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Summary
Background Limited knowledge exists regarding behavioral and biomarker shifts during the period from respiratory
infection exposure to testing decisions (the diagnostic decision period), a key phase affecting transmission dynamics
and public health strategy development. This study aims to examine the changes in behavior and biomarkers during
the diagnostic decision period for COVID-19, influenza, and group A streptococcus (GAS).

Methods We analyzed data from a two-year prospective cohort study involving 4795 participants in Israel,
incorporating smartwatch data, self-reported symptoms, and medical records. Our analysis focused on three
critical phases: the digital incubation period (from exposure to physiological anomalies detected by smartwatches),
the symptomatic incubation period (from exposure to onset of symptoms), and the diagnostic decision period for
influenza, COVID-19, and GAS.

Findings The delay between initial symptom reporting and testing was 39 [95% confidence interval (CI): 34–45] hours
for influenza, 53 [95% CI: 49–58] hours for COVID-19, and 38 [95% CI: 32–46] hours for GAS, with 73 [95% CI:
67–78] hours from anomalies in heart measures to symptom onset for influenza, 23 [95% CI: 18–27] hours for
COVID-19, and 62 [95% CI: 54–68] hours for GAS. Analyzing the entire course of infection of each individual,
the greatest changes in heart rates were detected 67.6 [95% CI: 62.8–72.5] hours prior to testing for influenza,
64.1 [95% CI: 61.4–66.7] hours prior for COVID-19, and 58.2 [95% CI: 52.1–64.2] hours prior for GAS. In
contrast, the greatest reduction in physical activities and social contacts occurred after testing.

Interpretation These findings highlight the delayed response of patients in seeking medical attention and reducing
social contacts and demonstrate the transformative potential of smartwatches for identifying infection and enabling
timely public health interventions.
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Introduction
Infectious diseases pose a significant threat to human
health.1 Similar to controlling the spread of wildfires,
early detection of infectious diseases is instrumental in
containing outbreaks. However, nearly all infections
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start silently and gradually progress until clinical
symptoms appear. In this silent period, known as the
incubation period, pathogens inhibit the immune sys-
tem’s major pathways, allowing an extended period of
unhindered replication.2,3 The replication rate, type, and
iversity, Tel Aviv 6997801, Israel.
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Research in context

Evidence before this study
Nearly all infectious diseases begin silently and progressively
worsen until clinical symptoms appear, leading to personal
decisions such as modifying social activities and seeking
diagnostic tests and treatment. Limited knowledge exists
regarding the changes in behavior and biomarkers during the
period from respiratory infection exposure to the decision to
undergo testing (the diagnostic decision period), a crucial
phase affecting transmission dynamics and public health
strategy development. To the best of our knowledge, no
comprehensive study has been conducted to examine these
changes during the diagnostic decision period for COVID-19,
influenza, and group A streptococcus (GAS). We searched
Google Scholar, PubMed, and preprint services (including
medRxiv, bioRxiv, and SSRN) for relevant studies between
November 1, 2023, and February 1, 2024. We imposed no
language restrictions and utilized search terms (“human
behavior” OR “social behavior” OR “behavioral” OR
“physiological” OR “biomarkers”) AND “reactions during”
AND (“incubation period” OR “time from exposure to
symptoms” OR “time from exposure to testing”) AND (“of”
OR “for”) AND (“influenza” OR “influenza-like illness” OR
“COVID-19” OR “SARS-CoV-2” OR “Group A streptococcus”
OR “GAS”). We identified relevant studies for influenza and
COVID-19 only.
For influenza, we found a clinical trial involving participants
deliberately exposed to influenza while equipped with
wearable devices. The primary objective was to assess the
impact of pharmaceutical intervention. Within the placebo
group, comprising 45 participants, a discernible increase in
heart rate and blood pressure was observed, peaking on the
third day post-exposure compared to the 24 h preceding
exposure. However, the study did not investigate behavioral
alterations or physiological responses throughout the
diagnostic decision period.
For COVID-19, we found several studies. A retrospective study
of 2745 individuals who owned wearable devices and were
diagnosed with COVID-19 between February 16 and
September 9, 2020 identified variations in heart rate and
respiratory rate manifesting as early as 10 days before
symptom onset. A separate observational study focusing on
297 health workers equipped with smartwatches identified
significant changes in heart rate variability metrics occurring
seven days before a positive COVID-19 diagnosis. In another
observational prospective study involving 32 subjects who

tested positive for COVID-19, changes in heart rate, steps
taken, and time asleep were observed during the pre-
symptomatic period. We did not find related papers
discussing GAS.

