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Abstract: Recently nanoparticles have been extensively studied and have proven to be a 

promising candidate for cancer treatment and diagnosis. In the current study, we examined the 

chemo-sensitizing activity of a mixture of nanodiamond (ND) and nanoplatinum (NP) solution 

known as DPV576, against multidrug-resistant (MDR) human myeloid leukemia (HL60/AR) 

and MDR-sensitive cells (HL60). Cancer cells were cultured with different concentrations of 

daunorubicin (DNR) (1 × 10−9–1 × 10−6 M) in the presence of selected concentrations of DPV576 

(2.5%–10% v/v). Cancer cell survival was determined by MTT assay, drug accumulation by flow 

cytometry and confocal laser scanning microscopy (CLSM), and holes and structural changes 

by atomic force microscopy (AFM). Co-treatment of HL60/AR cells with DNR plus DPV576 

resulted in the reduction of the IC
50

 to 1/4th. This was associated with increased incidences of 

holes inside the cells as compared with control untreated cells. On the other hand, HL60 cells 

did not show changes in their drug accumulation post-treatment with DPV576 and DNR. We 

conclude that DPV576 is an effective chemo-sensitizer as indicated by the reversal of HL60/AR 

cells to DNR and may represent a potential novel adjuvant for the treatment of chemo-resistant 

human myeloid leukemia.
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Introduction
Nanoparticles have shown promising results for cancer therapies. Several studies have 

shown the success of drug delivery and cell targeting using nanoparticles.1 One example 

is the conjugation of trastuzumab (Herceptin®) to doxorubicin-carrying nanoparticles 

which allows transport of the chemotherapeutic agent specifically to tumor cells.2 In 

addition, antibody-conjugated nanoparticles have the potential to be used in active 

targeted drug delivery.3 Other nanoparticles that have been studied for their use in 

cancer therapies include: iron oxide,4 poly(D,L-lactide-co-glycolide)/montmorillonite,5 

poly(D,L-lactic acid),6 nickel,7 and human serum albumin.2,8,9

The development of multidrug resistance (MDR) to anticancer agents by tumor cells 

is a major obstacle in the chemotherapeutic cure of cancer.10 Therefore, larger dosages 

of these anticancer drugs must be applied, leading to increased toxicity; side effects 

include myelosuppression, carcinogenic effects, alopecia, myalgia, thrombocytopenia, 

congestive heart failure, and immune suppression.11–16 There are many drugs that have 

been shown to reverse MDR in MDR-associated protein (MRP), including: probenecid, 

an inhibitor of organic anion transport;17 genistein, an inhibitor of tyrosine kinase;18 

buthionine sulfoximine, an inhibitor of glutathione synthesis;19 ethacrynic acid to 

reverse glutathione S-transferase-mediated resistance; and calcium channel blockers 
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and calmodulin inhibitors to reverse MDR.20 However, these 

agents have been shown to be toxic in humans when used 

at very high doses. These considerations prompted us to 

investigate a new modulator of MDR with lower toxicity. 

Earlier studies showed that a mixture of two nanoparticles – 

nanodiamond (ND) and nanoplatinum (NP) – in liquid form 

(DPV576) and in fabric form (DPV576-C), show immune 

modulatory effects.21,22 In the current study, we extend our 

research with DPV576 to examine its chemo-sensitizing 

activity against DNR-resistant human myeloid leukemia 

(HL60/AR) in vitro.

Materials and methods
Tumor cell lines and culture conditions
Human multidrug-resistant (MDR) myeloid leukemia (HL60/

AR) cells and MDR sensitive (HL60) cells were used in 

the present study. HL60/AR cells were kindly provided by 

Dr Gollapudi at the University of California (Irvine, CA, 

USA). HL60 cells were purchased from the American Tis-

sue and Culture Collection (ATCC) (Manassas, VA, USA). 

Tumor cells were maintained in our laboratory in a complete 

medium (CM) that consisted of RPMI-1640, supplemented 

with 10% fetal calf serum (FCS), 2 mM glutamine, and 

100 µg/mL streptomycin, and penicillin.

Drugs and chemicals
DNR and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazo-

lium bromide (MTT) were obtained from Sigma (St Louis, 

MO, USA). DPV576, a liquid mixture of nanodiamond (ND) 

and nanoplatinum (NP) solution was used. DPV576 was 

supplied by Venex Company (Atsugi, Kanagawa, Japan). 

