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Objective. ,e deceleration capacity (DC) and acceleration capacity (AC) of heart rate, which are recently proposed variants to the
heart rate variability, are calculated from unevenly sampled RR interval signals using phase-rectified signal averaging. Although
uneven sampling of these signals compromises heart rate variability analyses, its effect on DC and AC analyses remains to be
addressed. Approach. We assess preprocessing (i.e., interpolation and resampling) of RR interval signals on the diagnostic effect of
DC and AC from simulation and clinical data. ,e simulation analysis synthesizes unevenly sampled RR interval signals with
known frequency components to evaluate the preprocessing performance for frequency extraction.,e clinical analysis compares
the conventional DC and AC calculation with the calculation using preprocessed RR interval signals on 24-hour data acquired
from normal subjects and chronic heart failure patients. Main Results. ,e assessment of frequency components in the RR
intervals using wavelet analysis becomesmore robust with preprocessing.Moreover, preprocessing improves the diagnostic ability
based on DC and AC for chronic heart failure patients, with area under the receiver operating characteristic curve increasing from
0.920 to 0.942 for DC and from 0.818 to 0.923 for AC. Significance. Both the simulation and clinical analyses demonstrate that
interpolation and resampling of unevenly sampled RR interval signals improve the performance of DC and AC, enabling the
discrimination of CHF patients from healthy controls.

1. Introduction

Assessing the autonomic nervous system (ANS) activity is
crucial for analyses such as risk prediction of mortality after
myocardial infarction [1], diagnosis of chronic heart failure
(CHF) [2, 3], and prediction of diabetic neuropathy [4, 5].
Although the heart rate variability (HRV) has been widely
used to assess the ANS activity in the last decades [6–8], its
ability to distinguish activity from the sympathetic and

parasympathetic nervous systems is limited [9]. In fact, most
time-domain indices, such as standard deviation of all
normal-to-normal intervals, measure the overall ANS ac-
tivity, and the relation of frequency-domain indices with
separate limbs in the ANS remains controversial [6]. New
indices obtained from RR interval (RRI) signals have been
developed for improved characterization of the ANS activity.
For instance, the deceleration capacity (DC) and accelera-
tion capacity (AC) of the heart rate, which were proposed a
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decade ago, are promising for assessing the ANS activity
[10]. ,ey aim to separately characterize deceleration and
acceleration components in HRV, outperforming conven-
tional HRV indices in prediction of mortality and risk
stratification of postmyocardial infarction patients [11–13].

,eDC and AC can be computed from an RRI signal using
phase-rectified signal averaging (PRSA) [14], which extracts
quasiperiodicities from nonstationary sequential signals. Spe-
cifically, given a sequential signal, PRSA first selects decelerating
and accelerating points as anchors.,en, segments surrounding
the anchors are defined, aligned, and averaged to obtain a PRSA
curve. Finally, wavelet analysis is applied to quantify the
characteristic oscillations in the PRSA curve. When the algo-
rithm is applied to RRI signals, DC and AC correspond to
the wavelet coefficients from the center of the PRSA curve.
PRSA aims to eliminate noise influence by averaging phase-
synchronized segments, and the wavelet transform quantifies
the averaged signal. Hence, the quality of phase synchronization
is a determinant factor in PRSA.

Several PRSA variants have been proposed to enhance
the estimation accuracy of DC and AC [15–18]. Specifically,
we modified PRSA using a stricter criterion of anchor point
selection to enhance phase synchronization [15]. Likewise,
Arsenos andManis [16] modified anchor point selection and
its application in PRSA to avoid nonphysiological negative
DC values. Other PRSA modifications measure transient
velocity changes or exclude nonvagally mediated rhythms
[17, 18]. Still, most studies for refining the DC and AC
calculation focus on rectifying phase synchronization, but
the effect of preprocessing RRI signals, which is essential in
the estimation of conventional HRV indices [19], has been
mostly neglected.

