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Wall Shear Stress (WSS) is one of the most important parameters used in cardiovascular fluid 
mechanics, and it provides a lot of information like the risk level caused by any vascular occlusion. 
Since WSS cannot be measured directly and other available relevant methods have issues like low 
resolution, uncertainty and high cost, this study proposes a novel method by combining computational 
fluid dynamics (CFD), fluid-structure interaction (FSI), conditional generative adversarial network 
(cGAN) and convolutional neural network (CNN) to predict coronary artery occlusion risk using only 
noninvasive images accurately and rapidly. First, a cGAN model called WSSGAN was developed to 
predict the WSS contours on the vessel wall by training and testing the model based on the calculated 
WSS contours using coupling CFD-FSI simulations. Then, an 11-layer CNN was used to classify the 
WSS contours into three grades of occlusions, i.e. low risk, medium risk and high risk. To verify the 
proposed method for predicting the coronary artery occlusion risk in a real case, the patient’s Magnetic 
Resonance Imaging (MRI) images were converted into a 3D geometry for use in the WASSGAN model. 
Then, the predicted WSS contours by the WSSGAN were entered into the CNN model to classify the 
occlusion grade.
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Cardiovascular complications, such as heart attacks, are often linked to the long-term accumulation of blood 
cholesterol within coronary arteries. This accumulation contributes to the formation of atherosclerotic plaque, 
and can constrict blood flow; consequently, heart muscles are deprived of oxygen1–6. Numerous factors, 
including blood density, residence time, and vessel geometry, can influence plaque formation and its progression. 
Hemodynamic factors like low or fluctuating values of shear stress applied to vessel walls, play a significant role 
in the occlusions progression and plaque detachment7–9.

Given the high mortality rate associated with coronary artery disease (CAD), researchers from various 
scientific fields seek accurate prediction methods to prevent disease progression and develop novel treatments. 
Wall shear stress (WSS) as a crucial in vivo parameter, is a tangential force exerted by blood on the vessel 
walls, reflects the frictional force experienced by endothelial cells. WSS can impact plaque formation and its 
progression in various ways; for example, low WSS levels may promote plaque formation while high WSS levels 
can cause plaque detachment from vessel surfaces, leading to obstruction10–14.

Modeling methods and numerical simulations offer unique insights into blood flow behavior and 
hemodynamic properties, facilitating the detection of in vivo parameters contributing to congestion or plaque 
separation. These computational approaches complement traditional medical techniques, like imaging, by 
revealing information about changes in vessel shape and blood flow patterns that may be difficult to assess 
directly15–19. Consequently, these methods have gained attention as new tools for predicting blood flow behavior 
and hemodynamic characteristics20–23.

Computational fluid dynamics (CFD) and its coupling with fluid-structure interaction (FSI) are two primary 
methods for simulating blood flow. The vessel wall is considered rigid in CFD, whereas FSI accounts for wall 
elasticity24. While CFD is computationally less expensive, most studies utilize this method despite FSI providing 
more accurate and realistic simulations25,26. Notably, considering the vessel wall as rigid in CFD can overestimate 
blood flow velocity and WSS27. Straughan et al.6 presented an algorithmic method for the automatic generation 
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of 3D simulations of optical coherence tomography images using the finite element method. Their method 
allows large-scale clinical analysis and personalized diagnoses and treatment planning.

Carvalho et al.28 employed CFD and FSI coupling to evaluate the influence of arterial wall compliance on 
hemodynamic outcomes by examining blood flow in coronary arteries. Their findings demonstrated that CFD-
FSI provides significantly more accurate blood flow simulations and revealed that wall compliance significantly 
affects WSS distribution while having a minor impact on other parameters.

Malvè et al.29 investigated the effects of wall compliance on WSS distribution by comparing left coronary 
artery WSS simulations using both FSI and rigid wall models. They found that WSS distribution is affected 
by wall compliance, leading to substantial differences in minimum and maximum WSS values. Lopes et al.20 
performed carotid blood flow simulations using FSI and rigid wall models for specific geometries and transient 
boundary conditions. Their study further emphasized the importance of using FSI models, whereas rigid wall 
models tend to overestimate flow velocity and WSS.

Simulation methods are appropriate alternatives for examining coronary artery occlusion compared to 
high-risk and expensive medical methods like angiography, that carries risks such as death, heart attack, and 
stroke30,31. However, the time-consuming nature of these simulations poses a challenge, as each individual’s 
unique vessel geometry necessitates repeating the entire process for every new case, making CAD predictions 
cost-prohibitive32–34. Moreover, other technologies, like four-dimensional phase-contrast magnetic resonance 
imaging (4D flow MRI), which is used to determine the quantity of WSS, have a shallow resolution. This can be 
resolved by replacing artificial intelligence-based methods35,36. Consequently, there is a need for an alternative 
technique to overcome these limitations.