Added value of this study
Our study bridges a crucial knowledge gap regarding the early
stages of infectious diseases. Through a novel two-year
prospective cohort study of 4795 participants in Israel,
integrating smartwatch data, self-reported symptoms, and
medical records, we analyze three key phases—the digital
incubation period (from exposure to anomalies in
physiological measures), the incubation period (from
exposure to symptom onset), and the diagnostic decision
period (from exposure to testing)—for influenza, COVID-19,
and GAS. Our data included 490 episodes of influenza, 2206
episodes of COVID-19, and 320 episodes of GAS during the
study period. We found a significant reduction in physical
activities and contact encounters post-testing, but the
greatest changes in heart rates were detected 67.6 [95%
confidence interval (CI): 62.8–72.5] hours prior to testing for
influenza, 64.1 [95% CI: 61.4–66.7] hours prior for COVID-19,
and 58.2 [95% CI: 52.1–64.2] hours prior for GAS. The delay
between initial symptom reporting and testing was 39 [95%
CI: 34–45] hours for influenza, 53 [95% CI: 49–58] hours for
COVID-19, and 38 [95% CI: 32–46] hours for GAS, with 73
[95% CI: 67–78] hours from anomalies in heart measures to
symptom onset for influenza, 23 [95% CI: 18–27] hours for
COVID-19, and 62 [95% CI: 54–68] hours for GAS.

Implications of all the available evidence
Our findings underscore a critical delay in testing and
behavior change: individuals tend to seek testing and alter
their behaviors only after their condition begins to improve,
specifically after the peak of the illness, as evidenced by self-
reported symptoms and heart rate measures. This delay from
symptom onset to testing, with behavioral adjustments
occurring predominantly on or after the test day, highlights a
significant gap in timely disease management. Additionally,
we found that changes in heart rate and heart rate variability
precede symptom reporting, indicating the need to reassess
the conventional incubation period to include digital markers.
These insights are vital for improving understanding of
transmission dynamics and advancing public health response
strategies.
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length of suppressed symptoms vary considerably be-
tween pathogens. Once detected by the immune system,
variations in heart measures including resting heart
rate, heart rate, and heart rate variability (HRV) can
serve as biomarkers for the inflammatory response.4,5

While behavioral adaptations such as self-isolation play
a significant role in influencing disease transmission,6–8
a crucial gap persists in our understanding of the rela-
tionship between the early stages of infection and sub-
sequent changes in individual behavior.

Understanding behavioral dynamics is crucial for
devising effective public health strategies to combat in-
fectious diseases. Various models investigating infec-
tious disease responses have underscored the critical
www.thelancet.com Vol 42 July, 2024
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impact of behavioral adaptation during disease
progression.9–12 Behavioral adaptations include reducing
physical contact, accelerating diagnostic testing, and
initiating early treatment. However, a notable limitation
of these models is their theoretical nature, often devoid
of empirical data to substantiate their assumptions.13

Wearable technology, such as smartwatches, offers
an innovative approach to continuous monitoring of
physiological responses throughout the course of an
individual’s infection.14–17 These devices can detect
physiological anomalies signaling disease presence
more promptly and accurately than self-reported symp-
toms. Several empirical studies have demonstrated the
ability of wearable sensors to detect communicable
diseases such as COVID-19, influenza, and rhinovirus
with significant accuracy, often identifying infections
before the appearance of symptoms.15,18–24

Limited knowledge exists at the individual level
regarding changes in behavior and biomarkers during
the diagnostic decision period—the interval from
exposure to an infectious disease to the decision to
undergo testing. This phase is critical as it signifi-
cantly influences transmission dynamics and the
development of effective public health interventions.
A clinical trial involving wearable devices and delib-
erate exposure to the influenza virus revealed
increased heart rate and blood pressure among par-
ticipants.25 An analysis of cell-phone call records dur-
ing the 2009 H1N1v pandemic found reduced mobility
among individuals diagnosed with influenza-like
illness.26 For COVID-19, studies have identified vari-
ations in heart rate, HRV, steps, and respiratory rate
preceding symptom onset,18,27,28 emphasizing the
importance of recognizing early markers for timely
interventions. Yet, a holistic understanding of behav-
ioral and physiological shifts during the diagnostic
period remains incomplete.

We combined daily symptom questionnaires with
data from wearable sensors, aiming to examine the
changes in behavior and biomarkers during the diag-
nostic decision period (from exposure to the decision to
undergo testing) for COVID-19, influenza, and group A
streptococcus (GAS). We examined three critical pe-
riods: the digital incubation period (from exposure to
anomalies in physiological measures), the symptomatic
incubation period (from exposure to symptom onset),
and the diagnostic period. Using a comprehensive
dataset that combines data from electronic medical re-
cords (EMRs) and smartwatch sensor data along with
daily participant questionnaires from 4795 participants
in an ongoing clinical trial, we identified events related
to positive diagnoses of influenza, COVID-19, and GAS,
including symptom onset and diagnosis. We correlated
these findings with measures that may influence disease
transmission: physical activity as measured by the
smartwatches (daily steps, distance walked, active time,
active calories) and number of daily contacts and sports
www.thelancet.com Vol 42 July, 2024
duration as reported by the participants. Our study il-
luminates the lag between infection and testing and
underscores the revolutionary role of smartwatches and
patient self-reporting in paving the way for better un-
derstanding disease progression and quicker public
health responses.
Methods
Participants and study design
The ongoing PerMed prospective observational study
included 4795 participants aged 18 and older, recruited
between Nov 16, 2020 and May 11, 2023 from various
locations across Israel (SI Appendix B). Participant
recruitment was carried out through social media ad-
vertisements and word-of-mouth. Each participant
signed an informed consent form after receiving a
detailed explanation of the study from a professional
survey company.

