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A polygenic score for schizophrenia
predicts glycemic control
Han Cao1, Junfang Chen1, Andreas Meyer-Lindenberg1 and Emanuel Schwarz1

Abstract
Schizophrenia is substantially comorbid with type 2 diabetes (T2D), but the molecular basis of this effect is
incompletely understood. Here, we show that a cortical schizophrenia expression score predicts glycemic control from
pancreatic islet cell expression. We used machine learning to identify a cortical expression signature in
212 schizophrenia patients and controls, which explained ~25% of the illness-associated variance. The algorithm was
predicted in expression data from 51 subjects (9 with T2D), explained up to 26.3% of the variance in the glycemic
control indicator HbA1c and could significantly differentiate T2D patients from controls. The cross-tissue prediction was
driven by processes previously linked to diabetes. Genes contributing to this prediction were involved in the electron
transport chain as well as kidney development and support oxidative stress as a molecular process underlying the
comorbidity between both conditions. Together, the present results suggest a molecular commonality between
schizophrenia and glycemic markers of type 2 diabetes.

Introduction
Patients with schizophrenia die, on average, about two

decades earlier than healthy peers, an excess mortality
largely due to somatic illnesses such as type 2 diabetes
(T2D)1. T2D prevalence is increased 2–3-fold compared
with the general population and family history of the ill-
ness is more common2,3. While T2D can be a con-
sequence of antipsychotic treatment, glycemic alterations
have been found in antipsychotic naive subjects, sup-
porting a disease intrinsic molecular comorbidity between
the two conditions4,5. Although at the genome-wide level
schizophrenia and T2D show no genetic correlation6,
molecular investigations found shared biological altera-
tions in both illnesses. These include elevated levels of
insulin and closely related molecules such as IGF, a
metabolic profile also found in treated as well as
medication-naive patients with schizophrenia4,7. On a
candidate gene basis, individual risk variants have been
implicated in both conditions8, supporting shared

underlying genetic determinants. At a systems level,
mitochondrial dysfunction has been suggested as unifying
biological theme underlying T2D and schizophrenia9,10.
In schizophrenia, increased mitochondrial β oxidation and
upregulation of insulin signaling proteins are thought to
indicate a state of glucose/energy starvation in the pre-
frontal cortex that may, in turn, lead to increased oxida-
tive stress9. In T2D, abnormal skeletal glucose transport
plays a major part in the molecular etiology of insulin-
resistant T2D11. This defect is thought to arise from fatty
acid-induced inhibition of insulin receptor (IRS-1) phos-
phorylation, potentially due to intramyocellular fatty acid
accumulation that may result from abnormal mitochon-
drial fatty acid oxidation11. At the same time, mitochon-
drial dysfunction in pancreatic β-cells leads to an increase
of reactive oxygen species that is thought to underlay the
progressive development of β-cell failure, a central part of
the T2D pathology12. Despite these intriguing data, it
remains unclear whether molecular commonality of these
two disorders can be demonstrated at a biological systems
level.
To address this, we used a machine learning approach

to identify a polygenic schizophrenia signature and
explored its impact on T2D (Supplementary Fig. S1). The

© The Author(s) 2017
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Emanuel Schwarz (emanuel.schwarz@zi-mannheim.de)
1Department of Psychiatry and Psychotherapy, Central Institute of Mental
Health, Medical Faculty Mannheim, Heidelberg University, Mannheim,
Germany

