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Climate warming has imposed profound impacts on species globally.
Understanding the vulnerabilities of species from different latitudinal
regions to warming climates is critical for biological conservation. Using
five species of Takydromus lizards as a study system, we quantified physio-
logical and life-history responses and geography range change across
latitudes under climate warming. Using integrated biophysical models and
hybrid species distribution models, we found: (i) thermal safety margin is
larger at high latitudes and is predicted to decrease under climate warming
for lizards at all latitudes; (ii) climate warming will speed up embryonic
development and increase annual activity time of adult lizards, but will
exacerbate water loss of adults across all latitudes; and (iii) species across
latitudes are predicted to experience habitat contraction under climate
warming due to different limitations—tropical and subtropical species are
vulnerable due to increased extremely high temperatures, whereas temper-
ate species are vulnerable due to both extremely high temperatures and
increased water loss. This study provides a comprehensive understanding
of the vulnerability of species from different latitudinal regions to climate
warming in ectotherms, and also highlights the importance of integrating
environmental factors, behaviour, physiology and life-history responses in
predicting the risk of species to climate warming.
1. Introduction
Anthropogenic climate warming has imposed a massive threat to global bio-
diversity [1–3]. Due to differences in the magnitude of climate warming and
species sensitivities to such perturbations [4,5], the impact of climate warming
on species varies across latitudes [2,6,7]. A comprehensive understanding of the
vulnerabilities of species from different latitudinal regions to climate warming
is critical for future conservation planning [8].

Controversy over the vulnerabilities of species to climate warming across
latitudes has spanned decades [4,7,9,10]. Early studies predicted that species
at mid- to high latitudes, especially in the Northern Hemisphere, would be
more vulnerable [7,11,12] based on faster rates of warming at high latitudes
[11,13]. Later studies which considered species’ physiology (i.e. metabolic rate
and heat tolerance) proposed the opposite: that low-latitude species are likely
to be more vulnerable than high-latitude counterparts under climate warming
[4,8,14,15]. However, the most recent re-evaluation of the thermal safety
margin (TSM; the difference between maximum operative temperature and
species’ critical thermal maximum [8]) in terrestrial insects indicated that
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tropical and temperate species might face a similar threat
after accounting for seasonal activity times [16]. Therefore,
conclusions about the latitudinal variation of species’ vulner-
ability to climate warming have ‘evolved’ over time as more
critical parameters were considered in the analyses. More
recently, parameters including physiological, behavioural
and life-history responses are being increasingly used when
evaluating species vulnerabilities [10,17,18].

An integrative consideration of species’ behavioural and
physiological responses is essential to gain a more com-
prehensive understanding of species’ vulnerability to climate
warming from different latitudes [19,20]. First, the TSM reflects
the potential tolerance of animals to the external thermal
environment, which provides an easy but effective way of esti-
mating vulnerabilities to warming temperatures [4,8,21].
Second, as a consequence of behavioural thermoregulation,
activity time has been documented as a critical factor in
predicting the vulnerability of animals to warming [22,23].
This is because insufficient activity time may limit overall
energy and water intake and inhibit development, growth
and reproduction in ectotherms [22,24]. Third, metabolic rate
is an essential parameter for predicting extinction risk because
it potentially affects individuals’ net energetic gain [9], growth
[25] and even lifespan [24]. Fourth, corresponding to changes
in precipitationwrought by climatewarming, water loss affects
energy and water dynamics and therefore determines the
vulnerability of ectotherms to warming in synergy with temp-
erature [17,26]; as increased water loss has been increasingly
found to directly induce population collapse, especially in
dry areas [27,28].

On the basis of behavioural and physiological responses,
species distribution range shifts are one of the most reliable
indicators of the risk of extinction and are widely employed
to assess the impact of warming on species [29–32]. Species
distribution models (SDMs) with both environmental and
physiological predictors (hereafter hybrid-SDMs) provide
robust and useful insights into ‘where’ and ‘why’ species
will persist or go extinct under warming [33], as it considers
not only the environmental niche but also a species’
behavioural and physiological responses [34–37].