Eligibility for the PerMed study required participants
to be 18 years or older, members of Maccabi Healthcare
Services (Maccabi) at the time of enrollment and for at
least the preceding two years, smartphone users, and
capable of providing written informed consent inde-
pendently. Maccabi, the second-largest healthcare pro-
vider in Israel,29 serves approximately 25% of the
population, totaling around 2.5 million members.

We analyzed the data of individuals who tested pos-
itive for influenza, COVID-19, or GAS, as recorded by
health professionals in their EMRs or self-reported in
the application, from the day of enrollment until the end
of October 2023 (Fig. 1).

All participants received both oral and written advice
about the study and provided written informed consent
for participation. The study was approved by the Hel-
sinki institutional review board of Maccabi Healthcare
Services (protocol number 0122-20-MHS).

Procedures
Participants completed a one-time enrollment question-
naire. All participants received Garmin Vivosmart 4
smartwatches and installed two applications on their mo-
bile phones: (1) the PerMed application (SI Appendix B),
which collects daily self-reported questionnaires, and (2) an
application that passively records smartwatch data. All
participants downloaded the same application on their cell
phones, regardless of the operating system.

Participants were encouraged to wear their smart-
watches as much as possible. A survey company used a
dedicated dashboard to monitor compliance, ensuring
that participants completed their questionnaires at
least twice per week, kept their smartwatches charged
and properly worn, and resolved any technical issues
with the mobile applications or smartwatches (SI
Appendix D).

The questionnaire allowed participants to report
observed signs and symptoms during influenza,
3
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Fig. 1: Trial profile for the study cohort.

Articles

4

COVID-19, or GAS infections, with an option to add
other symptoms as free text (SI Appendix B). Among
other features, the smartwatch collects data on heart
rate, HRV-based stress, and daily resting heart rate. We
focused on these measures because they provide
continuous information on two major human body
systems: the cardiovascular and the nervous systems.14

Additionally, heart rate is a vital sign that is often used
to detect inflammation in general and heart inflamma-
tion specifically, and is recorded by a wide variety of
smartwatches and sampled in high frequency in our
database (every 15 s as opposed to resting heart rate,
which was calculated daily).

To minimize data inconsistencies across different
smartwatch brands, all participants were equipped with
Garmin Vivosmart 4 smart fitness trackers. These de-
vices feature an optical wrist heart rate monitor that
continuously tracks the user’s heart rate. The frequency
of heart rate measurement varies and sometimes de-
pends on the user’s activity level: it increases when the
user starts an activity. As HRV data was not easily
accessible through Garmin’s application programming
interface, we utilized Garmin’s stress level measure-
ment, which is based on HRV.30–33 Specifically, the de-
vice uses heart rate data to determine the interval
between heartbeats, with decreased variability between
beats correlating with higher stress levels, and vice
versa. In our study, we identified heart rate samples
approximately every 15 s and an HRV sample every
180 s.

Several preventive measures were implemented to
minimize participant attrition and discomfort, thus
improving the quality, continuity, and reliability of the
collected data. Firstly, participants who did not complete
their daily questionnaire by 1900 h received a reminder
through the PerMed application. Secondly, a dedicated
dashboard enabled the survey company to identify par-
ticipants who repeatedly neglected to complete the daily
questionnaire or to wear their smartwatch. These par-
ticipants were contacted (via text or phone call) and
encouraged to adhere to the study protocol. Thirdly, to
engage participants, a weekly summary report was
generated in the PerMed application, and a monthly
newsletter with recent findings and smartwatch tips was
sent out. At the end of the two-year study, participants
received all their insights and were gifted with the
smartwatch.

A dedicated data collection platform was developed to
collect, for each participant, data from the smartphone
sensors and daily questionnaires via the Permed appli-
cation, and from the smartwatch sensors via the Garmin
server (SI Appendix C, Supplementary Fig. S4). This
data is securely stored at Tel Aviv University facilities.
The exact date of testing for each positive diagnosis was
recorded in the individual’s medical record if they
sought care. If participants conducted a rapid test, they
were instructed to report the testing time in the PerMed
app. For participants with more than one positive re-
cord, only the earliest recorded testing time was used for
each disease (SI Appendix E).

Statistical analysis
Our statistical analyses proceeded by identifying the
earliest testing date for each case of influenza, COVID-
19, and GAS; identifying the time at which the first
symptom was reported; estimating the time when the
individual was exposed to the disease; and identifying
the first time at which an anomaly in heart rate measure
was detected by the smartwatch (Supplementary
Fig. S1).
www.thelancet.com Vol 42 July, 2024
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Establishing case definitions for influenza, COVID-
19, and GAS
Positive diagnoses were either recorded in the in-
dividual’s medical record following clinical care or self-
reported in the application for those using home rapid
test kits. Participants were instructed to report the test
time and result in the app. In cases where participants
had multiple positive reports, we used only the earliest
reported time for each disease (SI Appendix D,
Supplementary Table S1).

