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Abstract
Background: Understanding gene expression and regulation is essential for understanding biological mechanisms. 
Because gene expression profiling has been widely used in basic biological research, especially in transcription 
regulation studies, we have developed GeneReg, an easy-to-use R package, to construct gene regulatory networks 
from time course gene expression profiling data; More importantly, this package can provide information about time 
delays between expression change in a regulator and that of its target genes.

Findings: The R package GeneReg is based on time delay linear regression, which can generate a model of the 
expression levels of regulators at a given time point against the expression levels of their target genes at a later time 
point. There are two parameters in the model, time delay and regulation coefficient. Time delay is the time lag during 
which expression change of the regulator is transmitted to change in target gene expression. Regulation coefficient 
expresses the regulation effect: a positive regulation coefficient indicates activation and negative indicates repression. 
GeneReg was implemented on a real Saccharomyces cerevisiae cell cycle dataset; more than thirty percent of the 
modeled regulations, based entirely on gene expression files, were found to be consistent with previous discoveries 
from known databases.

Conclusions: GeneReg is an easy-to-use, simple, fast R package for gene regulatory network construction from short 
time course gene expression data. It may be applied to study time-related biological processes such as cell cycle, cell 
differentiation, or causal inference.

Background
With the rapid development of microarray technology,
more and more short time course gene expression data
have been generated; with such abundant high-through-
put screening data available, researchers have tried to
infer, or reverse-engineer, gene networks. In general, the
existing models for network inference can be grouped
into three categories: logical models, continuous models
and single-molecule level models [1]. Logical models
such as Boolean networks and Petri nets could represent
the network structure but are unable to describe dynamic
processes. While single-molecule level models such as
stochastic simulation algorithm could provide high reso-
lution modeling and analysis, but only on limited mole-
cules with well-known reactions among them. Single-

molecule level models are not suitable for large scale reg-
ulatory network reconstruction. There were several
widely-used general algorithms for network inference,
such as information-theoretic approaches, Bayesian-
based models, and ordinary differential equations [2].
Many of them belong to the continuous models. There
may be other models which could integrate prior knowl-
edge to improve the performance, but we only considered
the ab initio network inference approaches here as prior
knowledge is able to be integrated into most de novo net-
work reconstruction methods easily.

The most well known software of information-theo-
retic approaches for gene network inference is ARACNE
[3,4]. The information-theoretic approach was first pro-
posed by Butte and Kohane [5], with their relevance net-
work algorithm. Information-theoretic approaches use
mutual information to compare expression profiles from
a set of microarrays. The definition of mutual informa-
tion requires each experiment to be statistically indepen-
dent from the others. Thus, information-theoretic
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approaches can deal with steady-state gene expression
data or with time-series data given that the sampling
interval is long enough to assume that each point is inde-
pendent of the previous points. This assumption, how-
ever, does not hold for most biological time series
datasets, because the interval between measured time
points is usually short. In many cases, biologists actually
want to see the connections between events happening at
an earlier time point and those at a later one, rather than
looking at isolated time points.

Banjo is a representative gene network inference soft-
ware based on Bayesian network formalism [6]. Because
Banjo implements both Bayesian and dynamic Bayesian
networks, it can infer gene networks from steady-state
gene expression data or from time-series gene expression
data. In Banjo, heuristic approaches are used to search
the network space to find the network graph G, which
requires large datasets in which the number of genes is
much smaller than the number of experiments. In most
gene expression datasets, however, the number of genes
is much larger than the number of experiments.

Ordinary differential equations (ODEs) based reverse-
engineering algorithms relate changes in gene transcript
concentration to each other and to an external perturba-
tion. To reverse-engineer a network using ODEs requires
selection of an ODE function and estimation of unknown
parameters from gene expression data using some opti-
mization technique. ODE-based approaches yield
directed graphs and can be applied to both steady-state
and time-series expression profiles, but they are often
very complex and slow, and do not provide insight into
the biological meanings of each parameter.

