentrated with an Amicon Ultra-4 centrifu-

gal filter (Millipore), and dialyzed against the storage buffer [50 mM Tris, 200 mM NaCl, 1mM

DTT, 50% v/v glycerol, pH 7.5). Samples were snap frozen and stored at -80˚C until use. Fol-

lowing exactly the same protocol as above, GST-tagged StkP proteins were purified from the

soluble protein fraction of BL21(DE3) cells bearing pGEX-StkP derivatives and plasmids

pBB540 and pBB50. In this case, a Glutathione Sepharose resin (GE) was used to retain GST-

tagged StkP. DivIVA was purified from BL21 (DE3) cells transformed with pRSET-divIVA
according to Fadda et al. [78]. Purified recombinant Aequorea victoriaHis-tagged GFP protein

was purchased from SIGMA.

Dimeric state of ComE proteins

Native PAGE was used to assess the ComE monomer/dimer ratio. Purified ComE-Hisx6 pro-

teins were diluted in 2x Laemmli sample buffer without 2-mercaptoethanol and SDS and

loaded in a 4–20% gradient Bis-Tris precast polyacrylamide gel (GenScript). Electrophoresis

was performed at 4˚C using Tris-MOPS running buffer without SDS (GenScript) at a constant

electric field of 15 V cm-1. Proteins were electroblotted onto a PVDF membrane and probed

with Dylight 650-conjugated anti-6X His antibody to detect His-tagged ComE. The mem-

branes were imaged under fluorescence mode in a Typhoon FLA 9500 scanner (GE Health-

care), and bands were quantified with ImageQuant software (GE Healthcare).

RNAseq analysis

Cells were initially grown in THYE medium at pH 7.8 until OD600nm ~0.3 (log phase), centri-

fuged at 14,000 g for 10 min at 4˚C, resuspended in the same volume in ABM at pH 6.0 (Piñas

et al, 2008) and incubated a 37˚C for 1h. Then, cells were centrifuged at 14,000 x g for 10 min
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at 4˚C, resuspended in a 1/10 vol of lysis buffer (DOC 1% in 0.9% Na Cl) and incubated 3 min a

37˚C until complete lysis. Total RNA was purified by TRIzol reagent according to the manufac-

turer’s instructions (Fisher Scientific) from three biological replicates for wt and the comET128A

mutant. Posteriorly, we used the Ribopure Bacterial RNA Purification Kit (Ambion) following

the manufacturer’s protocol, with the contaminant DNA being removed using the provided

Dnase. rRNA was depleted from 8μg of total RNA using the MICROBExpress Bacterial mRNA

Enrichment Kit (Ambion), and then the transcriptome libraries were prepared with TruSeq

Stranded RNA Library Preparation Kit (Illumina) following the manufacturer’s instructions.

Briefly, enriched mRNA was fragmented using reagents provided with the kit, and this was fol-

lowed by first-strand cDNA synthesis and second-strand generation. The libraries were tagged

with unique indexes and amplified for a limited number of PCR cycles followed by quantifica-

tion and qualification using the DNA High Sensitivity Assay Kit. Samples were sequenced using

PE150bp chemistry and the Illumina HiSeq. Reads were trimmed by Trimmomatic 0.36 [86] to

generate high-quality reads. Subsequently, these reads of wt and the comET128A samples were

separately aligned to the Streptococcus pneumoniae R6 genome using BWA -version 0.7.12-

r1039 (bio-bwa.sourceforge.net) at default parameters. The software package SAMtools (http://

samtools.sourceforge.net/) was used to convert the sequence alignment/map (SAM) file to a

sorted binary alignment/map (BAM) file. The mapped reads ratio (MRR) to the reference in

each dataset was calculated by applying the flagstat command of SAMtools software to the BAM

file.

Differential gene expression

The aligned reads were assembled by Cufflinks (version-2.2.1), and then the differentially

expressed genes were detected and quantified by Cuffdiff, which is included in the Cufflinks

package, using a rigorous sophisticated statistical analysis. The expression of the genes was cal-

culated in terms of FPKM (Fragment per kilobase per million mapped reads). Differential

gene expression analysis was carried out between wt and the comET128A samples.

qRT-PCR

cDNA was synthesized from 2 μg RNA using the ProtoScript II First Strand cDNA Synthesis

Kit (NEB) following the manufacture’s protocol. cDNA was cleaned using the QIAquick PCR

Purification Kit (Qiagen). Genes were amplified using the oligos listed in the S2 Table and

FastStart Essential DNA Green Master Mix (Roche) following the manufacturer’s protocol.

Expression was determined relative to AU0158 normalized by gyrA (spr1099) expression

using the ΔΔCt method [87]. The gyrA had a similar expression by RNA-Seq for wt and the

comET128A mutant, and this had been used to normalize the expression in S. pneumoniae in

other studies [88].

