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Abstract

Background: Anthrax, the zoonotic disease caused by the gram-positive bacterium Bacillus anthracis, is nowadays
rare in northern parts of Europe including Finland and Scandinavia. Only two minor outbreaks of anthrax in 1988
and in 2004 and one sporadic infection in 2008 have been detected in animals in Finland since the 1970’s. Here,
we report on two Finnish B. anthracis strains that were isolated from spleen and liver of a diseased calf related to
the outbreak in 1988 (strain HKI4363/88) and from a local scrotum and testicle infection of a bull in 2008 (strain
BA2968). These infections occurred in two rural Finnish regions, i.e., Ostrobothnia in western Finland and Päijänne
Tavastia in southern Finland, respectively.

Results: The isolates were genetically characterized by PCR-based methods such as multilocus variable number of
tandem repeat analysis (MLVA) and whole genome-sequence analysis (WGS). Phylogenetic comparison of the two
strains HKI4363/88 and BA2968 by chromosomal single nucleotide polymorphism (SNP) analysis grouped these
organisms within their relatives of the minor canonical A-branch canSNP-group A.Br.003/004 (A.Br.V770) or canonical
B-branch B.Br.001/002, respectively. Strain HKI4363/88 clustered relatively closely with other members of the A.Br.003/004
lineage from Europe, South Africa, and South America. In contrast, strain BA2968 clearly constituted a new sublineage
within B.Br.001/002 with its closest relative being HYO01 from South Korea.

Conclusions: Our results suggest that Finland harbors both unique (autochthonous) and more widely distributed,
common clades of B. anthracis. We suspect that members of the common clades such as strains HKI4363/88 have
been introduced only recently by anthropogenic activities involving importation of contaminated animal products. On
the other hand, autochthonous strains such as isolate BA2968 probably have an older history of their introduction into
Finland as evidenced by a high number of single nucleotide variant sites in their genomes.

Keywords: Bacillus anthracis, Finland, Whole genome sequencing (WGS), Comparative genomics, Single nucleotide
polymorphism (SNP), Multiple locus variable number of tandem repeat analysis (VNTR, MLVA)

Background
The zoonosis anthrax is often referred to as a neglected
tropical disease [1]. This is because most animal and hu-
man cases occur in (sub)tropical countries of Sub-Sahara
Africa and parts of Asia [2]. However, in the past the
bacterium causing anthrax, Bacillus anthracis, had a
much wider distribution. For instance, high latitude

countries such as Sweden, Finland, Canada or the area
of the Russian Federation (i.e., the former Soviet Union)
had also been affected by the disease, regularly. In
Finland, altogether 283 anthrax cases in 150 different
localities have been detected in several animal species
since 1940’s (Zoonoses in Finland in 2000–2010. online
available: https://www.evira.fi/globalassets/elaimet/zoono
osikeskus/zoonoosit/zoonosesinfinland_final_nettiversio.
pdf. Accessed July 11, 2018). The majority of anthrax
outbreaks involved bovines, but also other animal spe-
cies such as horses, swine, sheep, dogs and fur animals
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like minks and foxes have been affected. Due to specific
control measurements, improved feed hygiene and
awareness of the epidemiology of anthrax, the disease is
nowadays rare in Finland. However, B. anthracis still
causes large outbreaks elsewhere at high latitudes. For
instance, after the last outbreak in 1941 in a northern,
boreal part of what is now the Yamal-Nenets autono-
mous district located within the Russian Federation,
2.657 infected animals were reported from six different
outbreaks in the summer of 2016. From these animals
and their products several human fatalities had resulted
in the aftermath [2]. Besides, several outbreaks occurred
among farm animals in southeastern Sweden in the
same summer [2]. In Canada, anthrax is still enzootic in
central parts of the country and free-roaming Wood Bisons
are frequently affected during summer months [3].
While there is an increasing number of available gen-

ome sequences of B. anthracis from broad geographic
origins, there are still only a few sequenced isolates from
higher latitudes. From Norway, only two multilocus se-
quence typed bovine isolates originating from two out-
breaks in 1987 and 1993, respectively [4], and a few
genomes from bovine isolates partly lacking further
meta-data have been reported [5, 6]. Conversely, a
prominent Norwegian B. anthracis genome is the one
originating from imported contaminated heroin; the iso-
late causing the very first fatality of injectional anthrax
in 2000 [7]. From Sweden stems one genome and very
closely related isolates from a primary outbreak at a na-
ture reserve in 2011. This outbreak was likely caused by
the disturbance of a historical animal burial site and re-
sulted in a secondary outbreak in 2013 [8]. Other strains
originate from older collections as in the case of
Denmark [9] or Finland (this study) because nowadays
anthrax is a very rare disease in these countries, too.
In this study, we genotyped and whole genome-se-

quenced the only two available B. anthracis isolates from
Finland. One strain (HKI4363/88) originated from an out-
break in Ostrobothnia, western Finland, in August 1988
[10]. Isolate BA2968, was isolated in Helsinki in
September 2008 from an aspirate of an oedematous scro-
tum of a young bull (born in 2007) which was diagnosed
with a testicle and scrotum inflammation.
The new genomic data from the Finnish isolates was

used to compare these B. anthracis isolates with their
close relatives and to assign the Finnish strains’ place-
ments in a phylogenetic context.