Although there are no definitive early signs for the diagnosis of CAD, image-processing systems have emerged 
as powerful tools for prediction and noninvasive20,37–40. Given that machine learning (ML) algorithms have 
already shown significant potential in medical imaging and disease prediction, their importance and application 
in advancing modern medicine and improving healthcare services continue to grow41–44.

Jordanski et al.45 presented an ML-based approach to reduce computational time for CFD-based WSS 
distribution calculations. They accurately predicted WSS distribution at various time points using multivariate 
linear regression (MLR), multilayer perceptron neural network (MLPNN), and Gaussian conditional random 
fields (GCRF). Tesche et al.46 compared CFD results with an ML algorithm for determining fractional flow 
reserve (FFR) values, verifying their findings against several reference standards. Both methods yielded 
comparable results with minimum differences. Building on this, Wang et al.47 developed the DEEPVESSEL-FFR 
platform using an automatic quantification method and deep learning (DL), enabling efficient evaluation of 
coronary artery stenosis.

Coenen et al.48 evaluated their proposed method by comparing FFR results from CFD and ML methods 
using data from 525 vessels, with invasive coronary angiography (ICA) as the reference. Both methods 
performed equally well. In another study, Koo et al.49 combined machine learning and CFD simulations to assess 
the impact of various parameters on the performance of a machine learning-based computed FFR diagnostic 
method. Despite the close agreement between the two methods in statistical analysis, the ML method was more 
appropriate for lesion-specific ischemia prediction.

Deep learning and artificial neural networks have recently demonstrated remarkable progress50,51. These 
techniques have revealed meaningful insights by uncovering complex, non-linear relationships between 
parameters that shallow machine learning approaches cannot capture52–55. DL algorithms have successfully 
bridged this gap, demonstrating the ability to quickly identify and categorize cases prone to CAD with high 
accuracy56–58.

Gharleghi et al.59 analyzed blood flow in coronary arteries by applying DL for the time-averaged wall shear 
stress (TAWSS) hemodynamic index as a predictive measure based on vessel geometry. By combining CFD 
simulations and DL, they achieved highly accurate TAWSS predictions. Li et al.60 employed CFD and DL for the 
prediction of 3D cardiovascular hemodynamic in bypass surgery and successfully reproduced the relationship 
between cardiovascular geometry and in vivo hemodynamic for FFR. Suk et al.61 used mesh convolutional 
neural networks to estimate WSS in a 3D artery model. Their DL model achieved 90.5% accuracy with a 1.6% 
absolute average error in predicting WSS.

Raissi et al.62 employed a DL-based method as an alternative to Navier-Stokes equation-based approaches 
for visualizing flow patterns in biological systems. This innovative method successfully extracted quantitative 
information that could not be directly measured. Using physical simulations and machine learning, Feiger et 
al.63 examined the influences of stenosis degree, blood flow velocity, and blood viscosity on pressure gradient 
and WSS. They proposed a model to predict these parameters, achieving a pressure gradient estimation error of 
1.18 mmHg and a WSS estimation error of 0.99 Pa. Arzani et al.64 explored near-wall blood flow and calculated 
WSS using a physics-informed neural networks (PINNs) model, by incorporating information from governing 
equations. Their results revealed the potential of DL models to improve WSS quantification.

Chen et al.65 presented an effective image inpainting algorithm via partial multi-scale channel attention 
mechanism and deep neural networks to deal with problems such as fuzzy images, texture distortion and 
semantic inaccuracy, which are solved by using deep learning modules (the Res-U -Net module). This approach 
can adequately represent multi-scale features with many irregular defects.

Generative adversarial networks (GANs) are a class of powerful machine learning models that have 
revolutionized many fields including medical imaging and diagnostics. Researchers have used the ability of 
GANs to generate high-quality, and realistic medical images to address challenges in diagnosing and treating 
CAD66–68. Gurusubramani and Latha66 introduced a novel hybrid GAN with semantic resonance for generating 
and analyzing synthetic cardiac images, addressing the crucial need for accuracy and clinical relevance in 
cardiac image synthesis. Their method achieved high accuracy by incorporating pre-trained CNN classifiers and 
optimizing adversarial and classification losses.
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Another application of GAN is data augmentation. Ahmadi Golilarz et al.68 introduced a deep learning model 
called generative adversarial networks-multi discriminator (GAN-MD) as a noninvasive method to diagnose 
myocarditis using cardiac magnetic resonance (CMR) images. GAN-MD addresses the challenges of imbalanced 
classification and image generation by incorporating a reconstruction loss, regularization techniques, and focal 
loss-based training. This research results in superior performance compared to other methods and makes it a 
promising tool for detecting and monitoring myocarditis. Also, anomaly detection (AD) is one of the applications 
of GAN. Saeeda et al.69 provided an extensive survey on using GANs for AD in various applications like Digital 
Healthcare. Their study discussed state-of-the-art approaches, available datasets for evaluation, challenges, and 
future research directions to enhance the effectiveness of GANs-based AD techniques further.