An influenza case was defined as testing positive on
an antigen influenza or PCR test, with no positive
COVID-19 test within a ±14-day range.

We defined a COVID-19 case as one where an indi-
vidual tested positive through either a PCR test admin-
istered by Maccabi or via an antigen test at home.

A GAS case was defined as positive either via a throat
culture test or a rapid antigen test. Additionally, a
diagnosis was considered a GAS case if 1) the individual
reported being diagnosed with a throat infection, 2)
received antibiotics, and 3) was not diagnosed with
COVID-19 or influenza within a 14-day window before
and after the report. This inclusion is based on the use
of clinical criteria, such as the US centers for Disease
Control and Prevention (CDC) criteria, for diagnosing
GAS.

For each disease-specific cohort, we established
control groups consisting of individuals not diagnosed
with the disease, and who had no illness reports for
three weeks before and one week following the test date.
We also excluded individuals reporting a fever over
37.5 ◦C or experiencing sensations of warmth. We
matched control participants to the infected participants
based on sex (female, male) and age brackets: 20–29,
30–39, 40–49, 50–59, 60–69, and 70+ years. For each
control participant, we analyzed their heart rate data on
the same dates as their matched counterpart.

Estimation of early phase periods of infections
Digital incubation period: We introduce this term to
describe the period from exposure to the pathogen until
a physiological anomaly is detectable through digital
means. The digital incubation period might also be
regarded as the “true incubation period” since physio-
logical changes, such as heart rate variations, are in fact
clinical symptoms, irrespective of whether they are
perceptible to the patient.

Incubation period: This refers to the time from
pathogen exposure to the initial appearance of symp-
toms and signs that are perceivable by the individual.

Diagnostic decision period: This is the interval be-
tween exposure to the pathogen and the point of testing.

To estimate these periods, we first identified epi-
sodes where participants were diagnosed with COVID-
19, influenza, or GAS, based on our case definitions.
The date of testing was established as the point when
the individual underwent a first diagnostic test within a
www.thelancet.com Vol 42 July, 2024
horizon of 14 days. Next, we identified the first new
symptom by reviewing self-reported symptoms from the
week leading up to the testing date, including the day of
testing itself. We chose to consider one week before
because a symptom is likely sufficiently “new” if it was
reported in the week just before testing (from −6 days to
the day of testing) and not in the preceding week (−13
to −7 days from testing). For instance, if a participant
reported a headache one day before testing and also nine
days prior, we did not consider the headache as a first
symptom. We then associated specific symptoms with
each disease according to US CDC guidelines:

• For influenza: Feeling hot, having a temperature
over 37.5 ◦C, chills, sore throat, cough, muscle pain,
weakness, feeling cold, and headache.

• For COVID-19: Feeling hot, temperature over
37.5 ◦C, chills, cough, loss of taste or smell, muscle
pain, sore throat, dyspnea, weakness, vomiting,
headache, and diarrhea.

• For GAS: Feeling hot, temperature over 37 .5 ◦C,
sore throat, and vomiting.

To ensure that the individuals were not infected in
the baseline, we excluded participants who reported fe-
ver symptoms during the baseline period.

The exact time of exposure is unknown. However,
drawing on existing literature, the incubation period for
influenza is typically 1–4 days,34 for COVID-19 is 2–5
days,2 and for GAS is 2–5 days.35 To estimate the time of
exposure conservatively, we assume the exposure
occurred at a point that allows for the maximum plau-
sible duration between exposure and the average onset
of the first symptom. We excluded participants who did
not have at least one questionnaire filled out during the
week before exposure and one week after exposure.
Estimates for these three points (exposure, first symp-
tom, and testing date) allowed us to identify the incu-
bation period and the diagnostic decision period.

To estimate the digital incubation period, we sought
to identify anomalies in individuals based on heart rates
and HRV-based stress. We first filtered out all data
points captured during periods of physical activity. This
exclusion applies to sessions that participants actively
logged via the Garmin Connect application during
sports activities as well as those autonomously detected
by the smartwatch. The device’s algorithm, which pri-
marily utilizes motion data, is designed to identify and
exclude periods of physical exercise, postural changes,
and recovery phases at intervals of every 3 min,30 thereby
efficiently recognizing various types of exercises,
including walking and running. Additionally, we
conservatively removed segments lasting 3 min where
insufficient data points made it challenging to ascertain
the existence of physical activity.

We then determined the average values of each
participant’s heart rate and HRV-based stress over 6-h
5
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periods (SI Appendix E). This calculation began two
weeks prior to the estimated exposure time and
continued until two weeks after. Following this, for each
participant and every 6-h window, we computed the
difference between the average of the measured values
and the average from the corresponding 6-h period in
the previous week that occurred before estimated
exposure, while maintaining consistency in the day and
time.