Methods
Growth of B. anthracis and extraction of DNA
Vegetative cells of B. anthracis from our strain collec-
tions were cultured on blood agar, subsequently inacti-
vated and DNA was isolated as described previously [11]
using DNeasy Blood and Tissue kit (Qiagen, Germany)

as described for Gram-positive bacteria with the follow-
ing minor modifications. After cell wall lysis with lyso-
zyme (20 mg/ml), 4 μl of RNase A (100 mg/ml) was
added and the suspension was incubated for 2 min at
room temperature. DNA was eluted twice (50 μl and
50 μl) using sterile nuclease-free water. Handling of live
B. anthracis occurred in a biosafety level 3 laboratory
and the isolated DNA was sterile-filtered (0.22 μm filter
pore, Merck Millipore, Germany) prior to being taken
from biosafety level 3 laboratory. DNA concentrations
were quantified using the Qubit dsDNA HS Assay Kit
(Thermo Fisher Scientific, USA) according to the sup-
plier’s protocol. DNA preparations were stored at − 20 °C
until further use.

Diagnostic real-time PCR for chromosomal and plasmid
markers of B. anthracis
Three specific genetic markers including chromosomal
marker dhp61 (BA_5345) as well as plasmid markers
pagA (pXO1) and capC (pXO2) were used to identify B.
anthracis by real-time PCR as described in [12, 13].
Real-time PCR assays were conducted using a LightCycler
480 II (Roche, Germany) and data analysis was performed
with the associated instrument software.

Analysis of canonical single nucleotide polymorphisms
(canSNPs)
Isolates were grouped into the canonical SNP (canSNP)
typing scheme that allows attribution into genetic
groups within the accepted global population structure
of B. anthracis [14]. For this, Mismatch Amplification
Mutation Assays (Melt-MAMA) [15] for 12 canSNP
groups of B. anthracis-isolates were performed (primer
sequences in Additional file 1) on a LightCycler 480 II
instrument (Roche, Germany) as described in [13] and
data analysis was performed with the associated instru-
ment software.

Multi locus variable number of tandem repeats analysis
using 31 markers (MLVA-31)
The MLVA was performed essentially as described in
[16]. Briefly, amplification of the fragments of 31 mar-
ker-loci was performed in 7 multiplex-PCRs (the origins of
the best matches to the Finnish B. anthracis isolates are
listed in Additional file 2). The fragment-mixtures were an-
alyzed on a Genetic Analyzer (ABI 3130, Applied Biosys-
tems, Germany) using either MegaBACE TMET (GE
Healthcare, Germany), Genescan 1200 LIZ (Applied
Biosystems, USA) or MapMarkerH 1000 (BioVentures,
USA) as size standards. The data were analyzed with
GeneMapper TM software (Applied Biosystems, USA).
The raw data of fragment lengths were normalized by
codes, reflecting the actual copy numbers of the repeat se-
quences where possible.
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Whole genome sequencing and assembly
The Nextera® XT DNA Library Preparation kit (Illumina,
USA) was used for library preparation with DNA inputs
of 1 to 3 ng per library. Libraries were sequenced on a
MiSeq instrument (Illumina, USA) using MiSeq Reagent
Kit v3 (600-bp) chemistry (Illumina, USA). High-quality
paired-end reads (Q ≥ 30) were assembled de novo into
draft genomes using an in-house script based on the
SPAdes assembler (version 3.11.1) [17]. The automated
genome refining tool Pilon (version 1.22) [18] was used
to further improve these draft genomes by correcting
SNPs or closing small gaps. All processed scaffolds were
manually checked for contaminant reads and uploaded
to the NCBI Bioproject database (The data-set supporting
the conclusions of this article is available in the Bioproject
PRJNA309927, accession numbers: Additional file 3).
Annotation was automatically performed by the NCBI
Prokaryotic Genome Annotation Pipeline [19].