,e DC and AC are usually calculated from raw un-
evenly sampled RRI signals, following the original proposal
[20]. However, unevenly spaced samples may compromise
HRV analysis in the frequency domain [19]. ,erefore, we
aimed to evaluate the effect of preprocessing RRI signals on
diagnosis based on DC and AC through both simulation and
clinical analyses. ,e simulation analysis synthesizes un-
evenly sampled RRI signals with known frequency com-
ponents, and a subsequent wavelet analysis illustrates the
effect of preprocessing on the extraction of characteristic
frequency components. In the clinical analysis, the pre-
processing is applied to real RRI datasets for distinguishing
CHF patients from the healthy controls.

2. Materials and Methods

2.1. Datasets

2.1.1. Synthetic Dataset. We generated synthetic RRI signals
with physiologically feasible frequency components, which
mainly comprise a low-frequency range of 0.04–0.15Hz and
a high-frequency range of 0.15–0.4Hz [9], with central
frequencies of approximately 0.095Hz and 0.275Hz, re-
spectively. ,erefore, the synthetic continuous RRI signal
was generated as follows:

RRI(t) � RRImean + A1 sin 2πf1t( 􏼁 + A2 sin 2πf2t( 􏼁, (1)

where RRImean represents the average RRI, f1 � 0.095Hz,
f2 � 0.275Hz, and A1 and A2 are the amplitudes of the two
respective frequency components. We examined three levels
of RRImean, namely, 1000ms, 667ms, and 500ms, corre-
sponding to heart rates of 60 bpm, 90 bpm, and 120 bpm.
For each RRImean level, we generated 200 RRI signals of 2
hours per signal. ,e basal values of A1 and A2 were set to
55ms and 44ms, respectively. ,ese values were random-
ized within ±10% of their basal values for simulation. To
resemble the nonstationarity of the RRI, we added phase
jumps φ(φ � 2πr1) every 4 periods and frequency jumps
Δf(Δf � 0.05fr2) every 20 periods according to the
method in [14], where r1 and r2 are random numbers
following a normal distribution. ,erefore, equation (1)
becomes

RRI(t) � RRImean + A1 sin 2π f1 + Δf1( 􏼁t + φ1􏼂 􏼃

+ A2 sin 2π f2 + Δf( 􏼁2t + φ2􏼂 􏼃.
(2)

We then prepared an unevenly sampled signal RRIn
from each generated continuous series RRI(t) following
the approach proposed by Clifford [21]. We recorded the
first time RRI pair (t1,RRI(1)) as point pair (t1′,RRI1) of
the unevenly sampled signal. ,en, we evaluated each
sample pair (ti,RRI(i)) in the continuous RRI signal. If
relationship

ti − tn−1′ ≥RRI(i) (3)

was satisfied, we recorded point pair n as (tn
′ � ti,

RRIn � RRI(i)). We denote a synthetic RRI signal as RRIs.
,e power spectral density was obtained using the Welch

method [21] to determine the validity of each synthetic rawRRI
signal considering a 5-minute segment, which was interpolated
and resampled. We obtained a low-to-high frequency ratio of
1.70 ± 0.29, being consistent with the physiological range of
1.5–2.0 [9].,e absolute power of LF and HF components also
lies in the physiologically valid range [9].

2.1.2. Clinical Dataset. RRI recordings of the healthy subjects
and CHF patients over 24h were obtained from PhysioNet
(http://www.physionet.org). Data from healthy subjects were
retrieved from the Normal Sinus Rhythm RR Interval Database
and the MIT-BIH Normal Sinus Rhythm Database. Data from
the CHF patients were retrieved from two databases, the
Congestive Heart Failure RR Interval Database and the BIDMC
Congestive Heart Failure Database. Two cases in the CHF
dataset and one case in the healthy subject dataset were dis-
carded due to the presence of continuous premature atrio-
ventricular contractions. ,e sampling frequency for the
electrocardiogram signals was 250Hz for the BIDMC Con-
gestive Heart Failure Database and 128Hz for the other three
datasets. Further details of the datasets are listed in Table 1.