Participants lacking recorded data for these in-
tervals (e.g., if they did not consistently wear their
smartwatch before and after the exposure period) were
excluded from this analysis. The differences in these
averages were found to have similar means and vari-
ances and were very weakly correlated.14 Subsequently,
we applied X-bar control charts,36,37 using the data from
exposure until testing (SI Appendix E, Supplementary
Figs. S5 and S6). An anomaly was identified conser-
vatively as the first instance where the 6-h differences
in average heart rate and average HRV-based stress
exceeded the control limits.14 For validation, we
extended our search to a broader range that encom-
passes the baseline period—spanning a week before
the estimated incubation period through to the testing
phase—to ensure that the initially identified anomaly
does not occur during the baseline period. To confirm
that the anomalies detected in the X-bar charts are not
merely single-point outliers, we conducted a
segmented regression analysis in which we fit the data
to two linear segments and calculated the total sum of
squared errors for any potential segment combination
(SI, Supplementary Figs. S7 and S8).

To assess whether the most significant changes in
heart rate occurred before or after testing, our procedure
entailed two steps. First, for each individual, we pin-
pointed the maximum average difference in heart rates
over a 6-h span during the diagnostic decision period.
We then identified the maximal 6-h difference in heart
rates following the diagnostic decision period, ensuring
an equal number of data points both before and after the
diagnostic decision period. This approach allowed for a
balanced comparison of similar intervals. Subsequently,
we applied a paired sample t-test to statistically analyze
these differences.

Employing the same procedure, we aimed to identify
whether significant changes in behavioral metrics
occurred before the testing day or started on the testing
day and continued thereafter. We assessed the daily
number of contacts and the duration of sports activities
as reported by participants, and daily step counts, active
calories, active time, and total daily distance computed
by the smartwatch.

Role of the funding source
The funders of this study had no role in data collection,
analysis, interpretation, writing of the manuscript, or
the decision to submit the manuscript.
Results
Details of the cohort are provided in Table 1. Among the
4795 participants, our data included 490 episodes of
influenza, 2206 episodes of COVID-19, and 320 epi-
sodes of GAS during the study period. We were able to
match 453 participants for influenza, 1947 for COVID-
19 and 329 for GAS based on age and sex for control
groups. Among those infected with influenza, 279
(56.9%) participants were women and 211 (43.1%) were
men. Their age ranged from 22 to 90 years, with a
median age of 50 years. Among those infected with
COVID-19, 1137 (51.5%) participants were women and
1069 (48.5%) were men. Their age ranged from 20 to 89
years, with a median age of 43 years. Among those
infected with GAS, 182 (57.9%) participants were
women and 137 (42.8%) were men. Their age ranged
from 20 to 76 years, with a median age of 38 years. The
control cohort for each disease was similarly matched by
sex, age, BMI, and presence of comorbidities (Table 1).

For each disease—influenza, COVID-19, and GAS—
we calculated the average time from exposure to detec-
tion of heart rate anomalies in participants (heart rate
and HRV-based stress), symptom onset, and testing.
Using existing literature to estimate the benchmark
exposure times, we defined three distinct periods rela-
tive to exposure: the digital incubation period, the in-
cubation period, and the diagnostic decision period
(Fig. 2). We found a considerable lag between testing
time and symptom onset: 39 [95% confidence interval
(CI): 34–45] hours for influenza, 53 [95% CI: 49–58]
hours for COVID-19, and 38 [95% CI: 32–46] hours for
GAS. The delay in testing was also demonstrated in
physiological measures. When we ran the same method
on the control participants’ heart rate measures, no
anomaly was found.

The maximal changes in heart rate before testing
were significantly higher on average than those
observed at or after the time of testing (paired t-tests, p-
values < 0.001 for all three diseases), with heart rates
averaged over a duration of 6 h. Specifically, the change
was 4.6 beats per minute (BPM) [95% CI: 3.2–5.9] for
influenza, 3.6 [95% CI: 2.8–4.3] BPM for COVID-19,
and 5.5 [95% CI: 3.4–7.6] BPM for GAS.

The maximum difference occurred 67.6 [95% CI:
62.8–72.5] hours prior to the test for influenza, 64.1
[95% CI: 61.4–66.7] hours prior to the test for COVID-
19, and 58.2 [95% CI: 52.1–64.2] hours prior to the test
for GAS, indicating that by the time participants tested
themselves, their general health condition had already
improved. We found a similar pattern for HRV-based
stress. No significant difference in heart rate or HRV
was observed for the control groups (p values < 0.001).

We identified a considerable lag between the detec-
tion of heart rate anomalies by the smartwatches and the
onset of symptoms as reported by the participants: 73
[95% CI: 68–78] hours from anomalies in heart mea-
sures to symptom onset for influenza, 23 [95% CI:
www.thelancet.com Vol 42 July, 2024
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Case cohort Control cohort

Influenza
(n = 490)

COVID-19
(n = 2206)

Group A strepto-coccus
(n = 320)

Influenza
(n = 453)

COVID-19
(n = 1947)

Group A strepto-coccus
(n = 298)

Sex

Female 279 (56.9%) 1137 (51.5%) 182 (56.9%) 261 (57.6%) 987 (50.7%) 172 (57.7%)

Male 211 (43.1%) 1069 (48.5%) 138 (43.1%) 192 (42.4%) 960 (49.3%) 126 (42.3%)

Age (years)