Although there have been many studies on predicting and classifying occlusion in coronary arteries using 
DL and combining it with numerical simulations, none of them have been able to predict the risk of each 
patient’s unique vascular occlusion with high accuracy and speed. Therefore, the motivation of this study is to 
develop a method to overcome uncertainty in computational models as well as low resolution and experimental 
quantification of hemodynamic.

In this study, 350 fluid-structure interaction (FSI)-coupled computational fluid dynamics (CFD) simulations 
were performed to closely replicate blood flow behavior in coronary arteries under various occlusion scenarios. 
These scenarios included different occlusion percentages, different occlusion locations, different occlusion 
lengths, and combinations of multiple occlusions with various percentages. Each simulation’s hemodynamic 
features were used to label the corresponding wall shear stress (WSS) contour as data. To enhance the accuracy of 
the employed algorithms, the dataset was expanded while maintaining the label for each data point. Subsequently, 
a conditional generative adversarial network (cGAN) model was employed to predict WSS distribution as a 
crucial parameter in CAD analysis on inside surfaces of the arteries. An 11-layer convolutional neural network 
(CNN) model was employed to classify the WSS data into three trained grades for CAD risk predictions. Finally, 
we used a practical case as untrained data to demonstrate the efficacy of the proposed methods in this study.

In this paper, the main contributions are as follows: (1) proposing a novel method by using cGAN called 
WSSGAN to predict WSS contours accurately from noninvasive images, (2) developing a neural network 
model, WSSGAN, to generate WSS contour images, enhancing data generation capabilities, (3) designing the 
cGAN model architecture with an encoder-decoder network for WSS prediction, showcasing the technical 
advancements in image processing, (4) utilizing an 11-layer CNN model to classify WSS contours into three 
grades, enabling accurate patient classification.

Methodology
Simulation details
To better understand the study process, the flow-process diagram is shown in Fig. 1.

Since one of the most essential parts of this study is performing coupling CFD with FSI simulations of blood 
flow in coronary vessels, the following sections give the simulation details.

Geometry  The under-study geometry was a part of the exact and detailed geometry of the human left coronary 
artery and bifurcation regions, which was made in a study at the University of Colorado70 (Fig. 2). The models 
consist of major bifurcation regions (diagonal, circumflex, obtuse marginal (OM) and other regions) and vessel 
segments. To study most of the possible states, 350 separate CFD-FSI simulations were run in each branch with 
different conditions, including occlusion in percentages (i.e., the ratio of the area resulting from obstruction to 
the cross-sectional area of the vessel) of 80, 60, 40, and 20 at different places of the left coronary artery (in various 
vessels and at different distances from each other and at the junction), and different occlusion lengths (i.e.,the 

Fig. 1.  Flow-process diagram for predicting the risk of each patient’s unique vascular occlusion.
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same diameter, twice the diameter, and three times the diameter), as well as the combination of two or three con-
secutive occlusions with different percentages, along the vessel length or around the multi-branch points (Fig. 2).

Governing equations  This research tried to apply the characteristics of blood flow in simulations as closely as 
possible to the actual conditions of the body. Therefore, the blood was assumed to be incompressible, non-New-
tonian, unsteady, and laminar flow7,71–73. The average Reynolds number was 320 for the blood flow inside the 
artery. The density and the specific heat capacity of blood were considered to be 1050 kg

m3  and 3470 J
kg.◦ C , re-

spectively. To bring the results closer to the actual conditions, the numerical simulations were run in coupling 
CFD with FSI using ANSYS Fluent software 17.274, which FSI applies the wall elasticity. Equations 1 and 2 give 
continuity and Navier-Stokes equations, respectively:

	 ∇ · v = 0� (1)

	
ρ

(
∂ v

∂ t
+ v · ∇ v

)
= −∇ p + µ∇ 2v� (2)

where v is the velocity vector, p is the static pressure, ρ  is the fluid density and µ  is the dynamic viscosity73. In 
addition, since the blood is considered to be a non-Newtonian fluid, it is necessary to use the CARREAU model 
for its behavior, which is as follows75:

	 µ = µ ∞ + (µ 0 − µ ∞ )
[
1 + λ γ̇ 2

]n−1
2 � (3)

Fig. 2.  The geometry of the human left coronary artery and bifurcation regions.
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where the infinite shear viscosity ( µ ∞ ) and the viscosity at a shear rate of 0 ( µ 0) are 0.00345 and 0.0565 Pa.s, 
respectively, γ̇  is the instantaneous shear rate. Also, λ  is the time constant, and n is the power-law index; their 
values are considered to be 3.313 and 0.3568, respectively75.