Intracellular survival assays

The assays to determine the intracellular survival of pneumococci were performed as reported

previously [33], but with modifications. Briefly, 3.0 × 105 of A549 cells per well were seeded in

6 well plates and cultured in DMEM supplemented with 10% of fetal bovine serum (FBS) and

incubated for 12 h. Pneumococci were grown in THYE to the mid-log phase (OD600nm 0.3)

and resuspended in DMEM (with 10% FBS). Infection of cell monolayers was carried out

using a multiplicity of infection (MOI) 20:1. Bacterial internalization after incubation and

washes with extracellular antibiotics was approximately 1%, and the occurrence of apoptosis/

necrosis caused by pneumococcal infection quantified by flow cytometry (Annexin V/propi-

dium iodide labeling kit; Invitrogen) was approximately 5–10% for all time points analyzed.
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A549 cells were incubated 3 h with pneumococcal strains and cells were washed three times

with phosphate-buffered saline (PBS) and fresh DMEM (without FBS) containing 150 μg/ml

potassium penicillin G (Sigma P7794) and 900 μg/ml gentamicin sulfate (US Biological

G2030). After a 20 min rest period, cells were washed three times with PBS. The eukaryotic

cells were lysed by centrifugation for 5 min at 10,000 rpm and the bacterial pellet was resus-

pended in THYE medium. The number of internalized bacteria at different time points was

quantified after serial dilutions and plating on BHI 5% sheep blood agar plates with incuba-

tion for 16 h at 37˚C. The time scale referred to the time after elimination of the extracellular

bacteria by antibiotic treatment. A 100% survival was defined after 20 min of antibiotic treat-

ment (S1 Fig), and all the samples were referred to this point to calculate the respective

percentages.

Hydrogen peroxide determination

For the detection of H2O2 released by bacterial cells, the phenol red oxidation microassay was

used. Briefly, cells were grown in BHI to the mid-log phase (OD600nm 0.3). Posteriorly, cells

were centrifuged at 10,000 x g for 5 min, resuspended in Todd Hewitt broth THB (pH 6.0) and

incubated by 1 h at 37˚C. Aliquots were taken and serially diluted to determine viable cells by

plating in BHI-blood agar. Other aliquots were centrifuged at 10,000 x g for 5 min, and 100 μl

of supernatants were transferred to multiwell plates and mixed with the same volume of PRS

buffer (NaCl 140 mM, dextrose 5.5 mM, phenol red 280 μM, and horseradish peroxidase 8.5

U/ml in phosphate-buffered saline, pH7.0). Reactions were incubated for 90 min at 37˚C and

the reaction was stopped with 10 μl of 1 N NaOH, and the reactive wells were read in a micro-

plate reader (Bio-Rad) with a 595-nm filter. Assays were performed in triplicate and results are

expressed as mmoles of H2O2 released by 106 cells.

Hydrogen peroxide susceptibility assays

Bacterial strains were grown until OD600nm in BHI and aliquots were treated with H2O2 20

mM (final concentration). Every 30 min, aliquots were taken and serially diluted to determine

viable cells by plating in BHI-blood agar. The percent survival was calculated by dividing the

CFU of cultures after exposure to H2O2 by the CFU of the control tube without H2O2. Assays

were performed in triplicate and results are shown survival percentage at different time points.

Limited proteolysis assays

Limited proteolysis with proteinase K was carried out in a 30 μl reaction volume with 3 μg of

ComE or ComET128E and 6 ng of the proteinase K in 10 mM Tris, 1 mM CaCl2, pH 7.5, for 30

min at room temperature. Reactions were stopped with 5 mM PMSF, 5 mM EDTA and 1X

Laemmli loading buffer, and immediately boiled for 5 min. Digestions with trypsin were per-

formed under the same conditions as before but in 100 mM Tris, pH 8.5. Trypsinized samples

were boiled immediately for 5 min after stopping the reactions with 5 mM PMSF and 1X

Laemmli loading buffer. The extension of protein digestion was verified by 12% SDS-PAGE

followed by SYPRO Ruby staining.

Accession numbers

The RNA-seq data generated from this study are deposited at the NCBI SRA under the acces-

sion numbers SAMN08473835 and SAMN08473836.
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Writing – review & editing: Germán E. Piñas, Daniel R. Perez, José Echenique.

References
1. Salazar ME, Laub MT (2015) Temporal and evolutionary dynamics of two-component signaling path-

ways. Curr Opin Microbiol 24: 7–14. https://doi.org/10.1016/j.mib.2014.12.003 PMID: 25589045

2. Claverys JP, Prudhomme M, Martin B (2006) Induction of competence regulons as a general response

to stress in gram-positive bacteria. Annu Rev Microbiol 60: 451–475. https://doi.org/10.1146/annurev.

micro.60.080805.142139 PMID: 16771651

3. Dworkin J (2015) Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol

24: 47–52. https://doi.org/10.1016/j.mib.2015.01.005 PMID: 25625314

4. Echenique J, Kadioglu A, Romao S, Andrew PW, Trombe MC (2004) Protein serine/threonine kinase

StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect Immun 72:

2434–2437. https://doi.org/10.1128/IAI.72.4.2434-2437.2004 PMID: 15039376

5. Pallova P, Hercik K, Saskova L, Novakova L, Branny P (2007) A eukaryotic-type serine/threonine protein

kinase StkP of Streptococcus pneumoniae acts as a dimer in vivo. Biochemical and Biophysical Research

Communications 355: 526–530. https://doi.org/10.1016/j.bbrc.2007.01.184 PMID: 17307148

6. Yeats C, Finn RD, Bateman A (2002) The PASTA domain: a beta-lactam-binding domain. Trends in

Biochemical Sciences 27: 438. PMID: 12217513

7. Saskova L, Novakova L, Basler M, Branny P (2007) Eukaryotic-type serine/threonine protein kinase

StkP is a global regulator of gene expression in Streptococcus pneumoniae. Journal of Bacteriology