20–29 61 (12.4%) 388 (17.6%) 56 (17.5%) 57 (12.6%) 341 (17.5%) 53 (17.8%)

30–39 83 (16.9%) 521 (23.6%) 118 (36.9%) 72 (15.9%) 449 (23.1%) 110 (36.9%)

40–49 96 (19.6%) 441 (20.0%) 74 (23.1%) 88 (19.4%) 398 (20.4%) 67 (22.5%)

50–59 115 (23.5%) 426 (19.3%) 36 (11.2%) 109 (24.0%) 394 (20.2%) 34 (11.4%)

60–69 93 (19.0%) 295 (13.4%) 23 (7.2%) 85 (18.8%) 245 (12.6%) 23 (7.7%)

70+ 42 (8.6%) 135 (6.1%) 13 (4.1%) 42 (9.3%) 120 (6.2%) 11 (3.7%)

Median (IQR) 50 (38–61) 43 (33–56) 38 (32–47) 53 (37–61) 44 (33–57) 38 (31–48)

BMIa

<30 375 (76.5%) 1722 (78.0%) 249 (77.8%) 358 (79.0%) 1522 (78.2%) 240 (80.5%)

≥30 113 (23.1%) 476 (21.6%) 71 (22.2%) 95 (21.0%) 421 (21.6%) 58 (19.5%)

Unspecified 2 (0.4%) 8 (0.4%) 0 0 4 (0.2%) 0

Median (IQR) 26 (23–29) 25 (22–29) 26 (23–29) 25 (22–29) 25 (23–29) 24 (22–28)

Comorbiditiesb

No 417 (85.1%) 1943 (88.1%) 283 (88.4%) 387 (85.4%) 1711 (87.9%) 268 (89.9%)

Yes 73 (14.9%) 263 (11.9%) 37 (11.6%) 66 (14.6%) 236 (12.1%) 30 (10.1%)

Population sector

General Jewish 414 (84.5%) 2072 (93.9%) 270 (84.4%) 430 (94.9%) 1832 (94.0%) 275 (92.3%)

Ultra-orthodox
Jewish

6 (1.2%) 46 (2.1%) 10 (3.1%) 10 (2.2%) 46 (2.4%) 9 (3.0%)

Arab 5 (1.0%) 14 (0.6%) 4 (1.3%) 2 (0.5%) 19 (1.0%) 3 (1.0%)

Unknown 65 (13.3%) 74 (3.4%) 36 (11.2%) 11 (2.4%) 50 (2.6%) 11 (3.7%)

aBMI is defined as weight in kilograms divided by the square of the height in meters. bComorbidities were at least one of the following: diabetes, heart disease, chronic lung
disease, immune suppression, cancer, or renal failure.

Table 1: Description of case and control cohorts.
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18–27] hours for COVID-19, and 62 [95% CI: 54–68]
hours for GAS.

Behavioral changes
We evaluated daily behavior throughout the early stage
of infection, focusing on measures that may be asso-
ciated with transmission. These include daily steps,
daily distance walked, active time, and active calories
collected by the smartwatches, as well as the number of
daily contacts and sports duration reported by the
participants. Overall, we found that the greatest
reduction in these measures was observed on the day
of testing or after the day of testing (Supplementary
Table S2). For example, compared to baseline, on the
day of testing we observed a reduction of 2372 [95% CI:
1783, 2962] in daily steps for patients with influenza,
1884 [95% CI: 1597–2173] for COVID-19, and 2042
[95% CI: 1267–2817] for GAS, and a reduction of 2.84
[95% CI: 1.52–4.16] in daily physical contacts for pa-
tients with influenza, 1.26 [95% CI: 0.31–2.20] for
COVID-19, and 3.65 [95% CI: 1.46–5.83] for GAS
(Fig. 3, Supplementary Table S2). In contrast, we
observed smaller or no reductions in the same
www.thelancet.com Vol 42 July, 2024
measures on the day of symptom onset compared to a
matching day (daily steps: influenza 1428 [95% CI:
865–1991], COVID-19 700 [95% CI: 395–1005], GAS
1802 [95% CI: 1129–1474]; daily contacts: influenza
0.13 [95% CI: −2.00 to 2.25], COVID-19 0.55 [95%
CI: −0.53 to 1.63], GAS 0.77 [95% CI: −2.81 to 4.36]),
and no reduction at the time when the smartwatches
detected anomalies in the heart measures. We found a
similar pattern for daily distance walked, active time,
active calories, and sports duration (Supplementary
Fig. S2 and Table S2).

