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ABSTRACT: Transformer neural networks show promising capabil-
ities, in particular for uses in materials analysis, design, and
manufacturing, including their capacity to work effectively with
human language, symbols, code, and numerical data. Here, we explore
the use of large language models (LLMs) as a tool that can support
engineering analysis of materials, applied to retrieving key information
about subject areas, developing research hypotheses, discovery of
mechanistic relationships across disparate areas of knowledge, and
writing and executing simulation codes for active knowledge generation
based on physical ground truths. Moreover, when used as sets of AI
agents with specific features, capabilities, and instructions, LLMs can
provide powerful problem-solution strategies for applications in analysis
and design problems. Our experiments focus on using a fine-tuned
model, MechGPT, developed based on training data in the mechanics of materials domain. We first affirm how fine-tuning endows
LLMs with a reasonable understanding of subject area knowledge. However, when queried outside the context of learned matter,
LLMs can have difficulty recalling correct information and may hallucinate. We show how this can be addressed using retrieval-
augmented Ontological Knowledge Graph strategies. The graph-based strategy helps us not only to discern how the model
understands what concepts are important but also how they are related, which significantly improves generative performance and
also naturally allows for injection of new and augmented data sources into generative AI algorithms. We find that the additional
feature of relatedness provides advantages over regular retrieval augmentation approaches and not only improves LLM performance
but also provides mechanistic insights for exploration of a material design process. Illustrated for a use case of relating distinct areas
of knowledge, here, music and proteins, such strategies can also provide an interpretable graph structure with rich information at the
node, edge, and subgraph level that provides specific insights into mechanisms and relationships. We discuss other approaches to
improve generative qualities, including nonlinear sampling strategies and agent-based modeling that offer enhancements over single-
shot generations, whereby LLMs are used to both generate content and assess content against an objective target. Examples provided
include complex question answering, code generation, and execution in the context of automated force-field development from
actively learned density functional theory (DFT) modeling and data analysis.
KEYWORDS: hierarchical, biomaterials, generative autoregressive transformer, multiscale modeling, materials by design, language models

1. INTRODUCTION
Large language models (LLMs) based on the general framework
of decoder-only autoregressive transformer models1−6 provide
powerful tools for scientific exploration. The specific class of
Generative Pretrained Transformer (GPT) models has received
significant attention across many fields of inquiry, suggesting
remarkable possibilities, especially for generative forward and
inverse tasks.5,7−15 However, our understanding of their
behavior is still in its infancy, and issues remain with respect
to fact recall and potential hallucination, which requires careful
validation of their predictions and a thorough exploration of
implications.16−23 There have been several recent developments

that propose the use of LLM-type models,24−26 and more
generally attention-based transformer architectures, to capture
the behavior of physical systems, includingmaterials.27−30 Other
studies have suggested the broad applicability of transformer
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Figure 1. Summary of the strategies used in this study, using Large Language Models (LLMs) to solve various tasks ranging from question answering
and Ontological Knowledge Graph construction to multi-AI agent conversation for group problem solving. Panel a visualizes a general perspective of
how LLMs use context and queries to provide an answer. In a conventional setting, LLMs are queried against their parameter-based knowledge. By
developing a knowledge base from data sources (panel b), we can augment the response of an LLM by providing relevant context retrieved from the
knowledge base with the question to provide an answer, as visually summarized in panel c. Other mechanisms for sampling discussed in this paper
include nonlinear sampling strategies. Knowledge sources can be developed using a variety of strategies, for instance, based on a literature search (e.g.,
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models in use cases ranging from protein folding,31 protein
property prediction,32−36 mechanical field predictions,37,38 as
optimizers,39 materials design,14,28,29,40,41 and as educational
tools,42−44 among many others. The availability of large models
is facilitated by recent developments such as the GPT-4
model,45 and also releases of open-source LLMs such as
Llama-246 or Falcon.47,48 Here, we discuss strategies for how
LLMs can be improved to provide more accurate responses,
especially in the context of materials analysis and design, and
what mechanisms we can use to elicit more nuanced, detailed,
and relevant outcomes, including interpretability. The strengths
of such models reside in part due to their intrinsic ability to learn
structurally, as transformer models are ultimately graph-forming
models, and when combined into sets of autonomously
interacting agents, they can form deep networks of interacting
systems to solve complex problems that can not only retrieve
baked-in information from training, but retrieve knowledge from
sources, Internet searches, and also write code to run first-
principles atomistic simulations by connecting disparate
simulation engines to collect new data.49 The intrinsic graph-
forming capacity can thereby be augmented by amending such
mechanistic strategies at higher levels in the materiomics space
of structure−property relationships by discovering and using
ontological principles akin to categorization.50−58 This then
provides a fertile environment to solve a variety of materials
analysis problems, including design.
We build this work on a recently developed MechGPT