189: 4168–4179. https://doi.org/10.1128/JB.01616-06 PMID: 17416671

8. Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, et al. (2012) Mutational dissection of the S/T-kinase

StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol Microbiol 83: 746–758.

https://doi.org/10.1111/j.1365-2958.2011.07962.x PMID: 22211696

9. Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, et al. (2014) MapZ marks the division sites and posi-

tions FtsZ rings in Streptococcus pneumoniae. Nature 516: 259–262. https://doi.org/10.1038/

nature13966 PMID: 25470041

10. Stamsas GA, Straume D, Ruud Winther A, Kjos M, Frantzen CA, et al. (2017) Identification of EloR

(Spr1851) as a regulator of cell elongation in Streptococcus pneumoniae. Mol Microbiol 105: 954–967.

https://doi.org/10.1111/mmi.13748 PMID: 28710862

StkP/ComE crosstalk controls stress response and intracellular survival

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007118 June 8, 2018 29 / 33

https://doi.org/10.1016/j.mib.2014.12.003
http://www.ncbi.nlm.nih.gov/pubmed/25589045
https://doi.org/10.1146/annurev.micro.60.080805.142139
https://doi.org/10.1146/annurev.micro.60.080805.142139
http://www.ncbi.nlm.nih.gov/pubmed/16771651
https://doi.org/10.1016/j.mib.2015.01.005
http://www.ncbi.nlm.nih.gov/pubmed/25625314
https://doi.org/10.1128/IAI.72.4.2434-2437.2004
http://www.ncbi.nlm.nih.gov/pubmed/15039376
https://doi.org/10.1016/j.bbrc.2007.01.184
http://www.ncbi.nlm.nih.gov/pubmed/17307148
http://www.ncbi.nlm.nih.gov/pubmed/12217513
https://doi.org/10.1128/JB.01616-06
http://www.ncbi.nlm.nih.gov/pubmed/17416671
https://doi.org/10.1111/j.1365-2958.2011.07962.x
http://www.ncbi.nlm.nih.gov/pubmed/22211696
https://doi.org/10.1038/nature13966
https://doi.org/10.1038/nature13966
http://www.ncbi.nlm.nih.gov/pubmed/25470041
https://doi.org/10.1111/mmi.13748
http://www.ncbi.nlm.nih.gov/pubmed/28710862
https://doi.org/10.1371/journal.ppat.1007118


11. Novakova L, Bezouskova S, Pompach P, Spidlova P, Saskova L, et al. (2010) Identification of multiple

substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. Journal of Bacteriology

192: 3629–3638. https://doi.org/10.1128/JB.01564-09 PMID: 20453092

12. Giefing C, Jelencsics KE, Gelbmann D, Senn BM, Nagy E (2010) The pneumococcal eukaryotic-type

serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ

in vitro. Microbiology 156: 1697–1707. https://doi.org/10.1099/mic.0.036335-0 PMID: 20223804

13. Beilharz K, Novakova L, Fadda D, Branny P, Massidda O, et al. (2012) Control of cell division in Strepto-

coccus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci U S A 109:

E905–913. https://doi.org/10.1073/pnas.1119172109 PMID: 22431591

14. Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C (2016) Role of eukaryotic-like serine/threo-

nine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev 40: 41–56. https://doi.

org/10.1093/femsre/fuv041 PMID: 26429880

15. Giefing C, Meinke AL, Hanner M, Henics T, Bui MD, et al. (2008) Discovery of a novel class of highly

conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human

antibodies. Journal of Experimental Medicine 205: 117–131. https://doi.org/10.1084/jem.20071168

PMID: 18166586

16. Grangeasse C (2016) Rewiring the Pneumococcal Cell Cycle with Serine/Threonine- and Tyrosine-

kinases. Trends Microbiol.

17. Herbert JA, Mitchell AM, Mitchell TJ (2015) A Serine-Threonine Kinase (StkP) Regulates Expression of

the Pneumococcal Pilus and Modulates Bacterial Adherence to Human Epithelial and Endothelial Cells

In Vitro. PLoS One 10: e0127212. https://doi.org/10.1371/journal.pone.0127212 PMID: 26090876

18. Martin B, Granadel C, Campo N, Henard V, Prudhomme M, et al. (2010) Expression and maintenance

of ComD-ComE, the two-component signal-transduction system that controls competence of Strepto-

coccus pneumoniae. Mol Microbiol 75: 1513–1528. https://doi.org/10.1111/j.1365-2958.2010.07071.x

PMID: 20180906

19. Claverys JP, Havarstein LS (2002) Extracellular-peptide control of competence for genetic transforma-

tion in Streptococcus pneumoniae. Frontiers in Bioscience 7: d1798–1814. PMID: 12133809

20. Havarstein LS, Coomaraswamy G, Morrison DA (1995) An unmodified heptadecapeptide pheromone

induces competence for genetic transformation in Streptococcus pneumoniae. Proceedings of the

National Academy of Sciences of the United States of America 92: 11140–11144. PMID: 7479953

21. Lee MS, Morrison DA (1999) Identification of a new regulator in Streptococcus pneumoniae linking quo-

rum sensing to competence for genetic transformation. Journal of Bacteriology 181: 5004–5016. PMID:

10438773

22. Osaki M, Arcondeguy T, Bastide A, Touriol C, Prats H, et al. (2009) The StkP/PhpP signaling couple in

Streptococcus pneumoniae: cellular organization and physiological characterization. Journal of Bacteri-

ology 191: 4943–4950. https://doi.org/10.1128/JB.00196-09 PMID: 19502404

23. Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69: 522–530.