Translational Psychiatry

12
34

56
78

90
12

34
56

78
90

http://creativecommons.org/licenses/by/4.0/
mailto:emanuel.schwarz@zi-mannheim.de


first aim was to identify a signature of genes expressed in
the human cortex that could optimally differentiate
schizophrenia patients from healthy controls. For this, we
used transcriptome-wide cortical expression data from
212 schizophrenia patients and controls. We then pre-
dicted this signature in independent pancreatic islet cell
expression data from 51 individuals (9 T2D patients). We
tested the hypothesis whether the predicted schizophrenia
scores were associated with glycated hemoglobin (HbA1c)
levels, a quantitative readout of glycemic control, where
values above 6.5% have been suggested as a diagnostic test
for diabetes13. The cross-tissue prediction performed here
was based on the assumption that (I) schizophrenia is
associated with molecular alterations that are at least
partially systemic and can be detected in central as well as
peripheral tissues and (II) that such alterations are con-
sistent in the direction of their change. We tuned the
polygenic model toward schizophrenia relevant biological
processes, through pre-selection of genes among gene
ontology categories most associated with genetic schizo-
phrenia risk14. This also allowed exploration of whether
peripheral effects of the schizophrenia signature were
masked by those more strongly linked to risk, which may
be more brain specific.

Methods
Data sets and preprocessing
Transcriptome-wide expression data from four post

mortem data sets of schizophrenia patients and controls
(GSE53987, GSE21138, GSE35977, and GSE12679) were
used to identify a polygenic schizophrenia model in the
brain. A data set of pancreatic islet cell expression
(GSE38642) was used to test the association of a predicted
schizophrenia score with glycemic control. A further data
set comprising transcriptome-wide expression data from
pancreatic beta cells (GSE25462), acquired from T2D
patients and controls using laser capture microdissection,
was used for validation of the cross-tissue prediction.
Finally, frontal cortex expression data sets from patients
with HIV encephalitis (GSE3489) and Alzheimer’s disease
(GSE36980) were used as negative controls. Data sets
were identified through manual search from the GEO
database (freeze date for search February 2017) and
details of the data sets can be found in Supplementary
Tables S1 and S2.
Out of six identified cortical post mortem expression

data sets comprising schizophrenia patients, two
(GSE17612 and GSE21935) were excluded due to high
average age (70.6 years vs. 44.7 in the remaining four data
sets). Data were preprocessed using the robust multi-array
average function of the R package affy, performing back-
ground correction, log2 transformation, and quantile
normalization15,16. Multiple reads mapping to the same
gene symbol were averaged. To exclude potential outliers,

we visually inspected the first two principal components
determined for each data set and excluded one patient in
GSE53987 and two in GSE21138. Expression data were
filtered to contain only genes that overlapped across all
discovery studies, resulting in a total gene number of
17,062. To make overall expression levels comparable
between brain and pancreatic islet or negative control
data, data were quantile normalized again based on the,
respectively, overlapping set of measured genes.

Covariate adjustment and propensity score matching of
expression data
To prevent an impact of potential covariates on the

ability to derive a polygenic profile from expression data,
data sets were first normalized with respect to these
variables. Specifically, for each of the schizophrenia brain
expression data sets, we determined residuals after
regressing expression information from each gene against
site, gender, age, and post mortem interval (PMI), as well
as the second polynomial of age. If a data set contained
more controls than patients, this step was preceded by
propensity score matching to identify a 1:1 matched
sample based on age, gender, and PMI. This was per-
formed using the R library MatchIt17. Pancreatic islet
expression data were residualized against the same cov-
ariates, except for site. Brain pH was not used as a cov-
ariate, since measures were not fully available for all data
sets. The pancreatic beta-cell validation data, as well as
the Alzheimer’s disease negative control data, were resi-
dualized against the same covariates. The former data set
was additionally residualized against the first principal
component determined from the entire expression data
set. This was performed since the authors reporting this
study showed the first principal component to capture
sample measurement dependent effects on overall varia-
tion18. Since no metadata were available for the HIV
negative control data set, this data set was residualized
only against its first principal component.