2.2. DC and AC Calculation

2.2.1. PRSA Analysis. PRSA can extract quasiperiodicities
from nonstationary signals [14, 20], and hence the DC and
AC can be calculated by applying PRSA to RRI signals. ,e
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PRSA algorithm for DC proceeds as follows. First, all sample
points from an RRI signal are checked, and its i-th point is
selected as anchor if it satisfies

RRIi >RRIi−1. (4)

,en, a segment is defined around each anchor point
with length 2L+ 1, where L is the length of the series at each
side of the anchor. Segment Si is defined as

Si � RRIi−L,RRIi−L+1, . . . ,RRIi, . . . ,RRIi+L−1,RRIi+L􏼈 􏼉,

(5)

and L should allow the inclusion of the slowest oscillation
from the interest signal [14]. In general, L is set to 60 for raw
RRI signals according to [10]. Finally, all the segments are
aligned by the anchor points, and the PRSA curve is obtained
as the average across segments as

RRI(p) �
1
N

􏽘

N

k�1
RRIik+p, p � −L, −L + 1, . . . , 0, . . . , L − 1, L,

(6)

where RRI(p) is the averaged RRI signal obtained after
PRSA, N is the number of segments, p indicates the signal
index, and ik is the anchor point of the k-th segment.,e AC
calculation only differs in the condition to select the anchor
points:

RRIi <RRIi−1. (7)

As the segments are phase synchronized based on
equations (4) and (7), averaging eliminates noise while
maintaining quasiperiodicities.

2.2.2. Quantification of PRSA Curve. Wavelet analysis with
Gaussian basis is widely used for the quantitative char-
acterization of the PRSA curve [14, 20]. However, when
PRSA is applied to obtain the DC and AC clinical indices,
the Haar wavelet is used instead of the Gaussian wavelet to
simplify and speed up the calculation, according to the
original proposal of the indices [20]. ,erefore, we
adopted a third-order Gaussian wavelet and the Haar
wavelet for quantifying the PRSA curves at different scales
and positions in simulation and the Haar wavelet for
calculations on clinical data.

To quantitatively characterize the PRSA curve, the
squared wavelet coefficients were computed to determine
the degree of oscillation at different scales and positions. At a
specific position, pseudofrequency fp that a wavelet rep-
resents at scale s can be computed as

fp ≈
Fc

s · Δt
, (8)

where Fc is the central frequency of the wavelet basis
function and Δt is the sampling period of the signal. If
wavelet analysis is directly applied to unevenly sampled RRI
signals, Δt is replaced by the average RRI (RRImean) as
approximation. ,en, equation (8) becomes

fp ≈
Fc

s · RRImean
. (9)

,e Haar wavelet was selected to calculate the DC and
AC in clinical data as follows [10, 20]:

DC(AC) � 􏽘
L

p�−L

RRI(p)
h(p/s)

s
, (10)

where h(t) represents the Haar wavelet given by

h(t) �

−1/2, −1≤ t< 0,

+1/2, 0≤ t< 1,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(11)

For conventional DC and AC calculation, the scale is set
to 2 according to a large-scale clinical trial for predicting
mortality of postmyocardial infarction patients [10]. In this
paper, the conventional DC and AC (scale of 2 and com-
puted from raw RRI signals) are denoted with subscript
“conv,” and equation (10) can be rewritten as

DCconv ACconv( 􏼁 �
[RRI(0) + RRI(1) − RRI(−1) − RRI(−2)]

4
.

(12)

2.3. Preprocessing: Interpolation and Resampling.
Interpolation and resampling are common preprocessing
steps for unevenly sampled RRI signals before time- and
frequency-domain HRV computation [19]. In this study,
each RRI signal was linearly interpolated to form a con-
tinuous signal. ,en, the interpolated signal was resampled
to obtain an evenly sampled RRI signal. Preprocessing was
applied to both the synthetic unevenly sampled RRI signals
and clinical data. For the synthetic and clinical data, the
resampling frequencies were 4Hz and 2–7Hz (with incre-
ments of 1Hz), respectively.

As resampling changes the period between consecutive
RRIs, according to equation (8), we should determine a new
scale according to the resampling frequency to guarantee
that wavelet coefficients reflect the target frequency

Table 1: Details of datasets from CHF patients and healthy subjects (control group).

Database No. of subjects Age (years) NYHA classification

CHF Congestive Heart Failure RR Interval Database 29 55.0± 11.9 I–III
BIDMC Congestive Heart Failure Database 15 56.0± 11.5 III–IV

Control
Normal Sinus Rhythm RR Interval Database 54 61.3± 11.8 N/A

MIT-BIH Normal Sinus Rhythm Database 18 26–45 (5 men)
20–50 (13 women) N/A

NYHA, New York Heart Association.