Species with large distributions across a wide latitudinal
span, with well-known behavioural, physiological and life-
history traits are required for evaluating the vulnerabilities of
species from different latitudes to climate warming. Takydro-
mus lizards (commonly named grass lizards) are a genus of
small lacertid lizards (snout–vent length [SVL] less than
70 mm), containing 23 recognized species that are widely dis-
tributed in eastern, southern and southeastern Asia [38–40].
In China, Takydromus lizards are distributed along the eastern
coast spanning a wide latitudinal gradient from tropical to
temperate areas (18°090–53°350 N) and have been the subject
of intensive research on their behavioural, physiological and
life-history traits [41–44]. Therefore, Takydromus lizards from
different latitudinal regions constitute a great study system
for investigating the vulnerabilities of species from different
latitudes to climate warming, with integrative considerations
of behavioural, physiological and life-history traits.

In this study, we used Takydromus lizards from tropical to
temperate areas in China as our model system to investigate
the vulnerabilities of species from different latitudinal regions
to climate warming. First, we estimated TSM and fitness-
related traits with biophysical models for each species, and
then integrated these fitness-related traits in hybrid-SDM to
predict species’ range shifts under climate warming. Here,
we propose that the Takydromus lizards from tropical regions
would be more vulnerable to climate warming than their
counterparts from medium and high latitudes, due to their
reduced TSM, depressed fitness-related traits and contraction
of the suitable distribution range.
2. Materials and methods
(a) Materials
(i) Biological traits
We selected five species of Takydromus lizards with a wide geo-
graphical distribution across tropical, subtropical and temperate
areas of China as our study system (figure 1): T. amurensis from
temperate areas, T. wolteri and T. septentrionalis from subtropical
areas, and T. sexlineatus and T. kuehnei from tropical areas [40,45–
47]. We collected data for body mass, critical thermal maximum
(CTmax), critical thermal minimum (CTmin) and selected body
temperatures for adults from literature [41–44]. To obtain temp-
erature data for foraging, basking and leaving their retreat, we
recorded active body temperatures in the field for five species
across the active seasons (electronic supplementary material,
table S1, see more details in electronic supplementary material,
Methods and data S1). According to our measurement, the mini-
mum field body temperatures recorded during the active season
were 16.18–18.29°C in all five species; we set the average temp-
erature of 17°C as the leaving retreat temperature accordingly.
Further, after a quick test, we found that the leaving retreat temp-
erature within the range of 16.18–18.29°C as input in the
biophysical model (NicheMapR) does not influence the model
result. We also collected data for embryonic development from
the previous studies [10,48–55] (see details in electronic sup-
plementary material, table S2 and data S1). It is noteworthy
that T. wolteri has a disjunct distribution. We only collected the
physiological parameters from the southern population, which
is far away from the northern population. Therefore, in our
further analysis, we only assess the impact of climate change
on its southern population.
(ii) Microclimate data
We used the microclimate model in the NicheMapR package in
R 3.6.2 to extract hourly estimates of microclimates. The micro-
climate model (implemented in the ‘micro_global’ function)
provides hourly estimates of solar and infrared radiation, above-
ground air temperature, wind velocity, relative humidity at the
animal’s height and soil temperature profiles (see more details in
[56,57]). All current climate layers used by the NicheMapR are
from published protocols [58], with a resolution of 10 arc-minutes.
To obtain estimations of themicroclimates under 2050 and 2070 cli-
mate forecasts, we downloadedmonthlymaximum andminimum
temperature and precipitation from the WorldClim dataset in
2050 (2041–2060) and 2070 (2061–2080) with a resolution of 10
arc-minutes. We considered three global circulation models
(GCMs: BCC-CSM1-1, CNRM-CM5 and MIROC-ESM, see details
in [59–61]) and two emission scenarios (Representative Concen-
tration Pathways: RCP 4.5 and RCP 8.5) representing mild
and extreme predicted impacts of warming. Following a widely
used approach in climate projections generated from different
GCMs, we created an ensemble projection by averaging projec-
tions of the three GCMs [62–67]. We downloaded the altitude
layer from open-source GTOPO30 (https://earthexplorer.usgs.
gov/), derived slope and aspect layers from the altitude layer
using ArcGIS v10.5, and then resampled all three layers to a resol-
ution of 10 arc-minutes using bilinear interpolation. We validated
the microclimate model by using air temperature from ERA5
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Figure 1. Distribution ranges of five Takydromus lizard species and the locations of the populations sampled for behavioural, physiological and life-history responses
to climate warming. Different colours in outlines indicate different species in the map and species photographs. (Online version in colour.)
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(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-data-
sets/era5) to predict air temperatures at a specific height (1 cm) at
the sample site and then compared the predicted values with
temperature recorded by data loggers (iButton, https://www.
ibuttonlink.com/collections/ibuttons). The results show that the
microclimate model performs well in predicting air temperatures
(R = 0.797, RMSE = 6.275; electronic supplementary material,
figure S1).