The particle diameters of NP and ND were 10–20 nm and 

100–200 nm, respectively and their final concentrations were 

50 ng/mL NP and 5 µg/mL ND.

Drug sensitivity assay
Drug sensitivity was determined using a colorimetric MTT 

assay. This assay is based on the reduction of tetrazolium salt 

MTT by a mitochondrial dehydrogenase from a colorless 

to a blue-colored formazan product in viable cells that can 

be measured spectrometrically. The amount of formazan 

produced is proportional to the number of living cells. Cells 

(1 × 104/well) were seeded in 96-well plates and cultured in 

triplicate in the presence or absence of various concentrations 

of DPV576 (2.5%–10% v/v) and with or without selected 

concentrations of DNR (1 × 10−9–1 × 10−6 M). The final 

volume of medium in each well after addition of DPV576 and/

or DNR was 200 mL. The cultures were incubated at 37°C for 

3 days, after which 50 µg of MTT was added to each well, and 

the cultures incubated for an additional 4 hours. The plates 

were centrifuged, the medium carefully removed, the formazan 

crystals solubilized with acid alcohol, and the plates read at 

590 nm using an ELISA plate reader (Molecular Devices, 

Menlo Park, CA, USA). The 50% inhibitory concentration 

(IC
50

) was determined as the drug concentration, which 

resulted in a 50% reduction in cell viability. The IC
50

 was 

determined by plotting the logarithm of the drug concentration 

versus the survival rate of the treated cells.

Daunorubicin (DNR) accumulation
The accumulation into cells of DNR, a fluorescent compound, 

was studied by flow cytometry, as has been previously 

described.17 Briefly, cells were incubated in the presence or 

absence of DPV576 (2.5%–10% v/v) at 37°C for 15 minutes. 

DNR (2 µM) was then added to the cells, gently mixed, and 

incubated at 37°C for 45 minutes. Accumulation of DNR was 

measured by flow cytometry using a FACScan (Becton Dick-

inson, Franklin Lakes, NJ, USA), the fluorescence intensity 

was recorded from histograms, and the data was expressed 

as mean fluorescence channel numbers (MFC).

AFM imaging
HL60/AR cells (0.5 × 106) were cultured with DPV576 

(10% v/v) for 24 hours then exposed to DNR (2 µM) for 

45 minutes. Results were compared to those of cells treated 

with DNR alone and DPV576 alone. Cytospin preparations 

(Shandon Southern Institute, Sewickley, PA, USA) of cells 

under different treatment conditions were air dried, fixed 

in 100% MeOH for 5 minutes, and prepared for AFM 

studies. Dimension 5000 AFM (Veeco, Plainview, NY, 

USA) under contact mode was used to image the HL60/

AR cells with OTESP silicon probes (Veeco). Topographic 

height images were recorded at 512 × 512 pixels at a scan 

rate of 0.8 Hz. Image processing was performed using 

SPIP Software (Image Metrology, Hørsholm, Denmark). 

Usually an MLCT-AFM tip (with a ‘k’ value of 0.03 N/m) 

contributes to the broadening effect because of its specific 

geometry.23

Confocal imaging
Confocal laser scanning microscopy (CLSM) was used to 

detect DNR accumulation for HL60/AR cells treated with 

DNR alone and DNR plus DPV576. Cytospin preparations, 

as mentioned above, were prepared for confocal imaging. 
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The CLSM was operated in reflectance mode using a 515 nm 

laser line.24

Hole/vacuole analysis using light 
microscopy of Giemsa-stained 
preparations
Morphological assessment of hole induction in HL60/AR 

cells by DPV576 treatment was conducted in Giemsa-stained 

cytospin preparations. HL60/AR cells (0.5 × 106) were cul-

tured with DPV576 (10% v/v) for 24 hours then exposed to 

DNR (2 µM) for 45 minutes. The cells (0.3 × 105) were then 

treated with either DPV576, DNR, DPV576 plus DNR, or 

saline. Afterwards, the samples were centrifuged on slides at 

200 g for 5 minutes using a cytospin cytocentrifuge. Slides 

were air dried, fixed in 100% MeOH for 5 minutes, and then 

stained with 4% Giemsa solution for 15 minutes as has been 

previously described.25

Statistical analysis
Statistical significance was determined by Student’s t-test. 