Gene selection and comparison of expression levels across
tissues
To identify genes to be used for algorithm training, we

selected those part of gene ontology categories that have
previously been associated with schizophrenia, based on
genome-wide functional analysis of GWAS data14,19. The
selection was performed among the genes linked to
schizophrenia (single disorder analysis) and focused on
gene ontology only, since of the 4949 gene sets that were
investigated by the PGC and annotated by five databases
(GO, KEGG, Panther, Reactome, TargetScan), 4550 were
from the gene ontology14. Among these, we selected the
top 200 categories to obtain a likely over-inclusive list of
genes. Subsequently, we explored the impact of removing
genes in the most schizophrenia-associated categories.
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For this, we removed genes in the top 0, 20, 40, 60, 80 and
100 categories and corrected the resulting P-values for the
family-wise error rate (FWER) according to the method of
Bonferroni.
To compare expression levels between brain and pan-

creatic tissue, we used RNA-Seq data from human tissue
samples from the genotype-tissue expression (GTEx)
project20, available from the Expression Atlas21. The
conventional 0.5 FPKM (fragments per kilobase of exon
model per million reads mapped) was used as expression
cut-off.

Machine learning strategy
The machine learning strategy employed here was

aimed at deriving a signature from a data set with cor-
related variables and a variable number that greatly
exceeded the number of samples. Therefore, we utilized a
strategy devised for this purpose that consisted of the
following steps22: (I) determine the top n genes associated
with case–control status. We used linear correlation for
this purpose and chose n to be the sample number divided
by 10. This selection was made since expression data were
expected to show sufficient effect sizes such that accurate
classifiers can be derived from a relatively small number
of good predictors23. (II) Build a binomial model for
case–control prediction via penalized maximum like-
lihood to further reduce the variable number to the most
important predictors. Five-fold cross-validation was used
to identify the optimal lambda value that determines the
number of predictors. (III) Residualize the outcome
variable against these predictors using a binomial model.
(IV) Repeat the procedure from step (I) m times. We
chose m= 2, such that the total number of predictors
remained below 5024. (V) Using these predictors, build a
smoothly clipped absolute deviation-penalized binomial
regression model for prediction of diagnosis. Again, cross-
validation was used to identify the optimal lambda value.
(VI) Predict the final model in the pancreatic islet data.
The benefit of this method is its ability to efficiently

select important predictors and cope with potential cor-
relation among them. Compared to its original imple-
mentation, we made one further adaptation that can
substantially improve classifier performance. Instead of
training the classifier on the entire data set, we repeatedly
trained it on subsets of the training data and averaged the
prediction outcome. This method is also known as
bootstrap aggregation (“bagging”) and integral part of
other powerful machine learning tools, such as random
forests25. Since our training data consisted of four dif-
ferent brain expression data sets, we randomly selected
two-thirds of patient and control samples from each data
set individually and combined them to form the training
data. For the brain expression data, classification perfor-
mance was tested on the samples not used for training,

averaged over 1000 repetitions of the procedure. Classi-
fication accuracy was measured using non-parametric
correlation between predicted and actual glycemic control
values and using Nagelkerke’s R2 from logistic regression
for classification of schizophrenia.
To demonstrate the specificity of associations between

the schizophrenia polygenic model and glycemic control,
the analysis was repeated 1000 times, starting with per-
muted diagnosis information in the brain expression data.
We determined an empirical P-value as the frequency of
explained variance estimates at least as high as the one
observed for the original diagnostic information.

Weighted gene co-expression network analysis
Weighted gene co-expression network analysis

(WGCNA) was performed using the R package
WGCNA26, using only control subjects of the residualized
cortical schizophrenia expression data. This analysis was
performed on the combined data (rather than consensus
analysis across individual dat asets) since, due to the small
sizes of individual data sets, removal of associations with
potential confounders may be more robust in the
combined data. We identified a soft-threshold (the lowest
β value to lead to an R2 of >0.8027, in the present analysis
β= 4) to fit a scale-free topology to the network. The
weighted adjacency matrix was then transformed into
topological overlap (TOM) and hierarchical clustering
(using flashClust28) was used to identify modules from the
TOM dissimilarity matrix (1-TOM). We used a relatively
small minimum module size of 10 to allow identification
of gene sets with low gene numbers that may have high
cross-tissue predictiveness. Although small module sizes
may lead to biologically less plausible modules, this risk
was minimized in the present study by performing
WGCNA on a preselected set of genes from few gene
ontology categories.

