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Abstract

Objective

To develop and internally validate a deep-learning algorithm from fetal ultrasound images

for the diagnosis of cystic hygromas in the first trimester.

Methods

All first trimester ultrasound scans with a diagnosis of a cystic hygroma between 11 and 14

weeks gestation at our tertiary care centre in Ontario, Canada were studied. Ultrasound

scans with normal nuchal translucency were used as controls. The dataset was partitioned

with 75% of images used for model training and 25% used for model validation. Images

were analyzed using a DenseNet model and the accuracy of the trained model to correctly

identify cases of cystic hygroma was assessed by calculating sensitivity, specificity, and the

area under the receiver-operating characteristic (ROC) curve. Gradient class activation heat

maps (Grad-CAM) were generated to assess model interpretability.

Results

The dataset included 289 sagittal fetal ultrasound images;129 cystic hygroma cases and

160 normal NT controls. Overall model accuracy was 93% (95% CI: 88–98%), sensitivity

92% (95% CI: 79–100%), specificity 94% (95% CI: 91–96%), and the area under the ROC

curve 0.94 (95% CI: 0.89–1.0). Grad-CAM heat maps demonstrated that the model predic-

tions were driven primarily by the fetal posterior cervical area.
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MSQ, El-Chaâr D, Moretti F, et al. (2022) Using

deep-learning in fetal ultrasound analysis for

diagnosis of cystic hygroma in the first trimester.

PLoS ONE 17(6): e0269323. https://doi.org/

10.1371/journal.pone.0269323

Editor: Ruxandra Stoean, University of Craiova,

ROMANIA

Received: December 24, 2021

Accepted: May 19, 2022

Published: June 22, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0269323

Copyright: © 2022 Walker et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The ultrasound

images used in this study are not currently

available to upload to PLOS ONE. All images belong

to The Ottawa Hospital. A formal request can be

https://orcid.org/0000-0001-8974-4548
https://orcid.org/0000-0002-1883-9977
https://orcid.org/0000-0002-0766-4294
https://orcid.org/0000-0002-0062-5567
https://doi.org/10.1371/journal.pone.0269323
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269323&domain=pdf&date_stamp=2022-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269323&domain=pdf&date_stamp=2022-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269323&domain=pdf&date_stamp=2022-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269323&domain=pdf&date_stamp=2022-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269323&domain=pdf&date_stamp=2022-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269323&domain=pdf&date_stamp=2022-06-22
https://doi.org/10.1371/journal.pone.0269323
https://doi.org/10.1371/journal.pone.0269323
https://doi.org/10.1371/journal.pone.0269323
http://creativecommons.org/licenses/by/4.0/


Conclusions

Our findings demonstrate that deep-learning algorithms can achieve high accuracy in diag-

nostic interpretation of cystic hygroma in the first trimester, validated against expert clinical

assessment.

Introduction

Artificial intelligence (AI) and machine learning models are increasingly being applied in clini-

cal diagnostics, including medical imaging [1]. Deep-learning is a class of machine learning

models inspired by artificial neural networks which can process large amounts of data to iden-

tify important features that are predictive of outcomes of interest. Importantly, model perfor-

mance can be continuously and incrementally improved as data accrues. Deep-learning models

perform well in pattern recognition, making them particularly useful in the interpretation of

medical images [2]. A systematic review and meta-analysis of studies reporting on the diagnos-

tic performance of deep-learning models in the identification of disease features from medical

images found that they performed equivalently to trained clinicians, however, few studies make

direct comparisons between deep-learning models and health care professionals [2].

AI has many potential uses in ultrasonography, including automating standardized plane

detection, and extracting quantitative information about anatomical structure and function.

Inter-operator heterogeneity in ultrasound image acquisition poses unique challenges for the

use of AI in this space, and are further impeded by a lack of standardized imaging planes [3].

Still, AI has been successfully tested in a range of organ systems, and there is growing interest

for its application in obstetric ultrasonography for fetal structure identification, automated

measurement of fetal growth parameters, and for the diagnosis of congenital anomalies [4].

Uptake of AI applications into clinical practice is beginning, however, ongoing investigation is

warranted to demonstrate the feasibility, validity and reliability of such tools.