The solid part of the simulation, i.e., the artery wall, is considered to be an incompressible and isotropic linear 
elastic solid. The interaction and stress tensor are given in Eqs. 4 and 5, respectively.

	
ρ s

∂ 2−→u
∂ t2

−∇ ¯̄σ = ρ s
−→
b � (4)

	 ¯̄σ = 2µ L ¯̄ϵ + λ Ltr ( ¯̄ϵ ) I� (5)

where ρ s is solid density, u is solid displacement vector, 
−→
b  is the forces entering the solid, ¯̄σ  is the Cauchy 

stress tensor, µ L  is the first Lamé parameter, λ Lis the second Lamé parameter. ¯̄ϵ  is the strain tensor, tr is the 
trace function and I is the identity matrix68. WSS in 3D form is required in this study that is obtained from Eq. 6, 
where γ  and µ  are the deformation rate and the dynamic viscosity, respectively76,77.

	
τ wss = µ (

∂ u

∂ y
+

∂ v

∂ x
) = µ γ � (6)

Boundary conditions  The pulsatile velocity profile was applied using a user-defined function (UDF) code as 
the boundary condition at the vessel inlet. This profile is shown in Fig. 3. The pressure was considered to be 
90 mm Hg at the vessel outlet. While considering a constant outlet pressure may not account for the pressure 

Fig. 3.  Pulsatile velocity profile at the inlet of vessel.
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variability across different branches of the coronary tree, the simulation methodology of this study provides 
valuable insights into the hemodynamic consequences of occlusions in specific branches. This approach offers a 
controlled framework for assessing the impact of localized disease and serves as a foundation for future studies 
incorporating more complex physiological conditions. All inlet and outlet boundaries were considered to be 
fixed, and other fluids and solid boundaries were defined as fluid-structure interfaces78,79.

Solution details  Simulations were performed in coupling CFD with FSI using ANSYS Fluent software based 
on the finite volume method. CFD-FSI stands for computational fluid dynamics with fluid-structure interaction, 
a method used to obtain WSS in vessels. It involves running numerical simulations using software like ANSYS 
Fluent to simulate the effect of flow on the vessel wall. CFD-FSI simulations are essential for accurately simulat-
ing blood flow in coronary arteries and understanding the impact of wall compliance on parameters like WSS 
distribution. This method is crucial for predicting unique vascular occlusions in individual patients with high 
accuracy and speed using noninvasive photographs. CFD-FSI simulations provide a more realistic representa-
tion of blood flow than rigid wall models, ensuring that flow velocity and WSS are not overestimated.

The SIMPLE method was used for pressure and velocity coupling with a time step of 0.01 s. A time step of 
0.01s is appropriate for simulating blood flow in the coronary arteries using the FSI method, as it can capture the 
relevant hemodynamic and structural changes over the cardiac cycle. The CFD method was applied to the fluid 
domain, and this part was divided into several control volumes. Conservation equations were applied to each 
of them. The governing equations for the solid boundary (i.e., vessel wall) were solved using the Finite Element 
Method (FEM). The one-way FSI method was used. First, the fluid flow simulation was performed and then the 
resulting fluid forces were applied as boundary conditions to the deformable vessel wall. The fluid and solid mesh 
were properly coupled at the fluid-solid interface using techniques such as overset meshing. The vessel wall was 
assumed as a hyperelastic material used in the Ogden model. After that, the calculated changes were transferred 
to the fluid. These steps were repeated until the difference between the changes in the last two iterations was less 
than 0.5%80.

An unstructured mesh was used for geometry meshing in both fluid and solid domains. To ensure the mesh 
quality, blood flow simulation was done for one of the branches with different number of elements to find the 
most optimal number of elements.

The maximum volume of flow occurs in 20% occlusion, which means a larger control volume and more 
mesh were used in calculations; if the results of this percentage of occlusion were independent from the number 
of elements, it can assure that the other occlusion results with this number of elements are independent of the 
number of the elements. For this purpose, the velocity profiles at the beginning, middle, and end of the occlusion 
were calculated. In this way, five meshes with different numbers of elements were generated. The velocity profiles 
for these meshes at the three cross-sectional areas are compared in Fig. 4. As one can see, “mesh 3” with 650,928 
elements was the best because there is little difference between the velocity profile of this mesh and that of finer 
meshes.