To address the limitations of existing approaches for
gene regulatory network construction from short time
course gene expression data, we have developed an easy-
to-use, simple, and fast R package: GeneReg. GeneReg is
based on a time delay linear regression model, which is
similar to Kim's ordinary differential equation[7]. The
function used in this model, however, is a linear function
with two parameters, time delay and the regulation coef-
ficient. Time delay is the time required to transmit
change in regulator gene expression to change in target
gene expression. The regulation coefficient represents the
regulation effect: a positive coefficient indicates activa-
tion and negative indicates repression.

The most important improvement of our model was
the time delay of each regulator can be exactly calculated
and different regulators could have different time delays.
Time delay is an important concept in biological regula-
tory mechanisms, especially for transcription factors. As
we known, transcription factor could only regulate its
target genes in protein form but in microarrays studies,
the measured abundance of transcription factor is its
mRNA expression level. The mRNA of transcription fac-

tor must be translated into protein and then the proteins
of transcription factor regulate the expression of down-
stream genes. There is a time delay from the mRNA of
transcription factor being generated to the actual regula-
tion of transcription factor. What's more, time delay is an
almost unmeasureable variable by traditional experi-
ments as there were too many unclear processes during
translation and the factors which could affect the process
were unpredictable. The time delay calculated in our
model provided a higher level estimation of this impor-
tant but unmeasureable biological variable.

The biological meanings of the two parameters in our
model are both clear and important for understanding
gene regulatory mechanisms. As the linear model is sim-
ple and the forward selection optimization of parameters
is easy to compute, GeneReg is much faster than similar
software and could be used in deciphering genome-wide
gene regulatory networks. Our models do not require
prior knowledge about regulatory mechanisms, although
prior knowledge could be integrated, for example if cer-
tain regulators were already known to regulate the target
gene, they could be added into the model first. The model
with time delay and regulation coefficient can be used to
obtain qualitative insights about regulatory networks and
discovery novel regulations. This linear model assump-
tion may ignore parts of the nonlinear regulations, but it
allows a high level of abstraction and efficient inference of
network structure and regulation functions. When higher
resolution to detailed regulatory relationship is desired,
the linear model can be replaced with more complex non-
linear models, such as mass action models or Hill mod-
els[8].

GeneReg was implemented on a real Saccharomyces
cerevisiae cell cycle dataset. The results were found to
reflect known dynamic expression profiles, with 32.45%
of the regulations modeled in wild type cells and 32.61%
of regulations in cyclin mutant cells consistent with what
can be found in the YEASTRACT and/or STRING data-
bases. These are fairly good results, considering that our
large scale gene network construction was only based on
a single small time series gene expression dataset [9].

Results and Discussion
Time delay linear regression model
The model is based on a linear regression of the expres-
sion levels of regulators at time t - Δt against the expres-
sion level of their target genes at time t. Δt is the time
delay between expression of transcription factors and
expression of downstream genes, and can differ from
gene to gene.

Suppose we have a set of time course data covering
time points T1, T2,..., Tk, and target gene g is regulated by
n regulators tf1, tf2,..., tfn in a linear manner. These rela-
tionships can be formulized as below:
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where  (g) is the relative expression level of target

gene g at time point tg to the baseline,  is the

relative expression level of tfi at time point tg - Δti, Δti, is

the time delay of tfi's regulation to gene g, and ai is the

regression coefficient of tfi.

Computational algorithm
Our method aims to select a set of possible regulators
with certain time delays to estimate the dynamic expres-
sion pattern of a target gene. The method uses an AIC
(Akaike information criterion) [10] model selection crite-
ria with forward selection to iteratively add possible regu-
lators from the candidate pool. AIC, which describes the
tradeoff between model complexity and the estimated
residual variance, is defined as

where kp is the number of parameters in the statistical
model, and L is the maximized value of the likelihood
function for the estimated model. AIC increases as the
number of parameters increase and decreases as the
residual variance decreases. The smaller AIC indicates
better model.

In practical computation, it is time-consuming to com-
pute the AIC statistics for all possible regression models.
Forward selection method [11] was used to avoid the
complexity of exhaustive search. As one of the greedy
optimization method, in forward selection, a variable
once included can never be removed [11]. The model
optimized by forward selection method may be not the
best, but it is an acceptable compromise with fast speed
and good performance. What's more, in specific condi-
tion, the regulators of one target gene couldn't be as much
as the database suggested, or as complex as the mixture of
all known mechanism and identifying the key regulators
first will at least guarantee that the major regulations
wouldn't be missed.