PMID: 11310837

24. Grinstein S, Swallow CJ, Rotstein OD (1991) Regulation of cytoplasmic pH in phagocytic cell function

and dysfunction. Clin Biochem 24: 241–247. PMID: 1651820

25. Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin

Invest 70: 550–557. https://doi.org/10.1172/JCI110647 PMID: 7107894

26. Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, et al. (2009) Hypoxia prolongs monocyte/

macrophage survival and enhanced glycolysis is associated with their maturation under aerobic condi-

tions. J Immunol 182: 7974–7981. https://doi.org/10.4049/jimmunol.0804216 PMID: 19494322

27. Light RW, Girard WM, Jenkinson SG, George RB (1980) Parapneumonic effusions. Am J Med 69:

507–512. PMID: 7424940

28. Bassoe CF, Bjerknes R (1985) Phagocytosis by human leukocytes, phagosomal pH and degradation of

seven species of bacteria measured by flow cytometry. J Med Microbiol 19: 115–125. https://doi.org/

10.1099/00222615-19-1-115 PMID: 3968704

29. Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood-brain barrier.

Molecular analysis of a novel bidirectional pathway. J Clin Invest 102: 347–360. https://doi.org/10.

1172/JCI2406 PMID: 9664076

30. Radin JN, Orihuela CJ, Murti G, Guglielmo C, Murray PJ, et al. (2005) Beta-Arrestin 1 participates in

platelet-activating factor receptor-mediated endocytosis of Streptococcus pneumoniae. Infect Immun

73: 7827–7835. https://doi.org/10.1128/IAI.73.12.7827-7835.2005 PMID: 16299272

31. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30: 3481–3500. https://doi.org/10.1038/

emboj.2011.286 PMID: 21878991

StkP/ComE crosstalk controls stress response and intracellular survival

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007118 June 8, 2018 30 / 33

https://doi.org/10.1128/JB.01564-09
http://www.ncbi.nlm.nih.gov/pubmed/20453092
https://doi.org/10.1099/mic.0.036335-0
http://www.ncbi.nlm.nih.gov/pubmed/20223804
https://doi.org/10.1073/pnas.1119172109
http://www.ncbi.nlm.nih.gov/pubmed/22431591
https://doi.org/10.1093/femsre/fuv041
https://doi.org/10.1093/femsre/fuv041
http://www.ncbi.nlm.nih.gov/pubmed/26429880
https://doi.org/10.1084/jem.20071168
http://www.ncbi.nlm.nih.gov/pubmed/18166586
https://doi.org/10.1371/journal.pone.0127212
http://www.ncbi.nlm.nih.gov/pubmed/26090876
https://doi.org/10.1111/j.1365-2958.2010.07071.x
http://www.ncbi.nlm.nih.gov/pubmed/20180906
http://www.ncbi.nlm.nih.gov/pubmed/12133809
http://www.ncbi.nlm.nih.gov/pubmed/7479953
http://www.ncbi.nlm.nih.gov/pubmed/10438773
https://doi.org/10.1128/JB.00196-09
http://www.ncbi.nlm.nih.gov/pubmed/19502404
http://www.ncbi.nlm.nih.gov/pubmed/11310837
http://www.ncbi.nlm.nih.gov/pubmed/1651820
https://doi.org/10.1172/JCI110647
http://www.ncbi.nlm.nih.gov/pubmed/7107894
https://doi.org/10.4049/jimmunol.0804216
http://www.ncbi.nlm.nih.gov/pubmed/19494322
http://www.ncbi.nlm.nih.gov/pubmed/7424940
https://doi.org/10.1099/00222615-19-1-115
https://doi.org/10.1099/00222615-19-1-115
http://www.ncbi.nlm.nih.gov/pubmed/3968704
https://doi.org/10.1172/JCI2406
https://doi.org/10.1172/JCI2406
http://www.ncbi.nlm.nih.gov/pubmed/9664076
https://doi.org/10.1128/IAI.73.12.7827-7835.2005
http://www.ncbi.nlm.nih.gov/pubmed/16299272
https://doi.org/10.1038/emboj.2011.286
https://doi.org/10.1038/emboj.2011.286
http://www.ncbi.nlm.nih.gov/pubmed/21878991
https://doi.org/10.1371/journal.ppat.1007118


32. Martin-Galiano AJ, Overweg K, Ferrandiz MJ, Reuter M, Wells JM, et al. (2005) Transcriptional analysis

of the acid tolerance response in Streptococcus pneumoniae. Microbiology 151: 3935–3946. https://

doi.org/10.1099/mic.0.28238-0 PMID: 16339938

33. Cortes PR, Pinas GE, Cian MB, Yandar N, Echenique J (2015) Stress-triggered signaling affecting sur-

vival or suicide of Streptococcus pneumoniae. Int J Med Microbiol 305: 157–169. https://doi.org/10.

1016/j.ijmm.2014.12.002 PMID: 25543170

34. Pinas GE, Cortes PR, Orio AG, Echenique J (2008) Acidic stress induces autolysis by a CSP-indepen-

dent ComE pathway in Streptococcus pneumoniae. Microbiology 154: 1300–1308. https://doi.org/10.