The experimental data of Gijsen et al.81,82 for axial blood velocity profile in a vessel were used to validate CFD-
FSI results. These experimental data are related to a carotid bifurcation for unsteady and non-Newtonian blood 
flow and the vessel length is six times its diameter (L = 6D). This bifurcation also is a part of coronary vessels in 
Fig. 2. Figure 5 compares the calculated velocity profile from CFD-FSI method with the corresponding values of 
experimental data. There is a good agreement between the simulation results and experimental data81,82.

Dataset
Building the dataset  Building a dataset is one of the essential steps to reach this study’s final purpose. It consists 
of collecting the numerical simulations results, normalizing and labelling of them and generating artificial data. 
The dataset used consists of 3D contours of the WSS of each numerical simulation. Normalization is necessary 
to maintain the value and stability of the dataset before using them in the models. It is known as one of the 
essential measures for data pre-processing. With this step, the learning speed of the proposed model increases 
significantly. In this study, the value of each image pixel is normalized according to the minimum and maximum 

Fig. 4.  Mesh independency for velocity profiles at (a) beginning, (b) middle, and (c) end of the occlusion.
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WSS values ​​in the range between 0 and 1. Since all the data are obtained by simulation, no data in this collection 
is missing, repetitive, or has problems that need to be removed.

Data labeling  Since the purpose of this study is to provide a method to detect the risk of coronary artery 
occlusion, proper labeling and identification for data classification are very important. Necessary information 
was collected from reliable scientific sources83–91 that quantitatively examine the relationship between WSS and 
the risk of atherosclerotic plaques as well as the relationship between WSS with velocity and pressure contours 
in different situations. The effect of vascular anatomy on WSS and the classification of coronary arteries using 
quantitative and qualitative parameters were studied.

The data labeling is manually determined based on the parameters that describe the anatomy of coronary 
arteries (occlusion location, occlusion length and vessel radius in the occlusion region), minimum and maximum 
WSS, pressure, velocity, blood rheological properties, and other parameters. Data labeling was done in such a 
way that all data were classified into three groups based on their characteristics: Grade 1 (low risk), Grade 2 
(medium risk), and Grade 3 (high risk). Figure 6 shows an example of the members of each classification.

To facilitate a comprehensive understanding of the data generation process, a flowchart was provided to 
illustrate the key steps in creating a representative dataset sample. This flowchart gives a clear and structured 
overview of the data generation process (Fig. 7).

Increasing the number of data  In deep learning strategies, the amount of data plays an essential role in training 
the model and the accuracy of final results because having a large amount of data gives the model enough infor-
mation for correct training92,93. In some issues like this study, obtaining a large amount of data requires spending 
a lot of money and time, so in such cases, some techniques are used to get a dataset that provides reliable and 
acceptable results. These new data are added to the dataset to increase the training data by making changes such 
as rescaling, rotation, lighting changes, and adding noise to the primary data. They are also added by keeping the 
class label and the number of pixels of the original image.

Fig. 5.  Comparison of the calculated velocity profile based on CFD-FSI coupling and the corresponding values 
of experimental data81,82.
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Figure  8 shows four different techniques for data enhancement, those are: (a) shrinking the image by 
20%, (b) rotating the original image by 90 degrees to the right, (c) rotating the original image by 45 degrees 
counterclockwise, and (d) adding Gaussian noise with mean and variance of 0 and 0.5, respectively. These four 
techniques were applied to all 350 data and finally the total number of data increased by four times.

WSSGAN model
Generative adversarial networks (GANs) were proposed for the first time by Goodfellow et al.94 in 2014. It is a 
generative model that produces new data similar to the training dataset; in this study, the algorithm’s output is an 
image of the WSS contour. GANs consist of two different neural networks, generator and discriminator, which 
can automatically discover and learn the patterns in the input data95. A widely used model based on the GANs 
algorithm is the conditional generative adversarial network (cGAN) that has improved the performance of these 
networks by conditioning the generator and the discriminator to control the input and output images96–99. The 
wall shear stress generative adversarial networks (WSSGAN), as of the cGAN type, are evaluated on two datasets 
so that the created dataset is randomly divided into two parts.

In the first part, only their geometry is used as input to the generator, and in the second part, their WSS 
contours are directly entered into the discriminator. These two networks compete to check, record and repeat the 
changes in the dataset. The generator network produces fake data so that they can train the discriminator and also 
the generator learns to create acceptable data. These samples produced by the generator are considered negative 
training samples for the discriminator. The primary purpose of the generator is to trick the discriminator into 
classifying its output as true samples. The task of the discriminator is to identify and classify the true data from 
the generated fake data. During training, the discriminator is connected to two loss functions, which ignore the 
generative loss and only use the discriminator loss.