Differences were considered significant at the P , 0.05 level.

Results
The effects of DPV576 on the susceptibility of HL60/AR 

cancer cells to DNR were examined at the levels of both cell 

survival and drug accumulation.

HL60/AR cell survival
HL60/AR cells were cultured with DNR at different 

concentrations (1 × 10−9–1 × 10−6 M) in the presence or 

absence of DPV576 for 3 days. Cell survival and IC
50

 values 

were then determined by MTT assay. Figure 1 shows that 

DNR, as expected, inhibited the survival of cancer cells in 

a dose-dependent manner and that the IC
50

 of DNR alone 

was 3.1 µM. However, when the cells were co-cultured with 

DPV576 plus DNR, we noticed a decrease in cell survival 

that was also dose dependent of DPV576 and maximized at 

10% v/v. Subsequently, the IC
50

 was significantly reduced, 

reaching 0.8 µM at 10% v/v.

Drug accumulation
Flow cytometry
To determine if the observed DPV576-enhanced accumulation 

of DNR cytotoxicity in HL60/AR cells is related to an 

alteration in drug transport, we studied accumulation of 

DNR by flow cytometry. The results show that DPV576 

at concentrations of 2.5%, 5%, and 10% v/v significantly 

enhances the accumulation of DNR in HL60/AR cells 

(Figure 2A and C). On the other hand, HL60 cells did not 

show changes in drug accumulation post-treatment with 

DPV576 and DNR (Figure 2B), suggesting that DPV576 

had no significant effect on the accumulation of DNR in 

HL60 cells.

Confocal studies
HL60/AR cells treated with DNR in the presence and absence 

of DPV576 were examined by CLSM. Cells exposed to low 

concentrations of DNR alone showed very faint brightness 

(Figure 3A); similarly, cells treated with low and high doses 

of DNR also showed a faint brightness (Figure 3B and C). 
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Figure 1 Effect of DPV576 on the reversal of DNR resistance in HL60/AR cells. Cancer cells (1 × 104 well−1) were seeded in 96-well plates with DNR (1 × 10−9 to 1 × 10−6 M) 
and cultured in the presence or absence of various concentrations of DPV576 (2.5, 5, and 10% v/v) for 3 days. Cell survival was determined by MTT assay. Data represents the 
mean ± SD from three individual experiments, each in triplicate. The IC50 of DNR with DPV576 required 1/4th the amount of DNR as compared to the IC50 of DNR alone.
Abbreviations: DNR, daunorubicin; MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; IC50, 50% inhibitory concentration.
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Figure 3 Effect of DPV576 on DNR accumulation in HL60/AR cells using CLSM. 
Cells displayed little to no brightness as shown in (A) without DNR and without 
DPV576, (B) cells with only DPV576, and (C) DNR alone. Cells exposed to both 
DNR and DPV576 show the highest degree of brightness (D–H). Note the increased 
degree of brightness in all of these co-treated cells. Also note the normal nuclear 
to cytoplasmic ratio in (D), increased ratio in (E), and further increased ratio 
in (F). Figure 3 also shows apoptotic HL60/AR cells. Note the cells with prominent 
membrane blebbing (G and H).
Abbreviations: CLSM, confocal laser scanning microscopy; DNR, daunorubicin.
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Figure 2 Effect of DPV576 on DNR accumulation in HL60/AR and HL60 cells using 
flow cytometry. Cancer cells (1 × 104) were incubated with DNR (2 µm) with or 
without DPV576 (2.5, 5, and 10% v/v) and drug accumulation was assessed using flow 
cytometry, and is expressed as MFC number. (A) HL60/AR cells; (B) HL60 cells; 
(C) dot plot and histogram overlays of HL60/AR cells with and without DNR and 
DPV576. Forward and side scatter was used to exclude debris and dead cells.
Notes: Data represent the mean ± SD of three experiments; *P , 0.05; **P , 0.001. 
Ten thousand cells were acquired for analysis by flow cytometry.
Abbreviations: DNR, daunorubicin; MFC, mean fluorescence channel.