Results
Identification of a cortical schizophrenia signature
Machine learning was used to identify a cortical gene

expression signature in 212 schizophrenia patients and
controls. The model was built using genes within the 200
ontological categories that have previously been reported
to be most strongly associated with genetic schizophrenia
risk. Of these, 170 contained at least one gene measured
across all investigated data sets (median number of genes
was 14). Fig. 1a shows the polygenic model performance
in schizophrenia brain expression data. The explained
variance for classification of schizophrenia had a median
of 25% with a median P-value of 6.1×10−9 and this did
not depend on genes within ontological categories most
associated with genetic schizophrenia risk. Specifically,
performance was similar when genes part of the top 20,
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40, 60, 80, and 100 ontological categories were removed
prior to machine learning analysis.

Association of predicted schizophrenia scores with
glycemic control
Fig. 1a further shows that HbA1c levels could be pre-

dicted for all investigated gene sets below the FWER-
corrected P-value threshold of 0.008. Notably, prediction
performance peaked after removing genes within the top
60 ontological categories, suggesting that gene sets with
the strongest genetic schizophrenia association were
adversely affecting the prediction of glycemic control. At

this threshold, the polygenic schizophrenia model
explained 26.3% of variance in the glycemic control index
(rho=−0.48, P= 0.0003, Fig. 1b) and differentiated T2D
patients from healthy controls (P= 0.021, Wilcoxon test).
Permuting diagnosis demonstrated the specificity of the
findings for the real case–control status (P< 0.001, Fig. 1c,
the median explained variance of schizophrenia classifi-
cation during permutation was 0.8%). To explore the
sensitivity of the results to the arbitrarily selected cut-off
of 200 GO categories, the analysis was repeated for the
300 and 500 categories with the strongest genetic asso-
ciations with schizophrenia. In both analyses, predicted

Fig. 1 Schizophrenia polygenic model predicts glycemic control. a Accuracy for HbA1c and case–control status prediction. The former was more
accurate when the 60 ontological categories most associated genetic schizophrenia risk were excluded. b Association between the schizophrenia
score and glycemic control. c Explained variance in glycemic control prediction for permuted and real schizophrenia diagnosis. SZ schizophrenia, HC
healthy control

Fig. 2 Importance for individual ontological categories and genes for HbA1c prediction. a Explained variance after excluding individual
categories from the polygenic model, starting with the best model from Fig. 1. Circle radius is proportional to the number of genes part of the
respective category. The solid line shows the mean explained variance, the dotted lines the 3.53 SD interval (FWER corrected at P = 0.05). b Explained
variance after excluding individual modules from WGCNA of genes in the two categories shown in a. c Boxplots of the four genes in WGCNA module
four most associated with schizophrenia. d Validation cohort: difference of predicted schizophrenia score between pancreatic beta cells of T2D
patients and controls
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schizophrenia scores were significantly associated with
HbA1c levels (rho= -0.34, P= 0.015 and rho=−0.32, P
= 0.023, respectively).
Next, we explored whether the bottom 200 ontological

categories regarding genetic schizophrenia risk could also
predict glycemic control. This was not the case with an
explained variance of 3.9% (P= 0.17), even though the
schizophrenia-control differentiation was not strongly
affected (26% variance explained, P= 1.0×10−8).