(iii) Macroclimate data
We used five bioclimate variables to describe the macroclimate
conditions encountered by lizards: annual mean temperature
(bio1), maximum temperature of the warmest month (bio5), mini-
mum temperature of the coldest month (bio6), annual mean
precipitation (bio12) andmean sumof precipitation in thewarmest
quarter (bio18). We chose these variables because they reflect two
primary properties of the climate—energy and water—that have
known roles in imposing constraints on species distribution due
to widely shared physiological limitations (following [68]). To
standardize the climate data for use in our biophysical models
and hybrid-SDMs, we obtained current monthly climate layers
(maximum and minimum temperature, precipitation) from [58]
and then generated bioclimate layers with the ‘biovars’ function
in the ‘dismo’ package. We obtained future bioclimate layers
(2050 and 2070) from the WorldClim dataset [69] (www.world-
clim.org), using the same global circulation models and emission
scenarios in the microclimate model and biophysical model.

(iv) Species occurrence records
We collected occurrence records of the five grass lizard species
from 185 published literature and Nature Reserve investigation
reports between 1990 and 2019 (see electronic supplementary
material, file S1) and the Global Biodiversity Information Facility
(https://www.gbif.org/; accessed in June 2020). To avoid errors
arising from the occurrence records, we removed any data from
outside of the species’ spatial distribution range [70]. We also
used the ‘CoordinateCleaner’ package [71] in R to remove records
assigned to the capitals, institutes and museums. To avoid poten-
tial spatial autocorrelation among occurrence records, we used the
‘spThin’ package [72] to thin the records with 10 arc-minutes [73].

(b) Methods
(i) Thermal safety margin and fitness-related traits
Using this microclimate data along with morphological and
physiological traits of each species as inputs, we ran a biophysi-
cal model for ectotherms using the ‘ectotherm’ function in
NicheMapR. This model integrates hourly estimates of microcli-
mate and species traits to calculate operative temperatures (Te)
in microhabitats, species’ activity time, metabolic rate and
water loss based on the processes of heat and water exchange.
To run the biophysical model for future climates, we replaced
the current climate layer with climate layers of future climates
in the microclimate model (‘micro_global’ function).

In biophysicalmodels,we used themedian value of bodymass
for each species as input for body size and set their midpoints
at 1 cm above the ground and only diurnal activity, bounded
within the maximum and minimum (75% and 25% quantile in
this study) temperature for activity. When operative temperatures
above ground fell outside of these temperatures for activity,
animals were simulated to burrow underground to a depth
where the temperature corresponds to their preferred temperature,
as obtained from laboratory experiments. The leaving retreat
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Figure 2. TSM for five grass lizard (Takydromus) species across latitudes. Red,
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temperaturewas set as theminimum body temperature (electronic
supplementary material, table S1). From these measurements, we
calculated the TSM with the equation of TSM=CTmax – Te-max,
where Te-max was the maximum value of hourly operative temp-
eratures (Te) in the entire year. Activity time was calculated as
the number of hours that the lizard was predicted to be active.
Metabolic rate was represented by an allometric function based
on oxygen consumption rate (ml h−1) [74], and we used the maxi-
mum oxygen consumption rate as a metric related to fitness. For
water loss, we calculated the sum of all components of water
loss (i.e. respiratory water loss, cutaneous water loss and ocular
water loss) in biophysical models and took the maximum value
as a metric. All input parameters of lizards’ biological traits are
found in the electronic supplementary material, table S1, with
the remaining parameters set to default (electronic supplementary
material, data S2).We also developed an embryo incubationmodel
based on the incubation period and hatching success at different
temperatures (electronic supplementary material, table S2) and
from that calculated incubation period and the number of hours
that are suitable for embryonic development over a year (hereafter
time window) based on microclimate data.