1099/mic.0.2007/015925-0 PMID: 18451038

35. Johnsborg O, Havarstein LS (2009) Regulation of natural genetic transformation and acquisition of

transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33: 627–642. PMID: 19396959

36. Kalantari A, Derouiche A, Shi L, Mijakovic I (2015) Serine/threonine/tyrosine phosphorylation regulates

DNA binding of bacterial transcriptional regulators. Microbiology 161: 1720–1729. https://doi.org/10.

1099/mic.0.000148 PMID: 26220449

37. Klein AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ (2007) The intracellular concentration of acetyl

phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regula-

tors. Journal of Bacteriology 189: 5574–5581. https://doi.org/10.1128/JB.00564-07 PMID: 17545286

38. Goulian M (2010) Two-component signaling circuit structure and properties. Curr Opin Microbiol 13:

184–189. https://doi.org/10.1016/j.mib.2010.01.009 PMID: 20149717

39. Novakova L, Saskova L, Pallova P, Janecek J, Novotna J, et al. (2005) Characterization of a eukaryotic

type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identi-

fication of kinase substrates. FEBS J 272: 1243–1254. https://doi.org/10.1111/j.1742-4658.2005.

04560.x PMID: 15720398

40. Martin B, Prudhomme M, Alloing G, Granadel C, Claverys JP (2000) Cross-regulation of competence

pheromone production and export in the early control of transformation in Streptococcus pneumoniae.

Mol Microbiol 38: 867–878. PMID: 11115120

41. Pestova EV, Havarstein LS, Morrison DA (1996) Regulation of competence for genetic transformation

in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory

system. Molecular Microbiology 21: 853–862. PMID: 8878046

42. Lopez R, Garcia E (2004) Recent trends on the molecular biology of pneumococcal capsules, lytic

enzymes, and bacteriophage. FEMS Microbiology Reviews 28: 553–580. https://doi.org/10.1016/j.

femsre.2004.05.002 PMID: 15539074

43. Boudes M, Sanchez D, Graille M, van Tilbeurgh H, Durand D, et al. (2014) Structural insights into the

dimerization of the response regulator ComE from Streptococcus pneumoniae. Nucleic Acids Res 42:

5302–5313. https://doi.org/10.1093/nar/gku110 PMID: 24500202

44. Jung K, Fried L, Behr S, Heermann R (2012) Histidine kinases and response regulators in networks.

Curr Opin Microbiol 15: 118–124. https://doi.org/10.1016/j.mib.2011.11.009 PMID: 22172627

45. Sidote DJ, Barbieri CM, Wu T, Stock AM (2008) Structure of the Staphylococcus aureus AgrA LytTR

domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16: 727–735.

https://doi.org/10.1016/j.str.2008.02.011 PMID: 18462677

46. Pestova EV, Havarstein LS, Morrison DA (1996) Regulation of competence for genetic transformation

in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory

system. Mol Microbiol 21: 853–862. PMID: 8878046

47. Martin B, Soulet al, Mirouze N, Prudhomme M, Mortier-Barriere I, et al. (2013) ComE/ComE~P interplay

dictates activation or extinction status of pneumococcal X-state (competence). Mol Microbiol 87: 394–

411. https://doi.org/10.1111/mmi.12104 PMID: 23216914

48. Yesilkaya H, Kadioglu A, Gingles N, Alexander JE, Mitchell TJ, et al. (2000) Role of manganese-con-

taining superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect

Immun 68: 2819–2826. PMID: 10768978

49. Hajaj B, Yesilkaya H, Benisty R, David M, Andrew PW, et al. (2012) Thiol peroxidase is an important

component of Streptococcus pneumoniae in oxygenated environments. Infect Immun 80: 4333–4343.

https://doi.org/10.1128/IAI.00126-12 PMID: 23027531

50. Filipe SR, Pinho MG, Tomasz A (2000) Characterization of the murMN operon involved in the synthesis

of branched peptidoglycan peptides in Streptococcus pneumoniae. J Biol Chem 275: 27768–27774.

https://doi.org/10.1074/jbc.M004675200 PMID: 10869361

51. Shi L, Pigeonneau N, Ravikumar V, Dobrinic P, Macek B, et al. (2014) Cross-phosphorylation of bacte-

rial serine/threonine and tyrosine protein kinases on key regulatory residues. Front Microbiol 5: 495.