The architecture of the cGAN model is shown in Fig. 9. The WSSGAN architecture was designed as an encoder-
decoder network and generates a feature vector with size of 512 at the bottleneck. The input to the generator 
was a geometry modeled with a 128 × 128 meshes and void regions were modeled applying an infinitesimally 
small Young’s modulus. The generated output is a 128 × 128 mesh that shows the WSS distribution. The encoder 
includes log2(m) sampling blocks with a convolutional layer, a batch normalization layer and a LeakyReLU 
layer. The decoder consists of log2(m) sampling blocks with a deconvolutional layer, a batch normalization layer 
and a ReLU layer. Both convolutional and deconvolution layers had a kernel size of 5 × 5 and a step size of 2. 
WSSGAN was trained with a learning rate of 0.001 using the Adam optimizer100 with a batch size of 64. To better 
understand the working process of WSSGAN algorithm, its pseudocode is shown in Fig. 10.

Evaluating the performance of each model is very important. Four criteria are used to evaluate the performance 
of WSSGAN: Mean Absolute Error (MAE), Percentage Mean Absolute Error (PMAE), Peak Absolute Error 
(PAE) and Percentage Peak Absolute Error (PPAE).

MAE as defined in Eq. 7 is used to evaluate the overall quality of the predicted shear stress distribution. In 
this equation n is the total number of samples, yj and y*

j are the actual and predetermined values, respectively101. 
T﻿he lower value of these criteria is the better performance of the model.

	
MAE =

1

n

∑
n
j=1

∣∣∣yj − y*
j

∣∣∣� (7)

PMAE measures the model prediction accuracy as a percentage, which is given in Eq. 8. In this equation, y is 
the sample value; whereas, min(y) and max(y) are the minimum and maximum sample values, respectively101.

	
PMAE =

MAE
max (y)− min (y)

× 100� (8)

PAE and PPAE measure the local WSS critical value and are defined in the form of Eqs. 9 and 10101.

	
PAE =

∣∣∣max (y)− max
(
y*
)∣∣∣� (9)

	
PPAE =

PAE
max (y)

× 100� (10)

Fig. 6.  Samples of three grades: (a) low risk, (b) medium risk and (c) high risk.
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CNN model
Convolutional neural networks (CNNs) are a type of neural network architectures usually used for image 
recognition102. Since two-dimensional convolutional filters can detect the edges of images, it is suitable for 
generalizing of image patterns103. CNNs perform excellently in many applications, like image classification, 
object detection and medical image analysis104–106.

This study employed a CNN to predict vessel occlusion risk, categorizing it into three classes: high, medium, 
and low. The WSS contour from the cGAN model was used as input, with the output being the risk prediction 

Fig. 7.  Flow-process diagram for generating a data sample.
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for vessel occlusion. The CNN model proposed in this study consists of four layers for feature detection, four 
layers for Max pooling, one flattened layer and two fully connected layers for classifying data into three classes. 
The specifications and values ​​of the used parameters and the network architecture are shown in Fig. 11. The 
convolution operation is performed in the first layer, which contains 32 kernels with a size of 5 × 5. Its activation 
function is selected to be the Rectified Linear Unit (ReLu), and then max pooling of size 2 × 2 and stride is 2. The 

Fig. 8.  Four techniques to increase the amount of data in a sample. 1) original data, (a) shrinking the image 
by 20%, (b) rotating the original image by 90 degrees to the right, (c) rotating the original image by 45 degrees 
counterclockwise, (d) adding Gaussian noise.

 

Scientific Reports |        (2024) 14:22693 10| https://doi.org/10.1038/s41598-024-73396-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


kernel was considered in the following layers with a size of 3 × 3. The second stage convolution was done with 
64 kernels using ReLu and again max-pooling of size 2 × 2, stride 2, and the Stochastic Gradient Descent (SGD) 
optimizer. The same values ​​were repeated for the third and fourth convolutions. The last fully connected layer 
consists of two hidden layers with the neuron numbers 3823 and 492, respectively. The activation function and 
optimizer in the output layer were considered to be softmax and hyperparameter, respectively. Figure 12 also 
shows a pseudocode for this network.

To check the proposed model accuracy and validity, some criteria were calculated by the Confusion Matrix107. 
This matrix consists of the information of real and predicted values for a two-class classification problem 
(positive and negative) according to Table 1.

In general, accuracy means how much the model has correctly predicted the output and it indicates the 
number of classifications that have been correctly identified107. According to Table 1, the accuracy is defined as 
Eq. 11.

	
Accuracy =

TP + TN
TP + TN + FP + FN

� (11)

The sensitivity parameter means the ratio of favorable cases that the model has correctly identified as positive 
samples and is calculated as follows107:

	
Sensitivity =

TP

TP + FN
� (12)

Precision is the ratio of the number of correct cases classified by the model from a particular class to the total 
number of positive cases the model has classified, either correctly or incorrectly107.