Computational and Mathematical Methods in Medicine 3



components. ,erefore, we scanned the scale from 1 to 100
for the simulation analysis and the clinical analysis, re-
spectively. A preprocessed RRI signal is denoted as RRIp.

For the preprocessed RRI signal, L was set according to
resampling frequency fr. Considering the heart rate range
from 60 bpm to 120 bpm, L was set to 60× fr to guarantee
that the PRSA curve from a preprocessed RRI signal reflects
the slowest fluctuations.

2.4. Data Analysis. We compared the conventional DC and
AC calculation with the calculation from the preprocessed
RRI signals and between healthy and CHF subjects using
either the Student’s t-test for normally distributed data or
the Wilcoxon signed-rank test for other distributions. ,e
receiver operating characteristic allowed to evaluate the
accuracy of the indices per combination of resampling
frequency and wavelet scale, and the area under the receiver
operating characteristic curve (AUC) was obtained. ,e
modifications of DC and AC calculation [15–17] described
in Table 2 were also evaluated on raw and preprocessed RRI
signals.,e AUC, sensitivity, specificity, and accuracy under
certain cutoff values were compared. ,e data analysis was
implemented on SigmaPlot 10.0 (Systat Software, San Jose,
CA, USA) at statistical significance level p< 0.001.

3. Results

3.1. Synthetic Data. ,e PRSA curves of the raw and pre-
processed synthetic RRI signals at three RRI levels and their
average level are shown in Figure 1. When using raw RRI
signals, the oscillation lengths at the same frequency vary
according to the heart rate, with slower rates presenting
shorter oscillations. In contrast, the lengths are equal when
using the preprocessed RRI signals. For the average PRSA
curve, the central oscillations are slightly attenuated because
the segments are synchronized at the center. In contrast,
surrounding oscillations are largely damped probably by the
varying period between consecutive RRIs according to the
average value, leading to phase asynchrony among segments
and elimination of quasiperiodicities. On the other hand, the
oscillations were maintained in the average PRSA curves
obtained from preprocessed RRI signals because the curves
with different average RRIs have the same period between
consecutive RRIs.

,e wavelet analysis was applied to all the obtained
groups of PRSA curves in Figure 1. ,e central squared
wavelet coefficients at each scale are depicted in Figures 2
and 3 for the unevenly sampled and preprocessed synthetic
signals, respectively. As DC and AC reflect high frequencies
in the HRV [22], we focused on its corresponding peak (peak
at smaller scale). In Figure 2, the peak position varies
according to the average RRI. For RRImean of 500ms, 667ms,
and 1000ms, the peaks in Figure 2(a) are located at s500 � 3.0,
s667 � 2.2, and s1000 �1.6 with frequencies of 0.267Hz,
0.273Hz, and 0.250Hz, respectively, and the peaks in
Figure 2(b) are located at s500 � 6.0, s667 � 6.0, and s1000 � 4.0
with frequencies of 0.332Hz, 0.249Hz, and 0.249Hz, re-
spectively. In contrast, the peaks from the preprocessed

signals are located at the same scale s� 6.2 (Figure 3(a)) and
s� 14.0 (Figure 3(b)), resulting in pseudofrequencies of
0.258Hz and 0.285Hz according to equation (8). We
consider that in both analyses, the pseudofrequency is
0.275Hz in the synthetic signal, and the slight deviations are
probably due to Fc in equation (8) being an approximated
value, as a wavelet is not a purely sinusoidal signal. In
addition, the frequency jumps added to the synthetic signals
may lead to pseudofrequency deviations.