(ii) Species distribution range
Hybrid-SDMs were constructed for each species using occurrence
records and predictors. The predictors contained bioclimate
variables (i.e. bio1, bio5, bio6, bio12 and bio18; electronic sup-
plementary material, figures S2 and S3) and outputs from
biophysical models (i.e. activity time, metabolic rate, water loss,
incubation period and time window suitable for embryonic devel-
opment). We used five modelling algorithms: generalized linear
model (GLM),generalizedboosted regressionmodels (GBM),maxi-
mum entropy (MaxEnt), random forest (RF) and support vector
machines (SVM), and generated pseudo absences using the ‘eRan-
dom’ method [75]. We then used a 70% random sample of initial
data as training data and evaluated them against the remaining
30% [76], repeated five times for each correlative nichemodel algor-
ithm. We evaluated model performance using the area under the
receiveroperating characteristic curve (AUC [77]) and true skill stat-
istics (TSS [78]). We only kept models with a TSS value higher than
0.6 [79] and applied the TSS method to weighted models to build
ensemble models to obtain a species habitat suitability map at 10
arc-minutes resolution [80–82]. Habitat suitability is defined in
terms of the capacity of a given habitat to support a selected species
based on the biophysical and bioclimate variables measured. These
procedures use an index that ranges from 0, for unsuitable habitat,
to 1 for optimal habitat [83]. We classified binary maps (presence/
absence) with the threshold bymaximizing the TSS value [84] from
the ensemble forecasts for the current, 2050 and 2070 periods
to represent the species distribution range.

Because of the limited capacity for dispersal in lizards [85,86],
we limited species study areas to their current distribution range,
and clipped TSM, activity time, metabolic rate, water loss, incu-
bation period, time for embryonic development (time window),
habitat suitability and distribution range into their current species
distribution for further analyses.

(iii) Variable contribution to the change of suitability
We analysed the contribution of physiological and climate vari-
ables to changes in habitat suitability, because habitat suitability
can be directly predicted by physiological and climate variables.
We averaged the changes for each variable across all grids of
current distributional ranges using hybrid-SDMs and calculated
the corresponding change in habitat suitability for each species
induced by that variable alone (other variables were set to their
mean values) using the response curves from the hybrid-SDMs.
Finally, we used the ‘getVarImp’ function in the ‘sdm’ package
to obtain the value of each predictor from five niche model
algorithms (GLM,GBM,MaxEnt, RF and SVM), following our pre-
viously published protocols [67], see a complete flow chart of
methods in the electronic supplementary material, figure S4). We
only show the results based on the RCP 4.5 emission scenario in
the text and put the related results based on the RCP 8.5 scenario
in the electronic supplementary material.
3. Results
(a) Thermal tolerance and thermal safety margin
For all periodswe considered (current, 2050 and 2070), the TSM
was larger for lizards from temperate (T. amurensis) than from
tropical (T. kuehnei and T. sexlineatus) and subtropical areas
(T. septentrionalis) (figure 2; Wilcoxon test, all p < 0.001).
Under climate warming, TSM gradually decreases in the
future, which suggests an increased risk of experiencing heat
stress, especially for tropical (T. kuehnei and T. sexlineatus;
Wilcoxon test, both p < 0.001) and subtropical species (T. septen-
trionalis and T. wolteri; Wilcoxon test, both p < 0.001). We
observed same patterns under the RCP 8.5 scenario (electronic
supplementary material, figure S5).

(b) Fitness-related responses
For adult Takydromus lizards, activity time increasedmore in tro-
pical species (tropical versus other regions: 273 versus 260 h yr−1

in 2050 and 336 versus 315 h yr−1; Wilcoxon test, both p< 0.05)
and was predicted to increase under climate warming for all
species (figure 3a). The metabolic rate varied among species
andwould change slightly in all species under climatewarming
(±0.0037 ml h−1 both for 2050 and 2070; figure 3b). By contrast,
water loss is complex. Higher levels of water loss were found
under the present climate in tropical (T. kuehnei) and subtropical
species (T. septentrionalis [0.018 g h−1 in average] compared to
the other three species (0.013 g h−1 in average; Wilcoxon test,
Z = 82.6, p < 0.001). Water loss was predicted to increase under
climate warming for all five species, even for temperate species
T. amurensis,whichhad lesswater loss undercurrent conditions.
By contrast, the smallest increase inwater loss was predicted for
T. wolteri (T. wolteri versus other four species: 0.0000 versus
0.0011 g h−1 in 2050 and 0.0004 versus 0.0019 g h−1 in 2070;
Wilcoxon test, both p < 0.001; figure 3c). Currently, embryos of
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temperate species (i.e. high latitude) required more days for
development than others (T. amurensisversus other four species:
107 versus 63 days;Wilcoxon test,Z = 53.4, p < 0.001; figure 3d).
Further, the incubation period was predicted to decrease under
climate warming in all species (figure 3d). The time window
suitable for incubation increased towards low latitudes cur-
rently and was predicted to increase under climate warming
in all five species (increase 138 h and 1032 h in 2050 and 2070;
figure 3e). In summary, all five species were predicted to benefit
from climate warming because of increased activity time,
reduced incubation period and increased timewindow suitable
for successful embryonic development. However, our models
predicted that all five species would be at risk because of suffer-
ing increased water loss under climate warming. Similar
patterns were also found under the RCP 8.5 scenario (electronic
supplementary material, figure S6).