Cystic hygroma is a congenital lymphangioma documented in approximately 1 in 800 preg-

nancies and 1 in 8 000 live births [5]. It is commonly associated with chromosomal abnormali-

ties including Trisomy 21, Turner Syndrome, and anatomical malformations [6–8]. Cystic

hygroma is diagnosed based on the assessment of nuchal translucency (NT) thickness between

the fetal skin and the subcutaneous soft tissue at the neck and cervical spine [4]. Diagnosis is

straightforward and possible through routine first- or second-trimester ultrasonography.

Affected pregnancies require extensive antenatal and postpartum management which may

include early cytogenetic testing for suspected aneuploidy, comprehensive assessment of fetal

anatomy, and postpartum surgical intervention [8, 9]. Some studies have investigated auto-

mated and semi-automated systems for measuring NT thickness, however, no studies to date

have investigated AI and deep-learning models to assess diagnoses associated with NT thick-

ness, including cystic hygroma [10, 11].

Given the unique challenges in applying AI in fetal ultrasonography, cystic hygroma is an

ideal condition to investigate the feasibility of using deep-learning models in the interpretation

of ultrasound images. We sought to develop a deep-learning model that could analyze fetal

ultrasound images and correctly identify cases of cystic hygroma compared to normal controls.

Methods

Study setting and design

This was a retrospective study conducted at The Ottawa Hospital, a multi-site tertiary-care

facility in Ottawa, Canada, with a catchment area of 1.3 million people. First trimester
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ultrasound images taken between March 2014 and March 2021 were retrieved from the institu-

tional Picture Archiving and Communication System (PACS) and saved in Digital Imaging

and Communications in Medicine (DICOM) format. Eligible images were those that included

a mid-sagittal view of the fetus taken between 11 and 14 weeks gestation. Cases were identified

if there was a final clinical diagnosis of a cystic hygroma in the ultrasound report (Fig 1A). A

set of normal ultrasound images from NT screens were used for controls and were retrieved

between March 2021 and June 2021 (Fig 1B). Cases and normal images were reviewed and ver-

ified by a clinical expert (IW). Patients were not contacted and patient consent was not

required to access the images. Data were de-identified and fully anonymized for the model

training. This study was reviewed and approved by the Ottawa Health Sciences Network

Research Ethics Board (OHSN REB #20210079).

A 4-fold cross-validation (4CV) design was used, whereby the same deep-learning architec-

ture was tested and trained four different times using randomly partitioned versions (folds) of

the image dataset. For each fold, 75% of the dataset was used for model training, and 25% was

used for model validation. The 4CV design was chosen instead of the more commonly used

10-fold cross-validation (10CV) design to optimize the performance of the deep-learning

models within our small dataset. With 4CV, each prediction error affects the accuracy of the

model by 1.4%, and the sensitivity by 3.1%. Had a 10CV approach been used, each prediction

error would have affected model accuracy by 3.4% and the sensitivity by 7.8%.

Data preparation

DICOM images included coloured annotations such as calipers, text, icons, profile traces (Fig

2A) and patient personal health information (PHI), which were removed prior to analysis.

PHI was handled by cropping the images to remove the identifying information contained in

the image borders. Coloured annotations were removed by first converting image data from

the Red Green Blue (RGB) colour space to the Hue Saturation Value (HSV) colour space.

Image pixels belonging to the grey ultrasound image were empirically identified and ranged

from 0–27, 0–150 and 0–255 for the H, S and V values, respectively (Fig 2B).

Fig 1. Fetal ultrasound images of normal (A) and cystic hygroma (B) scans.

https://doi.org/10.1371/journal.pone.0269323.g001
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Pixels outside of these ranges were determined to be part of the coloured annotations.

Third, a binary mask of the image was created where annotation pixels were labelled ‘1’

and ultrasound image pixels were labelled ‘0’. The binary mask was then dilated with a 5x5 ker-

nel to include contours surrounding the annotations. Last, the Navier-Stokes image infill

method [12] was used to artificially reconstruct the ultrasound image without annotations

(Fig 3).

After DICOM images were cleaned, they were converted to grayscale (1 channel image).

Intensities were standardized to a mean of zero and a standard deviation of one for better sta-

bility during the neural network training [13]. Finally, the images were resized to 256 x 256

pixels.