The model's explanatory ability is evaluated by adjusted
R2 [12]. Adjusted R2 is an improved R2 that adjusts for the
number of explanatory terms in a model. The adjusted R2

is defined as

where nr is the number of regulators in the linear
model, and ks is sample size

The computational procedure of our method can be
summarized as following:

1) Sorting the regulators based on their relevance with
target gene

The goal of this procedure was to filter the irrelevant
regulators first and sort the regulators according to their
importance to the regulation. To each regulator, all possi-
ble time delays were traversed and the adjusted R2 of best
single regulator regression model with smallest AIC was
calculated. Regulators didn't meet a pre-specified
adjusted R2 cutoff were considered as irrelevant with the
target gene and were filtered. The left M regulators were
sorted according to their smallest AICs.

After the pre-evaluation procedure, a regulator set S is
provided:

The index reflects the evaluations for regulator. For
example, If a < b, tfa has smaller AIC than tfb and tfa is
considered to be better than tfb.

2) Regulation model optimization with forward selec-
tion of regulators and time delays

Step one can only provide a list of relevant regulators by
sorting them according to their importance to the regula-
tion, but it is still unknown which fore regulators in the
list should be selected to establish the time delay regres-
sion model. The best fore regulators are selected by test-
ing all possible top regulator sets, and choosing the
regulator set that can achieve the smallest AIC with for-
ward selection. The forward selection procedure was
illustrated in Figure 1.

The possible regulator subset si can be expressed using
the following equation:

The initial regulator subset is .

The selected regulator set with m regulators is defined

as , the S indexes of regulators in Ωs

are .

The to-be-selected regulator set with n regulators is

defined as  and the S indexes of

regulators in Ωt are

.

In the forward selection procedure [13], each regulator
in Ωt will be successively tested whether it can be added
into Ωs. During each test process, the time delays of Ωs
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are held the same. All possible time delays of the regula-

tor in Ωt with smallest S index that is  are traversed,

and the time delay of  which achieves the smallest AIC

of  is considered as the optimal

time delay of . This smallest AIC of

 is then compared with the AIC

of original . If

 will be
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Figure 1 The forward selection of regulators in time delay linear regression model. The selected regulator set with m regulators is defined as 

 the S indexes of regulators in Ωs are  The to-be-selected 

regulator set with n regulators is defined as  and the S indexes of regulators in Ωt are 

 In the forward selection procedure, each regulator in Ωt will be successively 

tested whether it can be added into Ωs. During each test process, the time delays of Ωs are held the same. All possible time delays of the regulator in 

Ωt with smallest S index that is  are traversed, and the time delay of  which achieves the smallest AIC of  is 

considered as the optimal time delay of . This smallest AIC of  is then compared with the AIC of original 

. If  wil be moved from Ωt to Ωs. Otherwise,  will be 

eliminated from Ωt. In next round, the new regulator in Ωt with smallest S index will be tested until Ωt is empty.
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from Ωt. In next round, the new regulator in Ωt with
smallest S index will be tested until Ωt is empty.

After all M - 1 regulators have been tested to add into

the initial regulator subset  the optimized time
delay regression model was established which not only
have the optimal regulators but also their corresponding
optimal time delays. At the end of the whole process, the
adjusted R2 of this final optimized model was calculated.
If the adjusted R2 meets pre-specified criteria, it suggests
the optimized time delay model could explain this target
gene's expression pattern and is applicable. Otherwise,
this target gene's expression pattern can't be explained by
our time delay linear regression model and maybe other
more complex nonlinear models are needed.