Identification of genes underlying cross-tissue prediction
To identify ontological categories important for the

cross-tissue prediction, we successively removed genes in
each of the 140 remaining ontological categories from the
analysis. Figure 2a shows the two most important cate-
gories were “kidney development” (GO:0001822) and
“respiratory electron transport chain” (GO:0022904).
WGCNA identified five gene modules among the two
categories with one module of 22 genes contributing most
to the decrease in explained variance (Fig. 2b). Among
these, the four genes most strongly altered in schizo-
phrenia were WFS1 (P= 1.8×10−7), angiotensinogen
(AGT, P= 1.3×10−6), LRP4 (P= 2.7×10−6), and TNS2 (P
= 9.3×10−4), all of which were increased in schizophrenia
(Fig. 2c; Supplementary Table S3).
GTEx RNA-seq data were used to compare expression

levels of genes part of the cortical signature between brain
and pancreatic tissue. This showed that 78% of the 2897
genes part of the 200 (170 represented with at least 1
gene) ontological categories most associated with schi-
zophrenia risk were expressed in the dorsolateral pre-
frontal cortex (BA9) at a cut-off of 0.5 FPKM. For
pancreatic tissue, this was the case for 70% of such genes.
For genes part of the two identified ontological categories,
the corresponding percentages were 82% (BA9) and 80%
(pancreas), respectively. Supplementary Figure S2 shows a
comparison of expression levels of these genes between
tissue types.

Validation and negative control
To validate the cross-tissue prediction based on genes in

the identified ontological categories, we used an addi-
tional, independent pancreatic expression data set, com-
prising 10 T2D patients and 10 healthy controls.
Schizophrenia scores were predicted using all 162 genes
part of the ontological categories “kidney development”
and “respiratory electron transport chain” and which were
shared between the brain and pancreatic expression data
sets. The algorithm derived from these genes explained
23% of the variance (P= 2.7×10−8) for classification of
schizophrenia. Prediction in pancreatic beta cells showed
that T2D patients had significantly lower predicted schi-
zophrenia scores compared to controls (P= 0.008, cor-
rected for the influence of age and sex, Fig. 2d), consistent

with findings from the pancreatic expression data set
described above.
Two analyses were performed as a negative control.

First, schizophrenia scores were predicted in a frontal
cortex expression data set of subjects with HIV ence-
phalitis (n= 16) and controls (n= 12) to support the
specificity of the schizophrenia signature for prediction in
comparable brain tissue samples. As above, the prediction
was based on genes part of the two identified ontological
categories and which overlapped with the schizophrenia
data set (127 genes). This showed that predicted scores
did not differ between HIV encephalitis patients and
controls (P= 0.54).
Second, scores were predicted in frontal cortex

expression data of subjects with Alzheimer’s disease (n=
15) and healthy controls (n= 18) using 162 overlapping
genes of the two ontological categories. Also here, pre-
dicted schizophrenia scores were not associated with
case–control status (P= 0.64, corrected for the influence
of age and sex).

Discussion
Here, we show that a glycemic marker of T2D can be

predicted using a schizophrenia brain expression score.
This finding supports the presence of a systemic mole-
cular commonality between schizophrenia and T2D. This
is in agreement with studies identifying consistent
alterations of individual molecules in the periphery and
central nervous system of schizophrenia patients (e.g.,29).
The association between the score and HbA1c levels was
negative, meaning that subjects with a pancreatic islet
profile more similar to that of schizophrenia patients had
lower HbA1c levels. Consistent with this, T2D patients in
this cohort as well as in an independent validation cohort
had significantly lower schizophrenia scores compared to
controls. There are several potential explanations for this
finding. First, brain changes underlying the score may be
of protective nature or affected by compensatory
mechanisms. It is conceivable that such mechanisms are
influenced by illness duration and the effects of anti-
psychotic medication. For example, a shared risk process
may initially lead to comparable expression profiles.
During later illness stages of schizophrenia, this process
may be over-compensated, leading to an inversion of
associations with HbA1c levels. This hypothesis could be
examined by exploring potential interactions between the
predicted schizophrenia score, pancreatic HbA1c levels,
and illness duration. Such analysis would be particularly
informative if schizophrenia patients would show similar
expression profiles in peripheral cells. This would allow
testing of samples from living and potentially untreated
patients. A second possibility may be a shared risk
mechanism that results in opposite expression effects in
different tissues. To explore this, it would be interesting to
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investigate genetic risk overlap between schizophrenia
and T2D in the identified processes. Potential joint risk
signatures could then be examined regarding their tissue-
specific, quantitative effects on expression.
Interestingly, prediction of HbA1c levels improved when