Self-reported reactions
Next, we evaluated the association between the decision
to undergo testing and the specific symptoms reported
by individuals. We calculated the daily proportion of
individuals reporting each symptom each day (Fig. 4).
For influenza, the most common self-reported symp-
toms were sore throat, cough, and general weakness.
For COVID-19, individuals frequently reported experi-
encing a cough, weakness, sore throat, and headaches.
For GAS, the predominant symptoms included a sore
throat, fever exceeding 37 .5 ◦C, and feeling hot.
7
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Fig. 2: Changes in heart rate and heart rate variability (HRV) following infection with influenza, COVID-19, and group A streptococcus (GAS), throughout the
early phase of infection for case groups (blue) and control groups (gray). For each group, the difference is compared to the matching time of the week that occurred
before exposure, as recorded by the smartwatches. The panels show the mean difference between the baseline period and the period after baseline for case groups (in
blue) and control groups (in gray). Mean values are depicted as solid lines and standard error ranges are shown as shaded regions. The green point indicates the average
time of detection of heart rate measure anomalies; this is the end point of the digital incubation period. The yellow point indicates the average time of the first reported
symptom; this is the endpoint of the symptomatic incubation period. The red point indicates the average time of testing. A) Changes in heart rate following infection
with influenza, COVID-19, and group A streptococcus (GAS). (Case groups: n influenza = 311; n COVID-19 = 1114; n GAS = 193. Control groups: n influenza = 383; n
COVID-19 = 1617; n GAS = 239). B) Changes in heart rate variability (HRV)-based stress. (Case groups: n influenza = 313; n COVID-19 = 1118; n GAS = 193. Control groups:
n influenza = 387; n COVID-19 = 1625; n GAS = 242).
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On the testing day, patients typically reported multiple
symptoms: an average of 4.73 symptoms for influenza,
2.96 for COVID-19, and 1.59 for GAS (Fig. 4). We
identified a substantial variation between specific symp-
toms and the decision to seek testing. For example, for
patients reporting a body temperature exceeding 37.5 ◦C,
testing occurred within 24–48 h for all three diseases: for
influenza, 63% of participants were tested within the first
24 h and 69.7% within 48 h; for COVID-19, the respective
figures were 60.3% and 83.8%; and for GAS, the
www.thelancet.com Vol 42 July, 2024
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Fig. 2: (continued)
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respective figures were 53.4% and 67.1%. The presence
of a sore throat was associated with a more moderate
testing response: within 48 h of symptom onset, only
51.9% of influenza patients, 66.1% of COVID-19 pa-
tients, and 53.4% of GAS patients sought testing
(Supplementary Fig. S3).
Discussion
Our study highlights two aspects of infectious disease
management: the behavioral response of patients after
symptom onset and the transformative role of
www.thelancet.com Vol 42 July, 2024
smartwatch data in early detection. We observed a
notable delay in patients reducing physical activities after
the onset of symptoms which, considering the peak
transmissibility phases of COVID-19, influenza, and
GAS, suggests that early testing and self-isolation are
crucial to curb transmission. Our research supports the
utilization of smartwatch data in detecting the changes in
heart rate and heart rate variability that precede the
reporting of symptoms. These findings advocate for a
reevaluation of the traditional incubation period, incor-
porating digital markers to enable timely testing and self-
isolation.
9
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Fig. 3: Behavioral measures compared to baseline over time for influenza (panel A), COVID-19 (panel B), and group A streptococcus
(panel C), as recorded by the smartwatches (steps) or reported in the questionnaires (number of contacts with other people) (Steps: n
influenza = 312; n COVID-19 = 1079; n GAS = 200; Daily contacts: n influenza = 155; n COVID-19 = 540; n GAS = 87). Mean values are
depicted as solid lines and standard errors are shown as error bars. The 0 point represents the estimated mean time of exposure based on the
first symptom and the literature incubation period upper bound. The green point indicates the average day of detection of heart rate measure
anomalies; this is the endpoint of the digital incubation period. The yellow point indicates the average day of the first reported symptom; this is
the endpoint of the symptomatic incubation period. The red point indicates the average day of a positive test or self-report.
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We found a delay between heart rate anomalies and
the initial reporting of symptoms, as well as a substantial
behavioral change that occurs only on the test day or af-
ter. The clinical symptoms detected as anomalies in the
heart measures were unseen or ignored by patients. At
symptom onset, patients had modest behavior change
but the greatest behavior change occurred after testing—
by which time the impact on disease transmission may
be minimal. Prior research has estimated that the trans-
missibility peaks on or around the day of symptom onset
for influenza,38,39 approximately one day before symptom
onset for COVID-19,40–42 and during the incubation
period for GAS.43 Our results also reveal that physical
activity reduction typically occurred after heart rate pat-
terns began reverting to baseline levels. These findings of
the behavioral patterns of infected individuals highlight
the value of distributing rapid test kits to facilitate early
self-isolation and reduce further transmission.

Our study provides substantial evidence supporting
the use of smartwatch data for the early detection of
infectious diseases, which suggests a paradigm shift in
the examination of the incubation period for infectious
diseases. Our anomaly detection algorithm identified
changes in both heart rate and heart rate variability from
smartwatch data at least one day before infected in-
dividuals reported symptoms for all three diseases un-
der study. Examining these variations in heart rate
patterns will increase clinical understanding of the in-
cubation period for infectious diseases. Future research
on disease transmission should include related symp-
toms detectable by smartwatches or other wearable de-
vices when measuring the incubation period, or
alternatively, present data on the digital incubation
period alongside traditional metrics.