Implementation
Yeast cell cycle dataset
To evaluate our approach on biological time course gene
expression data, we applied the method to Saccharomy-
ces cerevisiae cell cycle data publicly available at GEO
http://www.ncbi.nlm.nih.gov/geo with accession number
GSE8799. The dataset includes the gene expression pro-
files of wild type cells and cyclin mutant cells at 15 time
points during two cell cycles and each genotype has two
replicates with different 15 time points on life line. In our
study, we merged the two replicates of each genotype
based on their life lines and then there were 30 time
points for wild type cells and cyclin mutant cells. 1271
periodic genes which were defined in Orlando's work[14]
and considered as cell cycle related genes formed the list
of target genes and their regulations were analyzed. A
candidate pool of potential regulators which included 35
transcription factors was constructed by intersecting the
1271 periodic genes with all transcription factors in the
YEASTRACT database [15,16]http://www.yeast-
ract.com/.

Time delay linear model
First, the data were transformed to a log2 ratio scale. The
expression level of the first time point was taken as base-
line. The gene expression level at each time point sub-
tracted the baseline to get the relative expression level.
Then B spline interpolation [17] was applied to expand
the original 30 time points to 100 time points.

Time delay linear models then were constructed based
on the interpolated expression data and candidate pool of
regulators, with the adjusted R2 cutoff for single regulator
regression and multiple regulator regression set at 0.8
and 0.9. Additional files 1 and 2 give the time delay mod-
els of wild type cells and cyclin mutant cells, respectively.

As an example, Figure 2 shows the time delay linear
regression model of the HO gene in wild type cells. HO
encodes an endonuclease responsible for initiating mat-
ing-type switching, a process in which MATa cells change
to MATalpha cells or vice versa. This process is con-
trolled by Swi4p-Swi6p, Swi5p, and Ash1p according to
the Saccharomyces Genome Database (SGD) [18]. In our
model, we found ASH1, TEC1, and SWI5 to be the mostly
likely regulators of HO.

Finally, the whole regulatory network was plotted based
on the series of time delay linear models. Additional files
3 and 4 give the time delay network of wild type cells and
cyclin mutant cells, respectively.

Comparison with YEASTRACT and STRING
To evaluate the performance of the gene regulatory net-
works constructed based on time delay linear models, we
generated a reference network from the YEASTRACT
[15,16] and STRING [19] databases. YEASTRACT is a
curated database of regulatory associations between tran-
scription factors and target genes in Saccharomyces cere-
visiae, based on the literature. STRING is a database that
quantitatively integrates direct (physical) and indirect
(functional) associations from different sources. We
found that 32.45% of our modeled regulations in wild
type cells and 32.61% of regulations in cyclin mutant cells
were consistent with YEASTRACT or STRING, a fair
result for large-scale gene network construction based on
a single small gene expression dataset [9].

The above prediction accuracies were calculated based
on the data presented in additional files 5 and 6. The last
two columns of each file compare the modeled regula-
tions in wild type (Additional file 5) and cyclin mutant
(Additional file 6) cells against data found in YEAST-
RACT or STRING. In these columns, 1 indicates consis-
tency with the database, 0 indicates inconsistency when
the regulator and target gene are included in the data-
base, and NA indicates the database does not include the
regulator or target gene. Regulations consistent with
either the YEASTRACT database or STRING database (1
in either column) were considered as true, while regula-
tions consistent or inconsistent with either the YEAST-
RACT database or STRING database (0 or 1 in either
column) were considered as total regulations. (Regula-
tions with NA in both the YEASTRACT database and
STRING database were excluded from accuracy calcula-
tion.) Prediction accuracy was defined as the number of
true regulations divided by the number of total regula-
tions.

The above comparison was on the probe level. Figure 3
shows the overlap of total predicted regulations with
YEASTRACT and STRING-documented regulations at

S tf1 1= { }’’

http://www.ncbi.nlm.nih.gov/geo
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the open reading frame (ORF) level in both wild type cells
and cyclin mutant cells.

The activity of transcription factors is an important fac-
tor for gene regulation. As many transcription factors are
post-translationally controlled, their activity cannot
always be observed directly by measuring changes in
their mRNA expression level. Additionally, certain condi-
tion-specific regulators vary with different perturbations;

for example, many regulatory relationships differ
between wild type and cyclin mutant cell networks. All of
these issues affect the overlap of our network with that
documented in the known databases. In general, there is
no final or best network, only a group of possible net-
works that are nearly equally useful.