Fig 2. Identifying image annotations on a normal NT scan. (A) Image annotations included calipers, text, icons, and profile traces, all of which were removed

prior to model training. (B) 3D Scatter Plot of HSV image data. Each point represents one image pixel and its associated HSV values. The red region highlights

the range of values which do not belong to the grayscale ultrasound image. The area encircled in green shows pixel values that belong to the grayscale

ultrasound image. Grayscale images had H, S and V values ranging from 0–27, 0–150 and 0–255, respectively.

https://doi.org/10.1371/journal.pone.0269323.g002

Fig 3. Removal of image annotations on a scan with cystic hygroma diagnosis. (A) Ultrasound image before annotations were removed. Yellow calipers

(bottom middle) are visible, along with text annotations (top left). (B) The binary mask of the image which was generated to define the region of the image that

need to be infilled (white pixels). (C) Result of the Navier-Stokes image infill method; all image annotations have been removed.

https://doi.org/10.1371/journal.pone.0269323.g003
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Neural network model

A DenseNet convolutional neural network (CNN) model architecture[14] was used to classify

images as “normal” or those with “cystic hygroma”. Specifically, we used the DenseNet169

PyTorch model [15], with the input layer modified to have a shape of 256 x 256 x 1 pixels and

the output layer modified to produce two possible outcome features: 1) normal and 2) cystic

hygroma. DenseNet169 was chosen because of its advantages over the ResNet architecture as

shown in a publication by Gao et al. (2017) demonstrating that DenseNet achieves high perfor-

mance while requiring less computation [12]. On some image classification benchmarks Den-

seNet demonstrated better performance and efficiency than the ResNet model.

Model training

Model training was performed from scratch with random weights initialization for 1000

epochs (i.e., step-in optimization) using the cross-entropy loss function [16], the Adam opti-

mizer [17, 18] (epsilon = 1e-8, beta1 = 0.9, beta2 = 0.999) and a batch size of 64. The available

pretrained DenseNet models were trained on ImageNet. ImageNet and fetal ultrasound images

are significantly different, therefore CNN models for fetal US applications should not be pre-

trained on ImageNet. We trained the architecture using our dataset of ultrasound images from

The Ottawa Hospital with random weights initialization. The learning rate was set to 1e-2 and

reduced by a factor of 0.72 at every 100 epochs (gamma = 0.72, step size = 100) using a learning

rate step scheduler [19].

Data augmentation was used during model training to increase the generalizability of the

CNN model. Augmentations included random horizontal flip of the ultrasound images

(50% probability), random rotation in the range of [–15, 15] degrees, random translation (x

±10% and y±30% of image size) and random shearing in the range of [-0.2, 0.2] degrees.

These augmentations were performed dynamically at batch loading. Due to the randomness

of these operations, a single training image underwent different augmentations at each

epoch.

To address imbalance in the number of normal NT and cystic hygroma images in the train-

ing dataset, cystic hygroma images were randomly up sampled, with replacement, to match

the number of normal NT images.

Model validation

For each epoch, the validation data were used to assess the total number of true and false posi-

tives, and true and false negatives and used to calculate accuracy, sensitivity, specificity and the

area under the receiver-operating characteristic curve (AUC). For each fold, the performance

metrics for the epoch with the highest level of accuracy were reported. The mean, standard

deviation and 95% confidence intervals (CI) of the performance metrics across all folds were

then computed.

Explainability

The Gradient-weighted Class Activation Mapping (Grad-CAM) method was used to improve

the interpretability of our trained DenseNet models, and visually contextualize important fea-

tures in the image data that were used for model predictions [20]. Grad-CAM is a widely used

technique for the visual explanation of deep-learning algorithms [21, 22]. With this approach,

heat maps were generated from 8x8 feature maps to highlight regions of each image that were

the most important for model prediction (Fig 4).
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Results

The image dataset included 289 unique ultrasound images; 160 control images with normal

NT measurements, and 129 cases with cystic hygroma. A total of 217 images were used for

model training, and 72 images were used for model validation (Table 1).

Table 2 shows the results for all 4 cross validation folds. All 4 models performed well in the

validation set. The overall mean accuracy was 93% (95% CI: 88–98%), and the area under the

receiver operating characteristic curve was 0.94 (95% CI: .89–1.0) (Fig 5). The sensitivity was

92% (95% CI: 79–100%) and the specificity was 94% (95% CI: 91–96%).

Most of the Grad-CAM heat maps highlighted the fetal head and neck (Fig 6). Although

some heat maps specifically highlighted the posterior cervical region, in the area used for NT

measurement (Fig 7A and 7B), poor localization did occur (Fig 7C and 7D).