Our study has several limitations. First, participants
were recruited via advertisements on social media and
word-of-mouth, making our cohort a convenience sam-
ple. The demanding study requirements—wearing the
smartwatch and filling out daily questionnaires for two
years—made participation less appealing to certain
www.thelancet.com Vol 42 July, 2024
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Fig. 4: Percentage of each symptom self-reported during the days before and after a positive test report for influenza (panel A), COVID-
19 (panel B), and Group A streptococcus (panel C) (n influenza = 405; n COVID-19 = 1,304, n GAS = 219). The darker the color, the higher
the percentage of the reported symptoms out of the total reports on a specific day. The positive test report day is marked in red on the x-axis.
Day 0 represents the day of estimated exposure. The symptom list for every disease is based on the CDC definitions for known symptoms. For
each known symptom defined by the CDC we calculated the percentage of the total reports on the same day where the symptom was reported
by positive participants.
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populations. We relied on participants’ reports to
determine the onset of the first symptom and, in some
cases, to ascertain the time of positive test confirmation.
Although participants were instructed to report daily,
potential delays may exist between the actual occurrence
www.thelancet.com Vol 42 July, 2024
of symptoms or test results and their reporting. Addi-
tionally, the participants were slightly older than the
general Israeli population, so our analyses might not be
fully generalizable to the entire Israeli or global
population.
11
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Similarly, gaps in smartwatch data collection posed
challenges in accurately identifying key time points in
disease progression. Additionally, while a significant
proportion of positive tests for COVID-19 and GAS were
corroborated by PCR tests as recorded by EMRs from
Maccabi (92.7% and 48.1%, respectively), influenza
diagnosis predominantly relied on self-reports using
antigen kits.

Second, the lack of precise information regarding the
time and date of exposure introduces uncertainties.
Consequently, setting the baseline endpoint as six days
before a positive test may be an oversimplification.
Third, the clinical importance of continuous monitoring
of cardiac metrics, including heart rate and heart rate
variability, remains to be fully established in the context
of infectious disease surveillance.

Finally, the Garmin smartwatches used in our study
are not medical-grade devices, nor are they representa-
tive of all wearable technologies. Despite our efforts to
rule out other reasons for heart rate anomalies, the lack
of fully established baseline data on individuals and
information on their activity could limit our ability to
attribute physiological changes to infections. However,
we note that no anomalies were detected when the same
analytical procedures were applied to the matching
controls, thereby lending support to our conclusion that
there is a link between infections and physiological
changes.

It is noteworthy that our anomaly analysis differs
from previous studies,15,18,21–24 offering distinct advan-
tages. Our study has a larger sample size and avoids
potential noise and missing values associated with
individual-level data by using mean values for anomaly
detection. Moreover, while previous studies primarily
focused on COVID-19, we considered three different
diseases and examined patient behavior in self-isolating
and seeking testing.

Future endeavors should focus on the enhancement
of smartwatch technology, algorithmic developments,
and data collection methodologies. This study has
demonstrated the potential of smartwatch-based detec-
tion despite being limited by the size and span of the
data. The potential of comprehensive and long-term data
collection for detecting infectious diseases warrants
further investigation. Meanwhile, it is important for
smartwatches to incorporate more accurate heart rate and
activity monitoring and integrate additional sensors for
continuous measurements of other physiological
markers such as body temperature and blood oxygen
saturation—parameters known to be associated with
various infectious diseases. The study has also initiated
the comparison of data patterns across different infec-
tious diseases. Future investigations should aim to
identify distinct digital signatures associated with various
diseases within more diverse populations.

We have introduced a novel concept to the field of
infectious diseases: the digital incubation period, defined
as the time from exposure to a pathogen until a physio-
logical anomaly becomes detectable through digital
means. This period could also be considered the ‘true
incubation period’ since physiological changes, such as
heart rate variations, constitute clinical symptoms
regardless of the patient’s perception. The exploration of
the digital incubation period has the potential to signifi-
cantly contribute to various medical fields, including
epidemiology, microbiology, pharmacology, and immu-
nology. Crucially, the early identification of infections
before the emergence of symptoms is vital for mitigating
the impact of epidemics and preventing pandemics.44 At
the individual level, rapid diagnosis and earlier treatment
can halt the progression to more severe disease,
enhancing the effectiveness of interventions such as case
isolation and treatment.45 In the realms of immunology
and microbiology, research could investigate the rela-
tionship between the timing and patterns of the digital
and traditional incubation periods. This time may affect
expected disease severity and could even be helpful to
improve diagnosis. For instance, although RSV and
influenza may produce similar symptoms, the known
incubation period for influenza is typically 1–2 days,
whereas the incubation period for RSV is typically greater
than 4 days.2 This significant time difference suggests
that by identifying the gap between the digital and
traditional incubation periods could be instrumental in
improving the diagnosis—and therefore the control—of
infectious diseases.

Through the integration of behavioral data with phys-
iological patterns, our study elucidates the potential of
smartwatch-based detection and patient self-testing in the
early containment of infectious diseases. This approach
could enable more prompt public health interventions,
including self-isolation and the initiation of treatment.
Despite limitations, the findings suggest a promising
avenue for further research and the development of
innovative strategies for infectious disease control.
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