On the other hand, cells exposed to high concentrations of 

DNR with DPV576 (Figure 3D–H) showed the greatest 

degree of brightness. Note the presence of multiple holes in 

these cells. Note also the apoptotic HL60/AR cells as char-

acterized by an increased nuclear to cytoplasmic ratio in the 

early stages of apoptosis (Figure 3D–F) and membrane bleb-

bing in the later stages of apoptosis (Figure 3G and H).

AFM studies
AFM studies were carried out to examine the hole formation 

in HL60/AR cells treated with DNR in the presence or 

absence of DPV576. Results show that hole formation is 

detected in the control (Figure 4A) and in DNR only treated 

cells (Figure 4B). However, hole formation is increased 

post-treatment with DPV576 (Figure 4C). On the other 

hand, for HL60/AR cells treated with DNR plus DPV576, 

AFM detected marked increases in the size and number of 

holes (Figure 4D–I). These holes ranged from 40–500 nm in 

depth, and 0.1–2.5 µm in diameter, and were situated in the 

cytoplasm and the nucleus. Contrast images of Figures 4D 

and 4E correspond to Figure 4G and H and regions in dark 

orange indicate the depth of the holes. Figure 4I shows an 

apoptotic HL60/AR cell with membrane blebbing.

Discussion
Several studies have shown promising results for the role of 

nanoparticles in the reversal of chemo/radio-sensitization in 

cancer cells. Nanoparticles loaded with chemotherapeutic 

drugs have been used to successfully deliver drugs to the 

cytoplasm, nucleus, and other specific organelles.26–28 For 

example, DNR-loaded magnetic nanoparticles of Fe
3
O

4
 can 

overcome MDR.29 In another study, nickel nanoparticles 

have shown increased cancer cell membrane permeability.7 

However, the use of nanoparticles as DNR sensitizers has 

been of major concern due to their known toxicity. Exposure 

by inhalation to fine-grained nickel nanoparticles can cause 

cancer formation,30 illness, and in some cases, death.31 Cobalt 

nanoparticles have also been shown to display similar levels 

of toxicity32 and tumor formation.33
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Unlike other nanoparticles, DPV576 exhibits low levels 

of toxicity and yet reverses MDR in HL60/AR cells. Our 

preliminary results showed that DPV576 is less toxic as 

demonstrated by its ability to enhance human T cell and 

B cell proliferation in vitro (data not shown). Further studies 

by Schrand et al reported that NDs are non-toxic to a variety 

of cell types and did not produce significant reactive oxygen 

species.34 In addition, the intratracheally instilled NDs showed 

no significant adverse effects in the lungs of mice as evaluated 

through histopathological and ultrastructural examinations.35 

Further studies suggest that NDs may have several biomedical 

applications due to their unique properties such as large 

specific surface areas, stable photoluminescence, and ability 

to be functionalized with biomolecules.36,37 Moreover, 

DPV576 has shown immune modulatory effects such as 

activation of human monocyte-derived dendritic cells21 and 

modulation of murine T lymphocytes by a mixture of ND/

NP coated onto fabrics (DPV576-C) in mice.22 In addition, 

results of the current study show that DPV576 reverses MDR 

in HL60/AR by a mechanism that involves hole induction.

The mechanisms of MDR in cancer cells have been 

the focus of research. These include a decreased uptake of 

hydrophilic drugs which require transporters to enter cells and 

an increased energy-dependent efflux of hydrophobic drugs 

that can enter cancer cells through the plasma membrane by 

diffusion. Other factors to be considered in reversing MDR 

include the decreased sensitivity to drug-induced apoptosis 

and induction of drug-detoxifying mechanisms.38,39 In 

the last four decades, several attempts have been made to 

reverse MDR in MRP, and several chemosensitizers have 

been developed. These include: probenecid,17 genistein,18 

buthionine sulfoximine,19 ethacrynic acid, and calcium 

channel blockers.20 In addition, hole induction by several 

nanoparticles represents an additional mechanism for 

reversing MDR.7

Our results indicate that DPV576 is an effective agent in 

the reversal of MDR as exemplified by the reduction of the 

IC
50

 to 1/4th upon exposure to DPV576. We identified via 

flow cytometry an increased accumulation of DNR in HL60/

AR cells that was associated with the presence of several 

holes. The ability of different nanoparticles to induce holes 

has been reported in several types of cells. These include: 

transient holes caused by exposure of the cell membrane to 

monolayered protected nanoparticles;40 cationic nanoparticles 

and macromolecules that generate transient holes in several 

biological membranes;41 and an amine-modified nanoparticle 

treatment which resulted in hole induction in transformed 

human alveolar epithelial type 1-like cells.42 The idea that 

such nanoparticles have the ability to alter the permeability of 

the respective cell membrane and thus facilitate the relevant 

drug uptake is very significant.