There were 10 false negatives and 10 false positives. The misclassified images were reviewed

with a clinical expert (MW) and it was determined that misclassifications commonly happened

Fig 4. Grad-CAM image of a cystic hygroma case. The green gridlines indicate the size of the feature maps (8x8) used

to generate the heat maps. The red highlights the region of the image that influenced the model’s prediction the most.

https://doi.org/10.1371/journal.pone.0269323.g004
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when the fetus was close to the placental membrane leading the heat map to focus on another

part of the brain.

Discussion

Our findings demonstrate the feasibility of using deep-learning models to interpret fetal ultra-

sound images and identify cystic hygroma diagnoses with high performance in a dataset of

first trimester ultrasound scans. The model achieved excellent prediction of cystic hygroma

with a sensitivity of 92% (95% CI: 79–100%) and specificity of 94% (95% CI: 91–96%). This

study contributes to the literature on AI and medical diagnostics, and more specifically to the

use of AI in fetal ultrasonography where there are scant data.

Ultrasound is critical in the observation of fetal growth and development, however, small

fetal structures, involuntary fetal movements and poor image quality make neonatal image

acquisition and interpretation challenging. Our study has shown that deep-learning and Grad-

CAM heat maps can correctly identify the fetal head and neck region to identify abnormalities.

There have been several investigations focusing on AI-based localization of standard planes in

fetal ultrasonography, suggesting that AI-models perform as well as clinicians in obtaining rea-

sonable planes for image capture and diagnosis [23–27]. Building on this literature, cystic

hygroma has not been evaluated yet it is an ideal fetal diagnostic condition to assess the accu-

racy of AI-based models because it is a clearly visible diagnosis to the trained expert.

More recently, others have sought to apply machine learning methods to the identification

of fetal malformations, with promising results. Xie et al. developed and tested a CNN-based

Table 1. Partitioning of data across training and validation datasetsa.

Overall, n (%) Normal NT images, n (%) Cystic hygroma images, n (%)

Total dataset 289 (100%) 160 (100%) 129 (100%)

Training dataset 217 (75.1%) 120 (75%) 97 (75.2%) b

Validation dataset 72 (24.9%) 40 (25%) 32 (24.8%)

NT, nuchal translucency.
aColumn statistics are provided.
b97 original images; 23 cystic hygroma images were randomly resampled to reduce imbalance between the two

groups in the training dataset, to produce in a final cystic hygroma training dataset of 120 images.

https://doi.org/10.1371/journal.pone.0269323.t001

Table 2. 4-fold cross validation resultsa.

FOLD NUMBER OVERALL PERFORMANCE

Fold 0 Fold 1 Fold 2 Fold 3 Mean±SD 95% Confidence Interval

True positives, n 27 29 32 31 29.75±1.92 26.0–33.5

True negatives, n 38 38 37 37 37.50±0.50 36.5–38.5

False positives, n 2 2 3 3 2.50±0.50 1.5–3.5

False negatives, n 6 3 0 1 2.50±2.29 0.0–7.0

Accuracy 0.89 0.93 0.96 0.94 0.93±0.03 0.88–0.98

Sensitivity 0.82 0.91 1.00 0.97 0.92±0.07 0.79–1.0

Specificity 0.95 0.95 0.93 0.93 0.94±0.01 0.91–0.96

AUC 0.91 0.93 0.98 0.95 0.94±0.03 0.89–1.0

AUC, area under the curve; SD, standard deviation.
aDecision threshold in the receiver-operating characteristic (ROC) curve was set at 0.5 in the [0,1] range of predicted probability (or class membership).

https://doi.org/10.1371/journal.pone.0269323.t002
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deep-learning model in a dataset of nearly 30,000 fetal brain images, including over 14,000

images with common central nervous system abnormalities [28]. Although, the final model

was able to discriminate well between normal and abnormal images (sensitivity and specificity

were 96.9% and 95.9%, respectively) in a hold out test set, the models were not trained to dis-

tinguish between specific brain abnormalities and did not have information on cystic hygroma

diagnoses. In a large sample of 2D ultrasounds, fetal echocardiograms and anatomy scans

from second trimester pregnancies, Arnaout et al. trained CNN models to accurately localize

the fetal heart and detect complex congenital heart disease [29]. Their models achieved high

sensitivity (95%, 95%CI, 84–99), and specificity (96%, 95%CI, 95–97) and were validated in