3.2. Clinical Data. ,e effect of preprocessing was further
examined on clinical data. Figures 4 and 5 show the AUC at
different resampling frequencies and wavelet scales for DCp
and ACp, respectively. ,e optimal AUCs at different
resampling frequencies are close, as listed in Table 3, with the
global optimal resampling frequency being 2Hz for both
DCp and ACp.,e highest AUCs for DCp and ACp are 0.942
and 0.923 with optimal wavelet scales of 6 and 14, respec-
tively. ,e AUCs for the DC and AC computed from raw
RRI signals with optimized scale are close with the highest
AUCs for DCp and ACp, respectively. Table 3 also shows that
the optimal scale increases with higher resampling fre-
quency, at a relatively constant pseudofrequency for both
DCp and ACp. Still, DCp was most sensitive at approximately
0.3Hz, and the frequency that best reflects ACp was ap-
proximately 0.14Hz. We then compared DCconv and ACconv
with the indices calculated from the preprocessed RRI
signals using the optimal parameters. ,eir values for the
healthy and CHF subjects are listed in Table 4.

,e receiver operating characteristic curves of DCconv,
DCp, ACconv, and ACp are depicted in Figure 6. DC and AC
calculated from preprocessed RRI signals outperform the
conventional calculations. Appropriate cutoff values were
selected according to the highest values from the sum of
sensitivity and specificity. ,e sensitivity, specificity, and
diagnostic accuracy for the indices including the existing
calculation variants are listed in Table 5. ,e optimal pa-
rameters from the existing and improved calculation
method after preprocessing correspond to those from DCp
or ACp.

4. Discussion

Previous studies have suggested to use unevenly sampled
RRI signals for PRSA because interpolation and resampling
may induce artifacts [20]. ,erefore, raw RRI signals have
been used for conventional DC and AC calculation. How-
ever, we found that wavelet analysis may not be appropriate
for raw RRI signals because they are unevenly sampled, thus
distorting the wavelet analysis. In this study, simulation and
clinical analyses demonstrated that interpolation and
resampling of unevenly sampled RRI signals improve the
performance of DC and AC calculation.

,e DC and AC, which are computed as wavelet coef-
ficients at a fixed scale, extract specific frequency compo-
nents from RRI signals. However, our simulation analysis
demonstrates that the effectiveness of wavelet coefficients
may be degraded regarding the extraction of target
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characteristic frequencies if the signals are unevenly sam-
pled. For synthetic signals with different average RRIs (i.e.,
500ms, 667ms, and 1000ms), the third-order Gaussian
wavelet analysis shows differing scales in Figure 2(a) (3.0,
2.2, and 1.6 with pseudofrequencies of 0.267Hz, 0.273Hz,
and 0.250Hz, respectively) corresponding to the known
frequency of 0.275Hz. Similar finding is observed when
performing Haar wavelet analysis. Figure 2(b) shows scales
of 6.0, 6.0, and 4.0 with pseudofrequencies of 0.332Hz,
0.249Hz, and 0.249Hz, respectively. ,e unique scale ob-
tained for RRIs-500 and RRIs-667 is probably due to the

discontinuous nature of the Haar wavelet. Even so, we found
similar shift of the whole curve from RRIs-500 to RRIs-667 as
compared with the curves obtained by Gaussian wavelet.
,erefore, when using a fixed scale, such as that used in the
DCconv and ACconv calculation, the wavelet coefficients of the
PRSA curves with different average RRIs determine the
frequency power with deviation from the target frequency.
In other words, the obtained indices may not reflect the full
power of the target frequency components, consequently
impairing the evaluation of ANS activity, as suggested by a
previous power spectral analysis [23]. In contrast, after

Table 2: Variants of PRSA for DC and AC calculation.

Method Description
Pan et al. [15]
(DCm1/ACm1)

Select anchor points on rising or falling edge of RRI signal. Equations (4) and (7) are replaced by
RRIi−1 <RRIi <RRIi+1 and RRIi−1 >RRIi >RRIi+1, respectively.

Arsenos and Manis [16]
(DCm2/ACm2)

RRI signal is represented by four successive RRI vectors. DC or AC is characterized by vector average:
DC(AC) � ((RRIi+3 + RRIi+2 − RRIi+1 − RRIi)/4).

,e vectors should satisfy ((RRIi+3 + RRIi+2 − RRIi+1 − RRIi)/4)> 0 for DC and
((RRIi+3 + RRIi+2 − RRIi+1 − RRIi)/4)< 0 for AC.