Figure 2 The time delay linear regression model of the HO gene in wild type cells. (A) The expression pattern of HO and its regulators ASH1, TEC1, 
and SWI5. The solid lines represent interpolated values based on experimentally observed values (X symbol), and the black dotted line represents the 
values of the target gene fitted by the model. The colored dotted lines represent the regulatory contribution of each regulator; the black dotted line 
is the sum of these. The time delays of ASH1, TEC1, and SWI5 are 23.5, 29.4, and 29.4 minutes, respectively. Before 95.6 min, the cell cycle phase is re-
covering from synchrony; from 95.6 to 107.5 min, the phase is 1st cycle G1; from 107.5 to 122.9 min, the phase is 1st cycle S; from 122.9 to 172.5 min, 
the phase is 1st cycle G2/M; from 172.5 to 184.4 min, the phase is 2nd cycle G1; from 184.4 to 199.8 min, the phase is 2nd cycle S; from 199.8 to 249.3 
min, the phase is 2nd cycle G2/M. (B) Cell cycle diagram of corresponding model. The target gene HO and its regulators are arranged on the basis of 
the time of peak transcript levels.
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Comparison with regulatory networks without time delay
To better understand the impact of time delay in network
construction, we build the networks without time delay
in wild type cells and cyclin mutant cells by setting the
parameter of our program, max time delay as 0. When
time delay was not considered, there were only 3050 and
2489 predicted regulations in wild type cells and cyclin
mutant cells under the same criteria; 32.40% of predicted
regulations in wild type cells and 31.94% of predicted reg-
ulations in cyclin mutant cells were consistent with
YEASTRACT or STRING. As shown in additional files 5
and 6, if time delay is considered, the number of pre-
dicted regulations will increase 54.65% and 39.25%, to
4717 and 3466 in wild type cells and cyclin mutant cells,
respectively. And the percentages of known regulations in
the time delay considered networks in wild type cells and
cyclin mutant cells were 32.45% and 32.61%, slightly
higher than the networks without time delay. Our results
suggest that considering time delay in network construc-
tion will increase the number of predicted regulations,
but not increase the false positive rate.

Time delay network of eight well known transcription 
factors
Eight well known transcription factors (YOX1, STB1,
HCM1, WHI5, YHP1, ACE2, SWI5, and ASH1) studied
in Orlando's work[14] were specifically investigated
based on the time delay network of wild type cells. Figure
4shows the time delay network of these eight transcrip-
tion factors in wild type cells. Table 1 gives the detailed
parameters calculated in the time delay models. The pre-
dicted network consists of 14 regulations, eight of which
find support in YEASTRACT, STRING or David
Orlando's study [14]. The other six regulations might be
minor effects resulting from the major regulator's co-fac-
tors.

Conclusions
As expression profiling technology has grown in popular-
ity, much effort has been devoted to building gene regula-
tion networks based on the wealth of profiling data
generated. In this contribution, a new method is pro-
posed to not only construct dynamic gene regulatory net-
works, but also to calculate the time delays between
regulators and downstream genes. Time delay between
transcription factor activation/repression and that of its
target genes has long been suspected. Our tool allows a
visualization of exact time delays, calculated from real in
vivo data. Our approach can be applied to investigate
important time-related biological processes, such as the
cell cycle, cell differentiation and development. Similarly

such a method may be important for researchers studying
the mechanisms of specific transcription factors, their
pathways, and possible interventions for associated dis-
eases.

Methods
How to run GeneReg on the example dataset
Time delay regression models can be easily constructed
using the R package GeneReg, which is freely available
from CRAN http://cran.r-project.org/web/packages/
GeneReg/index.html. Additional file 7 contains GeneReg
version 1.1.1. Additional file 8 is the R code for the above
analysis. The processed example data mentioned above is
contained within the R package. We detail the usage of
GeneReg on the time course gene expression profiles of
wild type cells in the steps below. The analysis of cyclin
mutant cells was similar.