(c) Change in suitable distribution range
According to AUC and TSS values, the hybrid-SDMs per-
formed well in this study (mean AUC= 0.883, 95% CI = 0.874–
0.892; mean TSS = 0.758, 95% CI = 0.743–0.774; electronic sup-
plementary material, table S3). Habitat suitability, and
therefore distribution range, is predicted to decrease in future
for all five species (figures 4 and 5) under climate change.
T. amurensis from the temperate areawill experience the greatest
decrease in habitat suitability (decrease 0.225 and 0.372 on aver-
age for 2050 and 2070, respectively). T. wolteri from subtropical
areas and T. sexlineatus from tropical areas are predicted to
experience the least decrease in habitat suitability (decrease
0.08 and 0.05 onaverage for 2050, 0.03 and 0.06 for 2070, respect-
ively). This difference still held evenwhenwe converted habitat
suitability to a binary map (presence/absence) and calculated
the change in suitable habitat area. The net habitat loss is pre-
dicted to be the greatest for T. amurensis (68.9%–88.0%;
temperate species), and the least for T. wolteri (21.7%–37.6%;
subtropical species) and T. sexlineatus (23.6%–31.5%; tropical
species). The results under RCP 8.5 scenario see electronic
supplementary material, figure S7.
(d) Variable contribution to the change of suitability
The differences for changes in habitat suitability caused by
predictors (representing variable contributions) were consist-
ent for 2050 (electronic supplementary material, figure S8)
and 2070 (figure 6). The predicted decrease in habitat
suitability for tropical and subtropical species (T. kuehnei,
T. sexlineatus and T. septentrionalis) was due to the rise in
annual mean temperature (bio1) and maximum temperature
of the warmest month (bio5; figure 6). By contrast, the pre-
dicted decrease in habitat suitability for temperate species
(T. amurensis) was mainly due to maximum temperature of
the warmest month (bio5) and the increased water loss. Simi-
lar results were also found under the RCP 8.5 scenario
(electronic supplementary material, figure S9).
4. Discussion
Evaluating the vulnerabilities of animals to climate warming
can provide comprehensive management perspectives for
preparing future conservation plans [10,18,87]. In this study,
we used biophysical models and hybrid-SDMs integrating
behavioural, physiological and life-history responses and
distribution range change of the widespread Takydromus
genus across latitudes to better understand the vulnerability
of species to climate warming. Our results showed that
both tropical and temperate species are vulnerable to climate
warming, albeit for different reasons. We found that the
greatest threat of climate warming for tropical species was
due to increasing temperatures. Surprisingly, we found that
temperate species are also highly vulnerable to warming
due to increasing temperatures and greater rates of water
loss. Our results provide novel insights into current under-
standing of the species’ vulnerability to climate warming at
different latitudes.

The results from our TSM analyses suggest that tropical
(i.e. T. kuehnei and T. sexlineatus) and subtropical species
(T. septentrionalis and T. wolteri) have relatively smaller
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future climate, we only show the RCP 4.5 emission scenario results in the text. (Online version in colour.)
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TSMs than temperate species (T. amurensis) under warming
(figures 2 and 5). This is consistent with previous findings
that tropical ectotherms are more vulnerable to climate
warming due to their small TSMs [4,8]. Tropical ectotherms
currently experience temperatures close to their thermal toler-
ance. As a result, even a small increase in temperature may
push species toward or even beyond their heat tolerance
thresholds, ultimately leading to precipitous declines in



T. kuehnei

T. septentrionalis

T. wolteri

T. amurensis

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

su
ita

bl
ity

 c
ha

ng
e

bio1 bio5 bio6 bio12 bio18incubation
 duration

  time
window

 meta-
 bolic

water
 loss

active
 time

temperate

tropical

T. sexlineatus

Figure 6. Changes of habitat suitability in 2070 caused by fitness-related and bioclimate variables under a climate warming scenario (RCP 4.5) in five grass lizard
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performance and fitness [4,88]. Physiological responses and
distribution area predictions from our study further revealed
that both mean annual temperatures (bio1) and extremely
high temperature (bio5, maximum temperature in warmest
month) impose a critical threat to species from tropical
areas (T. kuehnei and T. sexlineatus; figure 6). Moreover, in
accordance with findings from recent studies showing that
sites with local extinctions had significantly lower mean
annual temperatures but larger increases in maximum
yearly temperatures [89,90], we found that temperature
extremes (bio5) rather than mean temperatures (bio1) were
significant contributors to loss of habitat suitability in our
model system under warming (figure 6).