The observation of the hole-inducing capabilities of 

DPV576 may represent a possible mechanism by which 

this agent reverses MDR. Cancer cells have been shown 

to phagocytize microorganisms and other cells, and 

subsequently, vacuoles can be seen in these cancer cells. 

Many tumor cells exhibit phagocytic activity, including: 

phagocytosis of titanium particles by sarcoma L929 cells;43 

elastic fibers by dermatofibroma cells;44 erythrocytes and 

bacteria by adenocarcinomas;45,46 Candida albicans by 

lymphatic tumor cells;47 and Saccharomyces cerevisiae by 

human breast, oral, and colon cancer cells.48,49 Cancer cells 

can also phagocytize other cells such as lymphocytes50,51 and 

neutrophils.52 In addition, phagocytosis of one tumor cell by 

another tumor cell has been reported53 and is referred to as 

cannibalism. In the current study, we detected the presence 

of holes in the control untreated HL60/AR cells (Figure 4A) 

via AFM, which may be attributed to their cannibalistic 

activity. Treatment with DPV576 increased hole formation 

in cells (Figure 4C) and showed a three-fold increase in the 

percentage of cells with multiple holes ($4) as compared 

to control untreated cells (Figure 4A) and DNR only treated 
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Figure 4 HL60/AR cells were cultured with DPV576 (10% V/V) for 24 hours then 
exposed to DNR (2 µM) for 45 minutes. Cytospin preparations of cells under 
different treatment conditions were air dried, fixed in MeOH, and prepared for 
AFM studies. Preparation showed no significant changes in hole formation in control 
cells untreated with DNR and DPV576 (A) and DNR only treated (B). DPV576 only 
treated (C) showed an increase in the number of holes. Preparation of DPV576 
plus DNR treated cells (D–F) showed more frequent and larger-sized holes (white 
arrows). Contrast images of (D and E) correspond to (G and H), respectively, and 
regions in dark orange indicate the depth of the holes (black arrows). Finally, (I) 
shows an apoptotic cancer cell with signs of membrane blebbing.
Abbreviations: AFM, atomic force microscopy; DNR, daunorubicin.
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cells (Figure 4B). However, HL60/AR cells co-treated with 

DPV576 plus DNR showed holes more frequent in number 

and which appeared larger in size, ranging from 40–500 nm 

in depth and 0.1–2.5 µm in diameter, and were situated in 

the cytoplasm and the nucleus (Figure 4D–I). AFM studies 

were further confirmed using CLSM imaging.

Another mechanism by which DPV576 might kill HL60/

AR cells is through interference with MRP and drug transport 

via modulation of the transport function of MRP. MRP is a 

member of the ATP-binding cassette superfamily of membrane 

transport proteins and has been suggested to play a role in 

the reduction of drug accumulation.19 Normally, MDR cells 

overexpress P-glycoproteins (P-gp); using a nanoformulation 

of drugs is one way of bypassing the P-gp pumps. Since 

HL60/AR is a cell line that is known to overexpress MRP,17 

the data suggests that DPV576 might induce HL60/AR cell 

apoptosis through interference with drug transport in addition 

to inducing holes in the cancer cell membrane.

Several studies suggest that DPV576 serves a dual purpose 

in the fight against cancer – in addition to its ability to induce 

holes in cancer cells, it has been shown to have an immune 

modulatory effect.21,22 Such properties of DPV576 make this 

agent advantageous over other nanoparticles.

Conclusion
This study strongly suggests that DPV576 reverses resistance 

in HL60/AR cells by increasing cellular DNR accumulation 

via a mechanism that may involve induction of holes in the 

cellular membrane. It should be investigated as a unique 

candidate for drug delivery and MDR therapy with less toxic 

effects.
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