Nasario et al. [17]
(DCm3/ACm3)

Removing points in RRI signal that change more than 20% on selecting anchor points. Equations (4) and
(7) are replaced by (1<RRIi/RRIi−1)< 1.2 and (0.8<RRIi/RRIi−1)< 1, respectively.
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Figure 1: PRSA curves of synthetic RRI signals at three levels of RRI and average of all RRI signals. (a) PRSA curves of synthetic raw RRI
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interpolation and resampling, the wavelet coefficients at
fixed scale reflect the full power of the target frequencies
regardless of the average RRI (Figure 3).

,e simulation analysis also suggests that the DC and AC
may reflect oscillations at biased frequency values if the RRI
is not properly preprocessed. Hence, the ability of the indices
to reflect specific high frequencies in the HRV may be
compromised, as confirmed by the clinical analysis. For both
DC and AC, the calculation using preprocessed RRI signals
has improved accuracy. In fact, the conventional DC cal-
culation retrieves an AUC of 0.920, whereas the calculation
from preprocessed RRI signals yields a higher AUC of 0.942.
Similarly, the AUC of the AC increases from 0.818 to 0.923.

It is noteworthy that the AUCs of the optimized DC and AC
computed from the raw RRI signals are 0.940 and 0.917,
respectively, which are greater than the conventional DC
and AC, and are only slightly worse than the indices
computed from the preprocessed RRI signals. Even so, we
suggest that the interpolation and resampling are necessary
steps for deriving more robust indices as they render more
stable performance of DC and AC with varying scales, as
observed in Figures 4 and 5. It is particularly important
when the scale optimization is based on a small dataset, in
which the optimized scale may be deviated from the real
optimal scale. Table 3 shows that the optimal scale increases
at higher resampling frequency with both ratio and
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Figure 2: Squared central wavelet coefficients of PRSA curves at different scales for conventional DC and AC calculation. ,e shaded area
represents the variation range of each curve. (a)Wavelet analysis using the third-order Gaussian wavelet. (b)Wavelet analysis using the Haar
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Table 3: Optimal scale per resampling frequency and pseudofrequency corresponding to each combination of resampling frequency and
scale.

Resampling frequency (Hz)
Optimal scale Pseudofrequency

(Hz) Optimal AUC

DC AC DC AC DC AC
/ 2a 2a / / 0.920 0.818
/ 4b 1b / / 0.940 0.917
2 6 14 0.33 0.14 0.942 0.923
3 9 21 0.33 0.14 0.939 0.923
4 13 28 0.31 0.14 0.938 0.921
5 16 34 0.31 0.15 0.936 0.921
6 20 42 0.30 0.14 0.936 0.921
7 22 49 0.32 0.14 0.936 0.921
a,e scale was not optimized but used for conventional DC and AC calculation. b,e scale was optimized for DC and AC calculated from without
preprocessed RRI.
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pseudofrequency remaining relatively constant. Hence,
preprocessing is effective and insensitive to the resampling
frequency at a suitable scale.

Existing variants of the DC and AC calculation focus on
improving phase synchronization [15–17] but neglect the
influence of unevenly sampled RRI signals. A comparison to

Table 4: DCconv and ACconv and indices computed from preprocessed RRI signals for healthy and CHF subjects.

CHF subjects Healthy subjects p Value
DCconv (ms) 2.11± 2.96 6.82± 2.01 <0.001
DCp (ms) 1.79± 2.16 7.37± 3.03 <0.001
ACconv (ms) −5.35± 3.60 −8.00± 2.56 <0.001
ACp (ms) −2.34± 2.10 −6.08± 2.17 <0.001
,e preprocessing resampling frequency was 2Hz for both DCp and ACp, and the optimal scales were 6 and 14, respectively.
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Figure 6: Receiver operating characteristic curves of DC and AC calculated from raw and preprocessed RRI signals.

Table 5: Diagnostic ability of DC and AC.