Fig. 9.  WSSGAN architecture, the generator (top) and the discriminator (bottom).
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Precision =

TP

TP + FP
� (13)

In the cases where identifying a negative class is important, using Specificity along with sensitivity is a suitable 
criterion. It is the ratio of the number of correct cases classified by the algorithm from one class to the number 
of cases in the desired class107:

	
Specificity =

TN

TN + FP
� (14)

False positive rate or miss rate is the probability of missing a true positive in classification. This criterion can be 
positive or negative107.

Fig. 11.  CNN model architecture including inputs, feature maps, hidden units and outputs.

 

Fig. 10.  The pseudocode of WSSGAN algorithm.
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Fig. 12.  The pseudocode of CNN algorithm.
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FPR =

FP
FP + TN

� (15)

Results
WSSGAN performance
To evaluate the model accuracy, 80% of half of the dataset was randomly used as training data and the other 20% 
for testing data. To assess the proposed model performance, the results of WSS prediction were compared with 
those of in Ref61. Table 2 gives the errors for WSSGAN and the model of Ref61. based on evaluation criteria. It 
can be seen that the WSSGAN model performed better for all four criteria compared to Suk et al.‘s model61. In 
addition, the statistical accuracy of WSSGAN based on PMAE and PPAE values in each sample and its mean 
value in the entire training data is shown in Fig. 13. From that, it can be concluded that WSSGAN model has a 
very high statistical accuracy.

A new geometry was used to visually show the prediction results of the WSSGAN model by comparing 
it with the ground truth model and ensuring the prediction correctness. The new geometry, which does not 
include a WSS contour but reflects the fluid shape of the input model, was employed to predict WSS contours for 
the intended flow geometry. Figure 14 shows the ground truth and the predicted contour using two models, the 
WSSGAN and Suk et al.61. The proposed model effectively captures the WSS contour in the new geometry and 
reduces the computational time for this geometry by 800 times.

CNN performance
In this section, the results of applying the CNN model to the dataset are given, and then its performance is 
evaluated based on two well-known classification algorithms, i.e. K-Nearest Neighbors (KNN) and Support 

Fig. 13.  The statistical accuracy of WSSGAN: (a) PMAE of all data and average PMAE on the testing data, (b) 
PPAE of all data and average PPAE on the testing data.

 

MAE PMAE PAE PPAE

WSSGAN (present work) 1.64 0.6% 17.15 1.08%

Suk et al. [61] 9.25 1.43% 81.46 18.60%

Table 2.  Comparison of the errors for the WSSGAN model and the model of ref61.

 

Predicted class

Actual class
True positive1 (TP) False negative3 (FN)

False positive2 (FP) True negative4 (TN)

Table 1.  Confusion matrix for checking the proposed model accuracy and validity. 1 Correctly placed in the 
positive class 2 Wrongly placed in the positive class. 3 Wrongly placed in the negative class 4 Correctly placed in 
the negative class.
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Vector Machine (SVM). The proposed CNN model was trained by dividing the dataset into 75% and 25% as 
training and testing data with 20 epochs, respectively. The CNN model performance based on evaluation criteria 
is given in Table 3. From this table, the proposed CNN model performed well due to the high values of accuracy, 
sensitivity, specificity and precision and the low value of FPR.

Comparison of CNN performance with machine learning algorithms
To check further the performance and accuracy of the proposed CNN model, its results were compared with 
those of two algorithms, i.e. SVM and KNN. For this purpose, these two algorithms were trained with 70% of 
the data and tested with the remaining 30% of them. For the KNN model, two values ​​of 4 and 8 were considered 
for K. The parameters indicating its performance are provided in Table 4. The accuracy, sensitivity and precision 
of K = 8 proved that its performance was better than that of K = 4. However, K = 4 performed better in the 
two criteria of specificity and FPR. In total, because the two criteria of accuracy and sensitivity have a more 
important role than other criteria in the data classification, it can be concluded that K = 8 has been able to classify 
the data better.

Two different kernels, Sigmoid and Linear, were considered for SVM to check and analyze its performance. 
Table 5 gives its performance, proving that despite the Sigmoid kernel being weaker in specificity compared to 
Linear, it performs better due to more accuracy, sensitivity, and precision and less FPR. Since the two criteria 
of accuracy and sensitivity are more important than other criteria in this research, the performance of Sigmoid 
kernel is better.