gene sets with the highest genetic schizophrenia associa-
tion were excluded. This implies that these genes were
good predictors for schizophrenia with little relevance for
HbA1c prediction. Therefore, their removal eliminated
noise from the HbA1c prediction and led to improved
performance. We further observed that genes relevant for
the cross-tissue prediction clustered within the ontologi-
cal categories more strongly linked to genetic schizo-
phrenia risk. This may point toward genetic comorbidity
effects within the identified signature but requires further
elaboration.
We used data from subjects with Alzheimer’s disease

and HIV encephalitis as a negative control for the present
study. Interestingly, the pathology of both conditions has
been linked to oxidative stress, supporting the specificity
of the identified cortical signature for schizophrenia30,31.
The two ontological categories contributing most to the
prediction of glycemic control were “kidney development”
and “respiratory electron transport chain”. While HbA1c

levels are significantly predictive of chronic kidney dis-
ease32 and T2D is strongly associated with reduced kidney
function and risk of kidney failure33,34, accumulating
evidence suggests that the kidneys are directly involved in
glucose homeostasis and insulin metabolism35. For
example, insulin resistance is more frequent in patients
with acute kidney injury36 and glucose uptake is decreased
in uremia37. Renal glucose production and removal
account for 25% and 20% of systemic production and
removal, respectively38, supporting the kidneys’ central
role in glucose homeostasis. Together, these reports
suggest that kidneys play an important role in inducing
abnormal glucose homeostasis and are also a target of the
downstream consequences in the form of renal injury35.
The important predictive role of genes associated with

the “respiratory electron transport chain” further supports
mitochondrial dysfunction and oxidative stress as the
unifying theme underlying the comorbidity between
schizophrenia and T2D9,10. The respiratory electron
transport chain is a key part for oxidative phosphorylation
of glucose, which has been identified as the most sig-
nificantly downregulated pathway in schizophrenia post
mortem brains9. It is also known to be deficient in skeletal
muscle mitochondria of T2D patients39 and oxidative
stress due to aberrant oxidative phosphorylation plays an
important role in the development of diabetic nephro-
pathy40. The predictive importance of oxidative phos-
phorylation and kidney-related genes identified here
further supports their joint relevance for glucose home-
ostasis both in schizophrenia as well as T2D.

The most strongly implicated gene, WFS1, encodes the
transmembrane protein Wolframin. Mutations in this
gene can lead to Wolfram syndrome that presents with
insulin-dependent diabetes mellitus41. Consistent with
this, WFS1 variants have frequently been reported to
contribute to T2D risk (e.g.,42–44). Two SNPs (rs10010131
and rs6446482) with intronic locations in the WFS1 gene
are reproducibly associated with a protective effect on risk
for T2D. The gene is characterized by a strong LD pattern
and, albeit not consistently, evidence for further genetic
risk associations has been reported. Meta-analysis inves-
tigating rs10010131 and rs734312 has confirmed sig-
nificant protective effects for the minor alleles of both
variants45, although the latter SNP may not be function-
ally relevant42. The risk allele of rs10010131 is further
predictive of future T2D, progression from normal glu-
cose tolerance to T2D46, as well as insulin secretion47.
This allele has also been found to interact with a variant in
hepatocyte nuclear factor 4 alpha (HNF4A) in an Ashke-
nazi Jewish Population, suggesting a potential gene–gene
interaction effect on T2D risk48.
Interest in WFS1’s role in schizophrenia stems from