several independent datasets. Finally, Baumgartner et al. [25] demonstrated the potential for

such systems to operate in real-time. Their findings suggest that deep-learning models could

be used “live” to guide sonographers with image capture and recognition during clinical prac-

tice. The model proposed by Baumgartner et al. was trained for detection of multiple fetal stan-

dard views in freehand 2D ultrasound data. They achieved a 91% recall (i.e., sensitivity) on the

profile standard views which is close to the evaluation metrics obtained in our study. Although

published data on deep-learning models for the identification of specific malformations are

generally lacking, our findings, combined with those of others in this space demonstrate the

feasibility of deep-learning models for supporting diagnostic decision-making.

Fig 5. Receiver operating characteristic plot summarizing performance of all four cross validation folds.

https://doi.org/10.1371/journal.pone.0269323.g005
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Using the latest data augmentation and image dimensionality techniques, we have devel-

oped a deep-learning algorithm with very good predictive accuracy on a relatively small data-

set. The strengths of this study include our use of the k-fold cross-validation experiment

design. Although computationally intensive, k-fold cross-validation reduces model bias and

variance, as most of the data are used for model training and validation. In addition, removal

of calipers and text annotations from ultrasound images established a dataset free from the

clinical bias on which to develop our models. Annotations on routinely collected ultrasound

images have historically limited their utility for medical AI research [30]. Furthermore, our

use of Grad-CAM heat maps enabled transparent reporting of how the deep-learning models

performed on a case-by-case basis. With this approach, we were able to confirm excellent

localization for most of the images used in our dataset. Class-discriminative visualization

enables the user to understand where models fail (i.e., why the models predicted what they pre-

dicted) and can be used to inform downstream model enhancements. Additionally, all false

negative and false positive images were reviewed and it was determined that misclassifications

commonly occurred when the fetus was close to the placental membrane. Future work could

collect more images where the fetus is close to membrane, up-sample the images that were

error prone, and further train the model to incorporate this pattern.

Our study is not without limitations. First, as a single centre study, the sample size available for

developing and validating deep-learning model was relatively small. However, use of data augmen-

tation to increase the variability in our dataset, enrichment of cystic hygroma cases in our training

set, and use of the k-fold cross validation experiment design are all well-accepted strategies to over-

come the limitations of small datasets [31]. Second, although we removed all image annotations,

we cannot discount the possibility that the blending and infill methods used to reconstitute the

Fig 6. Grad-CAM heat maps for the full validation set of Fold 2. Top 4 rows are normal NT cases and bottom 4 rows

are cystic hygroma cases. Red colours highlight regions of high importance and blue colours highlight regions of low or

no importance. Therefore, a good model would have Grad-CAM heatmaps that highlight the head and neck area for

both normal and cystic hygroma images.

https://doi.org/10.1371/journal.pone.0269323.g006
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images influenced the deep-learning algorithm. However, the Grad-CAM heatmaps provide reas-

surance that fetal craniocervical regions were driving the deep-learning algorithm, and that the

model appropriately places high importance on regions which are clinically relevant for diagnosis.

Given the relatively low incidence of congenital anomalies such as cystic hygroma, a natural exten-

sion of this work will be to introduce our models to a larger, multi-centre dataset with more vari-

ability in the image parameters and greater feature variety specific to cystic hygroma.

Conclusions

In this proof-of-concept study, we demonstrate the potential for deep-learning to support

early and reliable identification of cystic hygroma from first trimester ultrasound scans. We

Fig 7. Exemplary Grad-CAM heat maps. (A) Normal NT case with good localization in which the model predicted

the correct class with a high (1.00) output probability (true negative). (B) Cystic hygroma case with good localization in

which the model predicted the correct class with a high (1.00) output probability (true positive). (C) Normal NT case

showing poor localization in which the model predicted this class incorrectly with a 0.90 output probability (false

positive). (D) Cystic hygroma case showing poor localization in which the model predicted the correct class, but with

an output probability that suggests uncertainty (0.63) (true positive).

https://doi.org/10.1371/journal.pone.0269323.g007
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present a novel application of convolutional neural networks to automatically identify cases of

cystic hygroma and localise the relevant fetal structures for clinical decision-making. With fur-

ther development, including testing in a large multi-site dataset and external validation, our

approach may be applied to a range of other fetal anomalies typically identified by

ultrasonography.
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