https://doi.org/10.3389/fmicb.2014.00495 PMID: 25278935

StkP/ComE crosstalk controls stress response and intracellular survival

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007118 June 8, 2018 31 / 33

https://doi.org/10.1099/mic.0.28238-0
https://doi.org/10.1099/mic.0.28238-0
http://www.ncbi.nlm.nih.gov/pubmed/16339938
https://doi.org/10.1016/j.ijmm.2014.12.002
https://doi.org/10.1016/j.ijmm.2014.12.002
http://www.ncbi.nlm.nih.gov/pubmed/25543170
https://doi.org/10.1099/mic.0.2007/015925-0
https://doi.org/10.1099/mic.0.2007/015925-0
http://www.ncbi.nlm.nih.gov/pubmed/18451038
http://www.ncbi.nlm.nih.gov/pubmed/19396959
https://doi.org/10.1099/mic.0.000148
https://doi.org/10.1099/mic.0.000148
http://www.ncbi.nlm.nih.gov/pubmed/26220449
https://doi.org/10.1128/JB.00564-07
http://www.ncbi.nlm.nih.gov/pubmed/17545286
https://doi.org/10.1016/j.mib.2010.01.009
http://www.ncbi.nlm.nih.gov/pubmed/20149717
https://doi.org/10.1111/j.1742-4658.2005.04560.x
https://doi.org/10.1111/j.1742-4658.2005.04560.x
http://www.ncbi.nlm.nih.gov/pubmed/15720398
http://www.ncbi.nlm.nih.gov/pubmed/11115120
http://www.ncbi.nlm.nih.gov/pubmed/8878046
https://doi.org/10.1016/j.femsre.2004.05.002
https://doi.org/10.1016/j.femsre.2004.05.002
http://www.ncbi.nlm.nih.gov/pubmed/15539074
https://doi.org/10.1093/nar/gku110
http://www.ncbi.nlm.nih.gov/pubmed/24500202
https://doi.org/10.1016/j.mib.2011.11.009
http://www.ncbi.nlm.nih.gov/pubmed/22172627
https://doi.org/10.1016/j.str.2008.02.011
http://www.ncbi.nlm.nih.gov/pubmed/18462677
http://www.ncbi.nlm.nih.gov/pubmed/8878046
https://doi.org/10.1111/mmi.12104
http://www.ncbi.nlm.nih.gov/pubmed/23216914
http://www.ncbi.nlm.nih.gov/pubmed/10768978
https://doi.org/10.1128/IAI.00126-12
http://www.ncbi.nlm.nih.gov/pubmed/23027531
https://doi.org/10.1074/jbc.M004675200
http://www.ncbi.nlm.nih.gov/pubmed/10869361
https://doi.org/10.3389/fmicb.2014.00495
http://www.ncbi.nlm.nih.gov/pubmed/25278935
https://doi.org/10.1371/journal.ppat.1007118


52. Wright DP, Ulijasz AT (2014) Regulation of transcription by eukaryotic-like serine-threonine kinases

and phosphatases in Gram-positive bacterial pathogens. Virulence 5: 863–885. https://doi.org/10.

4161/21505594.2014.983404 PMID: 25603430

53. Burnside K, Rajagopal L (2012) Regulation of prokaryotic gene expression by eukaryotic-like enzymes.

Curr Opin Microbiol 15: 125–131. https://doi.org/10.1016/j.mib.2011.12.006 PMID: 22221896

54. Fridman M, Williams GD, Muzamal U, Hunter H, Siu KW, et al. (2013) Two unique phosphorylation-

driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/

Stp1 meets GraSR. Biochemistry 52: 7975–7986. https://doi.org/10.1021/bi401177n PMID: 24102310

55. Pensinger DA, Boldon KM, Chen GY, Vincent WJ, Sherman K, et al. (2016) The Listeria monocyto-

genes PASTA Kinase PrkA and Its Substrate YvcK Are Required for Cell Wall Homeostasis, Metabo-

lism, and Virulence. PLoS Pathog 12: e1006001. https://doi.org/10.1371/journal.ppat.1006001 PMID:

27806131

56. Ulijasz AT, Falk SP, Weisblum B (2009) Phosphorylation of the RitR DNA-binding domain by a Ser-Thr

phosphokinase: implications for global gene regulation in the streptococci. Mol Microbiol 71: 382–390.

https://doi.org/10.1111/j.1365-2958.2008.06532.x PMID: 19040630

57. Horstmann N, Saldana M, Sahasrabhojane P, Yao H, Su X, et al. (2014) Dual-site phosphorylation of

the control of virulence regulator impacts group a streptococcal global gene expression and pathogene-

sis. PLoS Pathog 10: e1004088. https://doi.org/10.1371/journal.ppat.1004088 PMID: 24788524

58. Libby EA, Goss LA, Dworkin J (2015) The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential

WalRK Two-Component System in Bacillus subtilis. PLoS Genet 11: e1005275. https://doi.org/10.

1371/journal.pgen.1005275 PMID: 26102633

59. Chao JD, Papavinasasundaram KG, Zheng X, Chavez-Steenbock A, Wang X, et al. (2010) Conver-

gence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in

Mycobacterium tuberculosis. J Biol Chem 285: 29239–29246. https://doi.org/10.1074/jbc.M110.

132894 PMID: 20630871

60. Canova MJ, Baronian G, Brelle S, Cohen-Gonsaud M, Bischoff M, et al. (2014) A novel mode of regula-

tion of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR medi-

ated by Stk1 protein phosphorylation. Biochem Biophys Res Commun 447: 165–171. https://doi.org/

10.1016/j.bbrc.2014.03.128 PMID: 24704444

61. Ween O, Gaustad P, Havarstein LS (1999) Identification of DNA binding sites for ComE, a key regulator

of natural competence in Streptococcus pneumoniae. Mol Microbiol 33: 817–827. PMID: 10447890