model30,59 that was trained on a data set of domain knowledge in
the area of mechanics of materials but was extended here by
including a larger training set to also feature Wikipedia articles
related to mechanics content as well as textbooks on materials
failure60 (for details, see Materials and Methods). The purpose
of this study is to explore the behavior of the model in its trained
form and enhance generative capabilities by using complex
prompting to elicit more accurate responses, more context, and
featuring higher levels of details. We also discuss the role of
nonlinear prompting strategies where LLMs are used to generate
concepts, then judge these concepts against a task and
incorporate these various insights to formulate a final response.
We explore specifically Retrieval-Augmented Generation
(RAG) strategies, both using embedding-based indexing of
relevant context and via the use of Ontological Knowledge
Graphs that offer a deeper mechanistic delineation of knowledge
akin to ontology logs.38,54,56−58,61 In such computational
approaches, we augment the prompt with relevant information
so that the model has access to the expanded context that can
include details, measurements, or new data that thereby greatly
expand the capabilities of an LLM during generation. We
demonstrate these tools against a series of general mechanics/
failure knowledge as relevant in a materials design context to
show how a fine-tuned LLM combined with Ontological
Knowledge Graph strategies can be a particularly powerful
combination to expand the use cases of LLMs in scientific

applications that feature both accuracy and interpretability
(Figure 1).
The plan for this paper is to first introduce the general

method, show some of the limitations of conventional LLMs,
and then move on to the presentation of key ideas and results,
agent-basedmodeling, and variousmaterials design applications,
including automatic force-field fitting, followed by a discussion.
We conclude with an outlook for future research, especially in
the context of materials design.

2. RESULTS AND DISCUSSION
LLMs are powerful tools to answer questions, develop
hypotheses, summarize and contrast ideas and content, process
complex information, perform tasks, and write codes. In the
following sections, we go through a series of computational
experiments to probe the performance of LLMs in the various
domains, starting with simple retrieval tasks, moving on to
graph-based strategies, and ultimately using multiagent AI
systems where several models interact via a group chat to solve
problems as a team.
2.1. General Query Strategies

We explore first parameter-based knowledge in the fine-tuned
LLM, with results for a series of questions shown in Table 1. As
can be seen, the model does a reasonable job overall and
accurately answers complex domain-specific questions. This is in
general agreement with results published in earlier papers.28,59

Next, we run the same experiment using Retrieval-Augmented
Generation (RAG), with results shown in the right column.
RAG is a method where source data from a corpus of
information is shared with the LLM during generation, in the
general framework of “Considering <INFORMATION
CHUNKS>, answer the question <QUESTION>.”. Herein,
<INFORMATION CHUNKS> consists of chunks of data
retrieved from the corpus of information, according to some
measure of relevance for the question asked (this is realized in
the work done here using a vector index that identifies relevant
data using similarity measures via an embedding vector (for
details, see Materials and Methods). In question answering
without RAG, for comparison, we would directly ask the LLM
for the answer, akin to “Answer the question <QUESTION>.”.
In the first experiment, we observed similar responses. The
conclusion of this experiment is that for cases that an LLM can
handle on its own, the use of RAG does not significantly improve
results.
We now move on to the edge case where the original

MechGPT model fails to produce accurate results since we are
inquiring about a highly specialized topic. We consider the case
of a relatively newly synthesized material, molybdenene, as
reported in a recent paper,62 as an example. Since this paper was
recently published, it was not included in the training data.
When we askMechGPT, the response is (here, the question is in
bold and the response of the LLM in italic font):
What is molybdenene?