Interestingly, we find that tropical (T. kuehnei and
T. sexlineatus) and subtropical (T. septentrionalis and T. wolteri)
species are not equally vulnerable to warming. In fact,
tropical species of T. sexlineatus and subtropical species of
T. wolteri are less vulnerable compared with tropical
T. kuehnei and subtropical T. septentrionalis (figure 5). This is
likely to be due to between-species differences in thermal
biology traits. For example, T. sexlineatus has a longer annual
activity time, shorter incubation period and longer time
window suitable for embryonic development than the other
two species (figures 2 and 3) and thus may be less vulnerable
to warming. Similarly, several species of tropical Anolis lizards
are predicted to responddifferently towarming despite the fact
that they occupy structurally similar forest habitats, with one
species experiencing reduced activity times as a result ofwarm-
ing, while the other two species not [91]. Additionally,
interspecific divergence in preferred microhabitat character-
istics also may contribute to differences in species’
vulnerability. For example, xeric populations are more vulner-
able to warming than mesic populations in tropical Caribbean
lizards [92]. Similarly, T. kuehnei from high elevation (i.e.
greater than 900 m) has not been severely threatened by climate
warming [93]. Apart from these kinds of large-scale geographi-
cal (e.g. latitudinal or altitudinal) variations in species
vulnerabilities to climate warming, our study highlights the
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importance of assessing species vulnerability at a local scale
using high-resolution climate data and species traits to fully
evaluate the biological impact of warming.

Previous research predicted temperate lizards would be at
lower risk of climate warming than tropical species, because
temperate species are exposed to temperatures well below
their thermal optima, and thus may be at reduced risk, or
even benefit from increasing temperatures [4,14,94]. By con-
trast, we found that temperate lizards would be also highly
vulnerable to warming because of increased water loss and
rise of heat stress by extreme high temperature under climate
warming. Our biophysical model predicts that Takydromus
lizards will benefit from climate warming by having increased
the time window (the number of hours that are suitable)
for embryonic development (figures 3 and 6). Conversely,
increased water loss can potentially override those benefits
for temperate species, driving a decrease in habitat suitability
and inducing greater vulnerabilities to climate warming. Simi-
larly, the response of the Australian sleepy lizards (Tiliqua
rugosa) to climate warming depends on future patterns of rain-
fall [24]. In many physiology-based studies, precipitation and
water loss have been ignored when assessing warming effects
[8,9,95–98]. Our study has revealed that the vulnerability of
species to climatewarming may be underestimated if the orga-
nismal water balance of species is not considered, even in
terrestrial vertebrates. The effects of increasing temperature
on organismal water balance are likely to drive some popu-
lation declines, because more water will be lost as a cooling
cost [27,28]. Although ectothermic vertebrates may be able to
prevent excessive dehydration resulting in lethargy and
death via spending more time retreating or seeking water
[99], such changes may sacrifice opportunities for other beha-
viours such as basking and feeding, which may also
influence survival and push species to be under greater risk
of climate warming [96,100].

In summary, we found tropical and temperate Takydromus
lizards would be vulnerable to climate warming due to extre-
mely high temperatures and substantial water loss,
respectively. This study inspires more research on latitudinal
differences with the consideration of integrating the behav-
ioural, physiological and life-history responses of species.
As the high demand for parameters of species, we only
used five Takydromus species, which were well documented
in their thermal physiology. This may limit the conclusion
of the latitudinal pattern of the vulnerabilities of species
to climate warming. It is also notable that we used the
parameters from one population to model the entire distri-
bution for all species. More research investigating the
behavioural, physiological and life-history responses of
other lineages and more populations is needed to conclude
the generality of a latitudinal pattern of the vulnerabilities
of species to climate warming. Moreover, our results reinforce
the benefits of integrative mechanistic models (e.g. the bio-
physical model and hybrid-SDMs) in predicting the impact
of climate warming on biodiversity, in which behavioural,
physiological and life-history traits are considered in concert
with macro- and micro-climatic data [17,101].
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