Cutoff value (ms) Sensitivity (%) Specificity (%) Accuracy (%) AUC Ref.
DCconv 4.39 83.33 90.14 87.61 0.920

[10]DCp 3.41 85.71 95.77 92.04 0.942
ACconv −5.81 71.43 83.10 78.76 0.818
ACp −3.33 88.10 92.96 91.15 0.923
DCm1 8.24 83.33 94.37 90.27 0.947

[15]DCpm1 4.50 83.33 97.18 92.04 0.940
ACm1 −8.59 71.43 90.14 83.19 0.855
ACpm1 −4.79 85.71 91.55 89.38 0.920
DCm2 1.69 69.05 87.32 80.53 0.855

[16]DCpm2 1.97 76.19 97.18 89.38 0.905
ACm2 −2.20 88.10 85.92 86.73 0.894
ACpm2 −2.19 83.33 91.55 88.50 0.918
DCm3 4.34 78.57 94.37 88.50 0.920

[17]DCpm3 3.69 78.57 92.96 87.61 0.926
ACm3 −5.74 69.05 85.92 79.65 0.823
ACpm3 −3.39 85.71 94.37 91.15 0.924
Sensitivity, specificity, and accuracy of DC and AC are given under appropriate cutoff values. Subscripts m1 to m3 indicate the three calculation variants of
DC and AC.,e indices calculated from preprocessed RRI signals use the same resampling frequency of 2Hz and optimal scales of 6 and 14 for DC and AC,
respectively.
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these variants demonstrates the effectiveness of preprocessing.
DCconv and ACconv calculated from preprocessed RRI signals
(DCp and ACp) outperform most variants obtained from
unevenly sampled RRI signals, except for DCp compared to
DCm1 (Table 5). When we applied the variants to the pre-
processed RRI signals, most AUC values improved (except for
DCm1). Hence, the calculation of DC and AC from pre-
processed RRI signals may improve the estimation perfor-
mance and ability to distinguish CHF from healthy subjects.

Nevertheless, the insufficient number of clinical subjects
limits the scope of this study. Large-scale datasets are re-
quired to confirm our findings. In addition, as no com-
plementary information about the patients was available, we
were not able to analyze the physiological background re-
lation to the calculation improvement. Moreover, the low
sampling frequency of electrocardiography may introduce
noise in the RRI signals, possibly biasing the calculation
results. Another limitation is the simplification of RRI
signals for simulation. ,e adopted method facilitates the
generation of signals with known frequencies but fails to
introduce physiological regulations that affect the RRI. For
example, a very low-frequency component reflecting long-
term regulatory circuits, such as thermoregulation, renin-
angiotensin system activity, and peripheral sympathetic
vasomotor control, was not modeled [24]. Hence, more
realistic RRI generation methods, such as the integral pulse
frequency modulator [25] and the cardiovascular model
[26, 27], which considers short-term sympathovagal regu-
lation of the heart cycle, are required for improving our
analyses. Finally, note that we cannot provide conclusive
evidence on the possible improvement of the proposed
preprocessing for improving risk stratification based on DC
and AC from the clinical results because only healthy
subjects and CHF patients were compared.

5. Conclusion

We investigated the effect of interpolating and resampling
unevenly sampled RRI signals on the accuracy and diag-
nostic ability of DC and AC. ,e simulation analysis
demonstrates that conventional DC and AC calculation
retrieves different target frequencies depending on the av-
erage RRI, but a single target frequency is obtained after
signal preprocessing. ,e clinical analysis suggests that in-
terpolation and resampling improve the identification of
CHF patients based on the DC and AC. Our findings suggest
the effectiveness of preprocessing unevenly sampled RRI
signals before DC and AC calculation to improve the di-
agnostic performance of CHF based on these indices.
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study can be downloaded from http://www.physionet.org.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is study was supported by the National Natural Science
Foundation of China (grant nos. 31870938 and 81871454)
and Zhejiang Provincial Key Laboratory of Communication
Networks and Applications.

References

[1] N. Singh, D. Mironov, P. W. Armstrong, A. M. Ross, and
A. Langer, “Heart rate variability assessment early after acute
myocardial infarction,” Circulation, vol. 93, no. 7, pp. 1388–
1395, 1996.

[2] P. Ponikowski, S. D. Anker, T. P. Chua et al., “Depressed heart
rate variability as an independent predictor of death in
chronic congestive heart failure secondary to ischemic or
idiopathic dilated cardiomyopathy,” =e American Journal of
Cardiology, vol. 79, no. 12, pp. 1645–1650, 1997.
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