Analysis of whole genome sequencing data – SNP calling
The Parsnp tool from Harvest Suite was used for rapid
core chromosome multiple-alignment [20]. Input data
for this were representative B. anthracis genomes from
public databases (Additional file 3) and newly sequenced
strains that were aligned against the ‘Ames ancestor’ ref-
erence chromosome (NC_007530) using Parsnp (param-
eters -c -e -u -C 1000). Called SNPs were extracted into
a VCF file using HarvestTools (version 1.0) from the
same software suite. To enhance overall data quality,
SNP positions with a distance of less than 10 bp as well
as positions harboring an undefined nucleotide (“N”)
were removed. The “R” analysis package phangorn (version
2.4.0) was used to determine homoplasious SNPs (param-
eter “CI(tree, data, cost = NULL, sitewise =
TRUE)”) and to remove them [21]. This edited file served
again as an input file in the HarvestTools to compile a
FASTA file comprising a multiple-sequence alignment of
the concatenated SNPs. Next, the evolutionary history was
inferred from this data by using the Maximum Likelihood
method according to the Tamura-Nei model [22]. A phylo-
genetic maximum likelihood tree was computed in Mega7
[23] and a minimum spanning tree was computed in
BioNumerics 6.6 (Applied Maths, Belgium) from the
VCF SNP-file (in binary format) as input and manually
edited for style.

Results
Genotyping of two B. anthracis isolates from Finland
Isolates HKI4363/88 and BA2968 were classified within
the three major branches A, B and C and assigned to ca-
nonical SNP-groups of B. anthracis [14]. HKI4363/88
belonged to the A-branch (A.Br.) A.Br.003/004 defined
by an ancestral SNP state for SNP A.B.03 and a derived
state for A.Br.004. According to a recently amended

nomenclature, this major branch is now called A.Br.V770
defined by the SNP-states of A.Br.003 and A.Br.054
[24]. Isolate BA2968 grouped within the B-branch,
B.Br.001/002, typically comprising European and African
strains [14].
In order to identify possible close relatives of these

Finnish strains, we performed MLVA-31 typing and
compared the strains’ profiles with that of our in-house
MLVA-database. Additional file 4 summarizes the results
of MLVA-31 for strains HKI4363/88, BA2968 and their
closest matches. Next, we used this data to visualize the
MLVA-similarities between Finnish strains and relatives
from other geographical origins (Fig. 1). Finnish isolate
HKI4363/88 clustered closely (6 markers difference)
with a strain isolated around Cape Town (Rondebosch)
in 1999. Near relatives of this strain HKI4363/88 (five
markers difference) had also been found in a soil sample
of a derelict tannery (Neumünster, Germany) with a >
100 year history, namely isolate A155. Isolate A172 orig-
inated from an outbreak in bovines (four markers differ-
ence) in France in the year 2001. Interestingly, there is
also a more distant relation (seven markers difference)
to the B. anthracis type strain V770 NP/1 (ATCC 14185)
used for human vaccine production in the USA for a
long time. Another relative of this group (A142) was
found at the same tannery site as strain A155. From
the MLVA-31 results presented in Fig. 1, we selected
seven strains from our strain collections most similar
in their VNTR-profile to Finnish isolates HKI4363/88
or BA2968, respectively, for whole genome sequencing
(Additional file 3).

Chromosomal SNP analysis suggests that Finnish B. anthracis
strains comprise both an autochthonous lineage and
introduction via more recently importation events
Genome sequencing of the two Finnish isolates
HKI4363/88 and BA2968 as well as strains A16, A24,
A46, A142, A155 and SA047 yielded an average number
of 612,000 reads (588,000 – 660,000) per isolate, result-
ing in an average sequencing depth of > 52-fold. De novo
assembly produced between 22 and 41 scaffolds (> 500 bp)
per genome. Each isolate covered at least 99.95% of the ref-
erence chromosome of B. anthracis str. ‘Ames ancestor’
(NC_007530).
From this chromosomal dataset of the in-house se-

quenced strains and representatives from public databases
(Additional file 3) 3211 non-homoplasious SNPs were
called of which 1548 were parsimony informative sites
(Additional file 5). The concatenated chromosome-wide
SNPs were used to infer the phylogenetic relationships of
the analyzed strains with focus on the A.Br.003/004 and
all three B-lineages (Fig. 2). Chromosomes from strains of
neighboring canSNP groups A.Br.Ames, A.Br.001/002
Sterne and A.Br.003/004 V770 were included for reference.
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Within the phylogeny, strain HKI4363/88 clustered rela-
tively closely with other members of the A.Br.003/004
lineage including strains from Germany, South Africa,
Argentina, Bolivia, and Chile and more loosely with isolates
from the United States of America. Notably, the other
Finnish strain BA2968, positioned within canSNP group
B.Br.001/002 as the sole member of a sister clade to the
one leading to strains from South Korea, South Africa,

Zimbabwe and Sweden as well as including the branch
leading to canSNP group CNEVA (Fig. 2).
When focusing on SNP-differences between isolated

strains it became obvious that strain BA2968 was
unique, clearly constituting a new sublineage within
B.Br.001/002. This isolate was separated by 215 SNPs to
its closest relative, HYO01, from South Korea and 256
SNPs to canSNP-group B.Br.CNEVA isolate BF-1 from
Germany (Additional file 6). Conversely, strain HKI4363/
88 was separated by only 52 SNPs distance to strain
A1096 from South Africa and less than 100 SNPs to a
cluster of isolates from Germany, Bolivia, Argentina, Chile
and the United States of America. Of note, the German
strains from this group were isolated from the site of a
derelict tannery and thus have been likely imported via
contaminated animal products (W. Beyer, unpublished).