Table 6 compares the performance of SVM and KNN. This table shows that KNN with K = 8 has performed 
better in this issue because it has more sensitivity, accuracy, precision and specificity and lower FPR than that 

Parameters Sigmoid Linear

Accuracy 0.837 0.795

Sensitivity 0.892 0.764

Specificity 0.748 0.814

False positive rate (FPR) 0.153 0.177

Precision 0.706 0.662

Table 5.  SVM model performance based on evaluation criteria.

 

Parameter K = 4 K = 8

Accuracy 0.75 0.83

Sensitivity 0.825 0.887

Specificity 0.728 0.692

False positive rate (FPR) 0.110 0.144

Precision 0.75 0.81

Table 4.  KNN model performance based on evaluation criteria.

 

Accuracy Sensitivity Specificity False positive rate (FPR) Precision

CNN 0.885 0.940 0.824 0.0927 0.842

Table 3.  CNN model performance based on evaluation criteria.

 

Fig. 14.  WSS contours in (a) ground truth model, (b) WSSGAN model, and (c) Suk et al.‘s model61.
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of SVM. Therefore, the results of the KNN algorithm (K = 8) were compared with those of the proposed CNN 
model.

Table 7 compares the classification performance on the same dataset for CNN and KNN models. Considering 
the excellent sensitivity and accuracy of CNN, it can be concluded that the proposed deep learning model 
performs much better in the classification of the used dataset.

Evaluation of the proposed CNN model for a real case
The ability of the proposed CNN model was evaluated for a real case for detecting the grade of coronary artery 
occlusion. First, it is necessary to convert the patient’s MRI images into a 3D geometry that is recognizable for 
the WSSGAN model using 3D software, like ITK-SNAP. This software has a collection of algorithms that can 
detect edges in coronary artery images obtained by MRI and computed tomography angiography. It can detect 
vessel diameter changes and occlusions as 3D images along the vessel. These images were entered as input to the 
WSSGAN model, and the model’s output was the predicted WSS contour (Fig. 15). To determine the class of 
occlusion in this sample, the obtained contour was entered into the CNN model, and after classification, it was 
classified as grade 2, which was the class of medium-risk coronary artery occlusion.

Discussion
The accuracy of the proposed model was evaluated through detailed evaluation criteria and experimental data, 
which provided strong evidence for its statistical reliability. The proposed cGAN algorithm demonstrates its 
ability to predict the WSS contour for new cases, with minimum deviation from the ground truth and Suk et 
al.61 models. This also confirms its performance. Moreover, comparing the CNN results with those of KNN and 
SVM algorithms reveals its superior accuracy and sensitivity in the classification of used dataset. Confidence in 
the predictive accuracy of the proposed model to determine risk levels in new cases was determined by using an 
MRI image for a coronary artery occlusion.

Conclusions and recommendations
In this study, an alternative method to other available methods for determining risk levels for coronary artery 
occlusions was used. This method can be used to overcome the problems of other methods, including low 
resolution and uncertainty, and also the limitations of CFD-FSI simulations in terms of time and cost. A unique 
dataset was generated from blood flow simulations based on CFD-FSI coupling under three different occlusion 
conditions in coronary vessels.

A WSSGAN model was trained on this dataset to predict WSS contours for each individual vessel geometry, 
and its accuracy was verified by comparisons of its prediction with simulation results and Suk et al.‘s model. 
Furthermore, an 11-layer CNN was employed for risk classification into high, medium, and low grades. The 
CNN model outperformed KNN and SVM algorithms, achieving a sensitivity and accuracy of 0.940 and 0.885, 
respectively. The proposed method demonstrates significant potential for highly accurate and rapid WSS 
contours prediction. This innovative method has the potential to enhance significantly accurate and timely 
diagnosis of vascular occlusion, thereby providing valuable assistance in the field of cardiology.

The limitations of this study include the bad performance of the cGAN algorithm when faced with images 
containing occlusions at an inappropriate and illegible angle. In future works, a two-phase model can be used in 
simulations to consider fat particles. Applying this model creates challenges, like the changes in occlusions and 
blood flow behavior.

Parameter CNN KNN (K = 8)

Accuracy 0.885 0.83

Sensitivity 0.940 0.887

Specificity 0.824 0.692

False positive rate (FNR) 0.0927 0.144

Precision 0.842 0.81

Table 7.  Comparison of the performance of the proposed CNN model with that of KNN algorithm (K = 8).

 

Parameter Sigmond)) SVM KNN (K = 8)

Accuracy 0.83 0.837

Sensitivity 0.887 0.892

Specificity 0.692 0.748

False positive rate (FPR) 0.153 0.144

Precision 0.706 0.81

Table 6.  Comparison of the performances of SVM and KNN.
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Data availability
The authors declare that the data supporting the findings of this study are available within the paper. Should any 
raw data files be needed in another format they are available from the corresponding author upon reasonable 
request.
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