Figure 1. continued

identifying search terms and downloading highly cited or recent papers). (d) Agent-based LLM model where multiple LLMs, each with special skills
and knowledge or retrieval powers, interact. In the example sketched out here, we consider a set of 4 agents: a manager that oversees the task solution
process, a scientist with a broad background and review specialization, a data retriever that can retrieve data (e.g., from the Internet, scientific papers, or
code), and a simulation engine (e.g., a DFT simulator). The right panel shows a conceptual conversation carried out by these agents to solve a problem.
As illustrated in the paper, LLMs can also autonomously write and execute code to solve complex materials modeling and design problems, such as
force-field development.
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Table 1. Comparison of Responses with the Original MechGPT Model and MechGPT with RAGa
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Table 1. continued
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Molybdenene is a proposed name for the theoretical monolayer of

molybdenum atoms. It has not yet been fabricated or observed in

experiments.

This response is wrong since this material has actually been
fabricated (however, this paper was not included in the training
set when the model was developed; it is also noted that
sometimes a model may even hallucinate and produce made-up

Table 1. continued

aAll queries used here are in the domain of materials failure. Since the original model has been well-trained in this area, the responses are accurate
throughout. The use of RAG does not significantly improve the answers for this use case since the original MechGPT LLM has already been trained
against relevant domain knowledge that is queried in the set of questions.
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references). Such cases demonstrate one of several limitations of
LLMs when used in a single-shot conventional generative
paradigm. To address these issues, a user may decide to do a
literature search, or one can implement retrieval of live data
automatically in the algorithm. As shown in Figure 2, a Google
Scholar search identifies a recent paper that has produced this
material. We then use this paper as a data source for RAG. Here
is an exchange with several question−answer pairs showing
much-improved performance:
What is molybdenene?
Molybdenene is a material that is synthesized f rom molybdenum.

It forms a distinct square lattice structure composed of f lat atomic
sheets made of molybdenum atoms. Molybdenene sheets have
interatomic distances of 0.33−0.36 nm and exhibit staircase-like
features. It can be grown in large areas and has been observed to have
metallic Raman signatures. Molybdenene is dif ferent f rom its two-
dimensional (2D) oxides, such as MoO3 and MoO2, in terms of
interatomic distance. It can be obtained in the form of whiskers

consisting of weakly bonded molybdenene sheets. Molybdenene
appears highly ref lecting and f lat under an optical microscope and
can also be further processed to produce molybdenene oxide.
Suggest ideas on how molybdenene could be used for

electronic devices.
Molybdenene, a two-dimensional material with high electrical

conductivity and thermal stability, has potential applications in
electronic devices. One idea is to use molybdenene as a channel
material in f ield-ef fect transistors (FETs) due to its high carrier
mobility. Another idea is to incorporate molybdenene into f lexible
electronics, taking advantage of its atomically thin structure that
allows for f lexibility and stretchability. Molybdenene could also be
utilized in optoelectronic devices, such as photodetectors or light-
emitting diodes (LEDs), due to its excellent light absorption and
emission properties. Additionally, molybdenene’s metallic nature
and high carrier concentration make it suitable for use as electrodes
in electronics and optoelectronics. It could also be used in
molybdenene-based 2D−2D hybrids to couple quantum states at

Figure 2. Example query for “molybdenene”. This was first synthesized and carefully analyzed in 2023, as reported in ref 62. Panel a shows a Google
Scholar search for the topic, identifying the key paper (panel b). This paper is then used as the data source for the LLM prediction. Panels c and e are
reproduced from ref 62 to show key features of this material, including the square lattice (4-fold symmetry, (c) and staircase structures identified using
atomic force microscopy experiments (d). Images in panels b−d reprinted or adapted with permission under a Creative Commons CC BY 4.0 license
from ref 62. Copyright 2023 Springer Nature.
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interfaces, which can play a crucial role in determining the properties
of these hybrid materials. Overall, further research and development
are needed to explore the full range of possibilities for molybdenene
in electronic devices.
Suggest molecular modeling techniques suitable for

molybdenene.
Molecular modeling techniques suitable for studying molybdenene

include density functional theory (DFT) calculations, molecular
dynamics (MD) simulations, Monte Carlo simulations, force-f ield-
based simulations, and ab initio calculations. These techniques can
provide insights into the molecular structure, electronic properties,
mechanical properties, thermal behavior, and interactions of
molybdenene with other molecules or materials. Raman spectroscopy
can also be used to analyze the vibrational modes of molybdenene,
complementing the molecular modeling studies.
Based on your general knowledge and the information

provided in the context, what fracture behavior would you
expect for molybdenene? Explain why.