62. Echlin H, Frank MW, Iverson A, Chang TC, Johnson MD, et al. (2016) Pyruvate Oxidase as a Critical

Link between Metabolism and Capsule Biosynthesis in Streptococcus pneumoniae. PLoS Pathog 12:

e1005951. https://doi.org/10.1371/journal.ppat.1005951 PMID: 27760231

63. Pericone CD, Overweg K, Hermans PW, Weiser JN (2000) Inhibitory and bactericidal effects of hydro-

gen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory

tract. Infect Immun 68: 3990–3997. PMID: 10858213

64. Regev-Yochay G, Trzcinski K, Thompson CM, Lipsitch M, Malley R (2007) SpxB is a suicide gene of

Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization

model. J Bacteriol 189: 6532–6539. https://doi.org/10.1128/JB.00813-07 PMID: 17631628

65. Syk A, Norman M, Fernebro J, Gallotta M, Farmand S, et al. (2014) Emergence of hypervirulent

mutants resistant to early clearance during systemic serotype 1 pneumococcal infection in mice and

humans. J Infect Dis 210: 4–13. https://doi.org/10.1093/infdis/jiu038 PMID: 24443543

66. Pericone CD, Park S, Imlay JA, Weiser JN (2003) Factors contributing to hydrogen peroxide resistance

in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the

fenton reaction. J Bacteriol 185: 6815–6825. https://doi.org/10.1128/JB.185.23.6815-6825.2003

PMID: 14617646

67. Tseng HJ, McEwan AG, Paton JC, Jennings MP (2002) Virulence of Streptococcus pneumoniae: PsaA

mutants are hypersensitive to oxidative stress. Infect Immun 70: 1635–1639. https://doi.org/10.1128/

IAI.70.3.1635-1639.2002 PMID: 11854257

68. Cortes PR, Piñas GE, Cian MB, Yandar N, Echenique J (2015) Stress-triggered signaling affecting sur-

vival or suicide of Streptococcus pneumoniae. International Journal of Medical Microbiology 304.

69. Filipe SR, Tomasz A (2000) Inhibition of the expression of penicillin resistance in Streptococcus pneu-

moniae by inactivation of cell wall muropeptide branching genes. Proc Natl Acad Sci U S A 97: 4891–

4896. https://doi.org/10.1073/pnas.080067697 PMID: 10759563

70. Filipe SR, Severina E, Tomasz A (2002) The murMN operon: a functional link between antibiotic resis-

tance and antibiotic tolerance in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 99: 1550–1555.

https://doi.org/10.1073/pnas.032671699 PMID: 11830670

StkP/ComE crosstalk controls stress response and intracellular survival

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007118 June 8, 2018 32 / 33

https://doi.org/10.4161/21505594.2014.983404
https://doi.org/10.4161/21505594.2014.983404
http://www.ncbi.nlm.nih.gov/pubmed/25603430
https://doi.org/10.1016/j.mib.2011.12.006
http://www.ncbi.nlm.nih.gov/pubmed/22221896
https://doi.org/10.1021/bi401177n
http://www.ncbi.nlm.nih.gov/pubmed/24102310
https://doi.org/10.1371/journal.ppat.1006001
http://www.ncbi.nlm.nih.gov/pubmed/27806131
https://doi.org/10.1111/j.1365-2958.2008.06532.x
http://www.ncbi.nlm.nih.gov/pubmed/19040630
https://doi.org/10.1371/journal.ppat.1004088
http://www.ncbi.nlm.nih.gov/pubmed/24788524
https://doi.org/10.1371/journal.pgen.1005275
https://doi.org/10.1371/journal.pgen.1005275
http://www.ncbi.nlm.nih.gov/pubmed/26102633
https://doi.org/10.1074/jbc.M110.132894
https://doi.org/10.1074/jbc.M110.132894
http://www.ncbi.nlm.nih.gov/pubmed/20630871
https://doi.org/10.1016/j.bbrc.2014.03.128
https://doi.org/10.1016/j.bbrc.2014.03.128
http://www.ncbi.nlm.nih.gov/pubmed/24704444
http://www.ncbi.nlm.nih.gov/pubmed/10447890
https://doi.org/10.1371/journal.ppat.1005951
http://www.ncbi.nlm.nih.gov/pubmed/27760231
http://www.ncbi.nlm.nih.gov/pubmed/10858213
https://doi.org/10.1128/JB.00813-07
http://www.ncbi.nlm.nih.gov/pubmed/17631628
https://doi.org/10.1093/infdis/jiu038
http://www.ncbi.nlm.nih.gov/pubmed/24443543
https://doi.org/10.1128/JB.185.23.6815-6825.2003
http://www.ncbi.nlm.nih.gov/pubmed/14617646
https://doi.org/10.1128/IAI.70.3.1635-1639.2002
https://doi.org/10.1128/IAI.70.3.1635-1639.2002
http://www.ncbi.nlm.nih.gov/pubmed/11854257
https://doi.org/10.1073/pnas.080067697
http://www.ncbi.nlm.nih.gov/pubmed/10759563
https://doi.org/10.1073/pnas.032671699
http://www.ncbi.nlm.nih.gov/pubmed/11830670
https://doi.org/10.1371/journal.ppat.1007118


71. Guiral S, Mitchell TJ, Martin B, Claverys JP (2005) Competence-programmed predation of noncompe-

tent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci

U S A 102: 8710–8715. https://doi.org/10.1073/pnas.0500879102 PMID: 15928084

72. Veening JW, Blokesch M (2017) Interbacterial predation as a strategy for DNA acquisition in naturally

competent bacteria. Nat Rev Microbiol. 15(10):629. https://doi.org/10.1038/nrmicro.2017.89 PMID:

28736449

73. Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, et al. (2006) Switch from planktonic to ses-

sile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61: 1196–1210. https://doi.org/10.