observations that mutation carriers show an increased
likelihood for psychiatric hospitalization49–51. Several
subsequent genetic studies have investigated potential
associations with schizophrenia risk, but these findings
have thus far not supported a significant role52. For
example, the T2D-associated variant rs10010131 has not
been found associated with schizophrenia in a Danish
cohort of 410 patients and 820 controls53. Similarly,
WFS1 is not harbored by the well-established 108 genetic
loci associated with schizophrenia risk54.
We further identified angiotensinogen as a gene

important for the cross-tissue prediction in the present
study. Angiotensinogen is a precursor of angiotensin I, a
central part of the renin-angiotensin system (RAS), an
important regulator of glucose homeostasis55. In T2D,
tissue RAS is activated leading to increased oxidative
stress and progressive renal pathology [56]. While an
angiotensinogen variant (rs699) that has previously been
linked to hypertension, has not been found associated
with T2D, such association has been identified for a var-
iant in another gene central to the RAS (aldosterone
synthase)57.
In schizophrenia, research into the RAS has focused on

angiotensin converting enzyme (ACE), which converts
angiotensin I into angiotensin II but genetic association
analyses have thus far been inconclusive58. The etiological
role of the schizophrenia candidate gene ACE was initially
thought to relate to its involvement in dopamine meta-
bolism59,60. More recently, an ACE polymorphism has
been shown to be associated with plasma glucose con-
centrations in chronic schizophrenia patients61. Together
with the present findings, this may support the
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involvement of the RAS system in the comorbidity
between schizophrenia and T2D, potentially due to their
role in regulating glucose homeostasis.
A further gene important for cross-tissue prediction

identified here is the LDL receptor-related protein 4
(LRP4). It belongs to the family of lipoprotein receptor-
related proteins (LRPs) and antagonizes LRP6-mediated
activation of canonical Wnt signaling. Mutations in this
gene impact on such signaling and are associated with
kidney anomalies in Cenani–Lenz Syndrome62. LRP5, a
co-receptor of LRP6, has a central role in glucose-induced
insulin secretion from pancreatic islets and for main-
tenance of normal cholesterol metabolism63. Poly-
morphisms in LRP5 are associated with obesity64 and
variants in several other Wnt signaling genes have been
linked to the development of T2D, most prominently in
TCF7L265. Notably, Wnt signaling plays an important role
in kidney development and regulates the expression of
hormones essential for glucose homeostasis66.
Numerous studies have explored the role of Wnt sig-

naling in schizophrenia, mainly due to its involvement in
neuronal development67. Interestingly, a T2D risk variant
in TCF7L2 has also been found to increase the risk for
schizophrenia and this allele is associated with increased
expression in pancreatic beta cells53. Further studies
should explore the relationship between variation in Wnt
signaling-related genes and glucose homeostasis as a
potential factor underlying the comorbidity of schizo-
phrenia and T2D. For example, another gene identified
here, TNS2 (TENC1), has previously been found to
interact with schizophrenia risk gene DISC168 and is
involved in the regulation of Akt, an important modulator
of Wnt signaling69,70.
The most significant limitation of the present study is

that several confounding effects on the brain expression
signature cannot be excluded. Although schizophrenia
confers a significant endogenous risk for T2D, this risk is
further increased by antipsychotic treatment71. Such
medication effects may have influenced the identified
cortical signature. Additional confounders include nico-
tine, alcohol, or drug use as well as the mode of death (i.e.,
suicide). Therefore, the molecular commonality identified
in the present study should be interpreted as a state-
dependent commonality between schizophrenia and T2D.
Further studies are warranted to explore potential asso-
ciations between this molecular overlap and factors
underlying the genetic comorbidity between the
conditions.

Conclusion
This study supports the presence of a molecular brain

signature of schizophrenia that is associated with a gly-
cemic marker of T2D in the periphery. These findings
may help to elucidate the biological basis of comorbidity

between the two illnesses. They may also aid in unco-
vering processes underlying the impact of antipsychotic
treatment on T2D risk and highlight potential molecular
targets for treatment of this clinically relevant
comorbidity.
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