(1) B spline interpolation [17] was applied to estimate
the expression of 100 time points according to the origi-
nal data of 30 time points.

data(wt.expr.data)
wt.bspline.data < - ts.bspline(wt.expr.data, ts.point=

as.numeric(colnames(wt.expr.data)), data.predict = 100)
(2) A series of time delay linear models were con-

structed based on the interpolated expression data.
Detailed explanation of each parameter in the following
code can be found in the help document of the GeneReg
package at the above website.

data(tf.list)
wt.models < -timedelay.lm.batch(bspline.data =

wt.bspline.data, expr.data = wt.expr.data, regulator.list =
tf.list, target.list = rownames(wt.bspline.data), sin-
gle.adj.r.squared = 0.8, multiple.adj.r.squared = 0.9,
maxdelay = ncol(wt.bspline.data)*0.1, min.coef = 0.25,
max.coef = 4, output = T, topdf = T, xlab = 'Time point
(lifeline)', ylab = 'Relative expression level (in log ratio)')

(3) The whole network was plotted based on the series
of time delay linear models constructed in step (2).

plot.GeneReg(wt.models,vertex.size = 2,layout = lay-
out.fruchterman.reingold)

Availability and requirements
• Project name: GeneReg
• Project home page: http://cran.r-project.org/web/
packages/GeneReg/index.html
• Operating systems: Platform independent
• Programming language: R
• Other requirements: GeneReg depends on two
other R packages: splines and igraph
• License: LGPL
• Any restriction to use by non-academics: none

http://cran.r-project.org/web/packages/GeneReg/index.html
http://cran.r-project.org/web/packages/GeneReg/index.html
http://cran.r-project.org/web/packages/GeneReg/index.html
http://cran.r-project.org/web/packages/GeneReg/index.html
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Table 1: The time delay models of eight well known transcription factors for wild type cells

Regulator Target Coef Delay Adj.R. Squared YEASTRACT STRING Orlando et al. [14]

SWI5_YDR146C_1770349_at ASH1_YKL185W_1772030_at 0.594772 29.40695 0.998474 SWI5->YKL185W YDR146C <->YKL185W SWI5->ASH1

YHP1_YDR451C_1778368_at SWI5_YDR146C_1770349_at 0.27633 29.40695 0.998062 NA NA NA

ACE2_YLR131C_1771312_at SWI5_YDR146C_1770349_at 1.322992 0 0.998062 NA YLR131C <->YDR146C NA

SWI5_YDR146C_1770349_at ACE2_YLR131C_1771312_at 0.440266 0 0.996918 NA YDR146C <->YLR131C NA

YHP1_YDR451C_1778368_at ACE2_YLR131C_1771312_at -0.27086 29.40695 0.996918 NA NA NA

HCM1_YCR065W_1772793_at YHP1_YDR451C_1778368_at 0.264364 23.52556 0.997296 NA YCR065W <->YDR451C NA

STB1_YNL309W_1771976_at YHP1_YDR451C_1778368_at 0.37007 23.52556 0.997296 NA NA NA

HCM1_YCR065W_1772793_at YOX1_YML027W_1775720_at 1.119924 0 0.998627 NA YCR065W <->YML027W NA

STB1_YNL309W_1771976_at YOX1_YML027W_1775720_at -1.06256 29.40695 0.998627 NA NA NA

YHP1_YDR451C_1778368_at YOX1_YML027W_1775720_at 1.436395 0 0.998627 NA YDR451C <->YML027W NA

STB1_YNL309W_1771976_at HCM1_YCR065W_1772793_at 1.373068 11.76278 0.997623 NA NA STB1->HCM1

YOX1_YML027W_1775720_at HCM1_YCR065W_1772793_at 0.329105 0 0.997623 NA YML027W <->YCR065W NA

YOX1_YML027W_1775720_at STB1_YNL309W_1771976_at 0.364278 0 0.985918 NA NA NA

YOX1_YML027W_1775720_at WHI5_YOR083W_1772753_at 0.261895 17.64417 0.995457 NA NA NA
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Figure 4 Time delay network of eight well known transcription factors for wild type cells. Eight well known transcription factors (YOX1, STB1, 
HCM1, WHI5, YHP1, ACE2, SWI5, and ASH1) were specifically investigated based on the time delay network of wild type cells. The genes are arranged 
based on time of peak transcript levels. A red arrow indicates positive regulation; green indicates negative regulation.
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