Discussion
The two isolates from Finland offer a rare glimpse into
the past genomic diversity of B. anthracis in European
high northern latitudes. During the small outbreak in
western Finland in 1988, from which strain HKI4363/88
was isolated, two out of 14 bovines, one heifer and
one-year-old calf were infected with B. anthracis with
typical sudden anthrax symptoms of tremble, fever, par-
alysis and bleeding. Prior death the calf was treated with
penicillin and was bleeding from the anus. Both animals
died a couple of hours after the onset of the symptoms.
Anthrax was suspected by a municipal veterinarian and
B. anthracis was isolated from liver and spleen and con-
firmed by Giemsa staining, animal experiment, and later
by PCR at EVIRA (Finnish Food Safety Authority). At
the same farm where the two diseased animals were kept
in 1988, two earlier cases of anthrax had been docu-
mented in 1986. Furthermore, within the immediate sur-
rounding of the farm, anthrax had been documented
30 years earlier [10].
Strain BA2968 was sampled from a bull examined at

Saari clinic at the production animal hospital of the
University of Helsinki, where bacteria belonging to the
genus Bacillus were detected in the scrotum aspirate
culture. The Bacillus isolate was examined further at
EVIRA by PCR and identified as B. anthracis. The bull
was culled immediately after the diagnosis. Blood sam-
ples of all the cows with fever from the same farm were
examined for B. anthracis with negative results. At the
same farm where the bull was kept, two cows had died
of anthrax 4 years earlier. In addition, diseased bovine
animals had been buried in the area several decades ago
and also a factory rendering animal byproducts had been
run many years ago upstream of a ditch flowing into the
farm area. This factory had also processed imported ma-
terial of animal origin and possibly contaminated the
surroundings. Thus, the B. anthracis strain causing this

Fig. 1 Position of strains HKI4363/88 and BA2968 in UPGMA cluster
analysis based on 31 B. anthracis MLVA markers. Positions of strains
HKI4363/88 (a) and BA2968 (b) (indicated in red) among their closest
MLVA-relatives within a data-set of 976 B. anthracis isolates are shown
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“cutaneous” anthrax was probably introduced into the
scrotum tissue through a skin wound or abrasion by
contaminated soil material after a very rainy summer
and autumn. Because of the close vicinity of anthrax
outbreaks to the factory processing also imported animal
byproducts, it is possible that isolate BA2968 does not
represent an autochthonous B. anthracis strain but one
that has been anthropologically introduced.
In northern latitude countries such as Finland and

Sweden, anthrax control programs of the past have re-
sulted in an increasingly rare occurrence of the zoonosis
today. In Sweden, a ban on the import of bone meal for
animal feed in 1957 led to a steep decline in new out-
breaks within a very few years [25]. In the last half cen-
tury, only outbreaks in 1981, 2008, the most likely linked
outbreaks of 2011/13 and a last one in 2016 were docu-
mented [8, 25]. Thus, characterization of isolates from
such rare events can provide unique opportunities to

record remnants of the genetic diversity of the all but
extinct pathogen in this country. Possibly, in Sweden
and Norway as well, there will be a situation similar to
that in Finland with B. anthracis genotypes recovered
that may be either autochthonous or originate from im-
portation of contaminated animal products such as
wool, hides or bone meal.
Taking the phylogeography of B. anthracis isolate

BA2968 into account, our data indicates a common ori-
gin of this and other strains belonging to the so-called
(European) B2-Branch [26] isolated in central Europe.
The European B-Branch, as originally specified by
MLVA, is a wide-spread group of B. anthracis strains
which are most probably of African origin [27].

Conclusions
There is some information on the genomic diversity on B.
anthracis from higher northern latitudes. Nevertheless, it
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would be worthwhile to mine the genomes of further iso-
lates present in older collections of this pathogen. Such ef-
forts would advance our capabilities in differentiating
natural outbreaks in geographic locations where anthrax
is very uncommon from deliberate releases of the
pathogen. With that kind of information it will then
be possible to conduct bioforensically sound outbreak
related trace-back analysis and attribution.
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