1111/j.1365-2958.2006.05310.x PMID: 16925554

74. Zhu L, Lau GW (2011) Inhibition of competence development, horizontal gene transfer and virulence in

Streptococcus pneumoniae by a modified competence stimulating peptide. PLoS Pathog 7: e1002241.

https://doi.org/10.1371/journal.ppat.1002241 PMID: 21909280

75. Kowalko JE, Sebert ME (2008) The Streptococcus pneumoniae competence regulatory system influ-

ences respiratory tract colonization. Infect Immun 76: 3131–3140. https://doi.org/10.1128/IAI.01696-07

PMID: 18443092

76. Albarracin Orio AG, Pinas GE, Cortes PR, Cian MB, Echenique J (2011) Compensatory evolution of

pbp mutations restores the fitness cost imposed by beta-lactam resistance in Streptococcus pneumo-

niae. PLoS Pathog 7: e1002000. https://doi.org/10.1371/journal.ppat.1002000 PMID: 21379570

77. Echenique JR, Chapuy-Regaud S, Trombe MC (2000) Competence regulation by oxygen in Strepto-

coccus pneumoniae: involvement of ciaRH and comCDE. Mol Microbiol 36: 688–696. PMID: 10844657

78. Fadda D, Santona A, D’Ulisse V, Ghelardini P, Ennas MG, et al. (2007) Streptococcus pneumoniae

DivIVA: localization and interactions in a MinCD-free context. J Bacteriol 189: 1288–1298. https://doi.

org/10.1128/JB.01168-06 PMID: 17098892

79. Lisa MN, Gil M, Andre-Leroux G, Barilone N, Duran R, et al. (2015) Molecular Basis of the Activity and

the Regulation of the Eukaryotic-like S/T Protein Kinase PknG from Mycobacterium tuberculosis. Struc-

ture 23: 1039–1048. https://doi.org/10.1016/j.str.2015.04.001 PMID: 25960409

80. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, et al. (2011) Universal and confident phosphoryla-

tion site localization using phosphoRS. J Proteome Res 10: 5354–5362. https://doi.org/10.1021/

pr200611n PMID: 22073976

81. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics

with NAMD. J Comput Chem 26: 1781–1802. https://doi.org/10.1002/jcc.20289 PMID: 16222654

82. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, et al. (1998) All-atom empirical

potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102: 3586–3616.

https://doi.org/10.1021/jp973084f PMID: 24889800

83. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38,

27–38. PMID: 8744570

84. DeLano WL (2002) The PyMOL Molecular Graphics System.

85. de Marco A (2007) Protocol for preparing proteins with improved solubility by co-expressing with molec-

ular chaperones in Escherichia coli. Nat Protoc 2: 2632–2639. https://doi.org/10.1038/nprot.2007.400

PMID: 17948006

86. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bio-

informatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

87. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative

PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. https://doi.org/10.1006/meth.2001.

1262 PMID: 11846609

88. Mann B, van Opijnen T, Wang J, Obert C, Wang YD, et al. (2012) Control of virulence by small RNAs in

Streptococcus pneumoniae. PLoS Pathog 8: e1002788. https://doi.org/10.1371/journal.ppat.1002788

PMID: 22807675

StkP/ComE crosstalk controls stress response and intracellular survival

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007118 June 8, 2018 33 / 33

https://doi.org/10.1073/pnas.0500879102
http://www.ncbi.nlm.nih.gov/pubmed/15928084
https://doi.org/10.1038/nrmicro.2017.89
http://www.ncbi.nlm.nih.gov/pubmed/28736449
https://doi.org/10.1111/j.1365-2958.2006.05310.x
https://doi.org/10.1111/j.1365-2958.2006.05310.x
http://www.ncbi.nlm.nih.gov/pubmed/16925554
https://doi.org/10.1371/journal.ppat.1002241
http://www.ncbi.nlm.nih.gov/pubmed/21909280
https://doi.org/10.1128/IAI.01696-07
http://www.ncbi.nlm.nih.gov/pubmed/18443092
https://doi.org/10.1371/journal.ppat.1002000
http://www.ncbi.nlm.nih.gov/pubmed/21379570
http://www.ncbi.nlm.nih.gov/pubmed/10844657
https://doi.org/10.1128/JB.01168-06
https://doi.org/10.1128/JB.01168-06
http://www.ncbi.nlm.nih.gov/pubmed/17098892
https://doi.org/10.1016/j.str.2015.04.001
http://www.ncbi.nlm.nih.gov/pubmed/25960409
https://doi.org/10.1021/pr200611n
https://doi.org/10.1021/pr200611n
http://www.ncbi.nlm.nih.gov/pubmed/22073976
https://doi.org/10.1002/jcc.20289
http://www.ncbi.nlm.nih.gov/pubmed/16222654
https://doi.org/10.1021/jp973084f
http://www.ncbi.nlm.nih.gov/pubmed/24889800
http://www.ncbi.nlm.nih.gov/pubmed/8744570
https://doi.org/10.1038/nprot.2007.400
http://www.ncbi.nlm.nih.gov/pubmed/17948006
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
https://doi.org/10.1371/journal.ppat.1002788
http://www.ncbi.nlm.nih.gov/pubmed/22807675
https://doi.org/10.1371/journal.ppat.1007118