Molybdenene is likely to exhibit brittle f racture behavior. This can
be inferred f rom the context information that describes molybdenene
as having a layered structure with weak interlayer bonding. The
presence of staircase-like features and distinct interatomic distances
further suggests a layered structure with weak bonding. A brittle
f racture occurs with little or no plastic deformation, and cracks can
easily propagate through the material, leading to a sudden failure.
The weak interlayer bonding in molybdenene would make it
susceptible to brittle f racture as cracks can easily propagate along the
layers. Additionally, the observation of local strain-mediated
structural evolution and the potential for crack branching and
propagation in multiple directions indicate complex f racture
behavior, which is of ten associated with brittle materials. Therefore,
based on the information provided, it is reasonable to expect that
molybdenene would exhibit brittle f racture behavior.
These answers are generally accurate and agree with the

findings reported in the original study.62 Specific features about
the structure (square lattice, 4-fold symmetry dominance,
staircase features) are accurately produced, as can be confirmed
by comparing against the original paper, as well as Figure 2c,d
(reprinted images from the paper as relevant to the question
asked). The model was also asked to suggest relevant modeling
tools as well as the anticipated fracture behavior. Key insights
from these responses are that they are accurate based on the
current understanding. The predicted fracture behavior of
“brittle” dominance is explained based on the weak bonding;
however, the model also identifies potential complex fracture
mechanisms due to deformation-induced structural changes.
Such structural changes under mechanical load were indeed
identified in the original paper,62 and the model has accurately
made a connection between this phenomenon and what might
happen in a fracture scenario. Of course, more targeted studies
of such a scenario are critical, and we should view the LLM
response as a direction that points to future hypothesis
development that is then followed up by domain experts. In a
scenario where an LLMmay be used to aid such work, it may be
tasked to develop a code or input file for a simulation that can
then be executed with results interpreted further. In principle, if
relevant tools are implemented, results from such augmented,
new data can be fed back into the knowledge basis and used for
future generative tasks. This way, the LLM can see more context
to make accurate predictions. This workflow can be easily
implemented in the current approach.

2.2. Interpretable Graph-Based Strategies
Next, we explore a few other avenues by which the knowledge
base is built and queried. In the initial experiment discussed
above, we used a vector indexing strategy based on text
embeddings to match with a particular query, whereby the
Llama Index then assembles proper context for generation using
the LLM. Another way to retain functional knowledge is the
generation of Ontological Knowledge Graphs, which we find to
typically provide better performance since it not only associates
embeddings with a query but also develops an ontological
understanding of if and how concepts are related. This endows
the model with a much deeper context when generating the
response and allows it to answer more complex questions.
To start off, we compare responses using conventional RAG

and Ontological Knowledge Graphs. The question asked is
Provide a summary of the transcending design principles

across different materials classes. Provide examples and
details
Here are two exchanges based on ref 63. First, the RAG

method based on vector indexing and embeddings:
The transcending design principles across dif ferent materials

classes involve the assembly of laminated and f ibrillar structures,
which def ine a higher level of organization of interfaces and
nanostructures. These principles are observed in both bioinspired
and synthetic inorganic−organic materials. The combination of
strong and weak interfaces determines the toughness, strength,
stif fness, shear, and adhesive properties of a material. Examples of
materials that exhibit these design principles include bioinspired
composites used in drug delivery, wearable electronics, human-
computer interfaces, and structural components for the automotive
and aerospace industries. These materials possess multifunctional
attributes, such as mechanical robustness, f lexibility, transparency,
sensing, adapting, optics, electrical conductivity, and thermal
conductivity. The design principles also involve understanding the
biogenesis or “biofabrication” of materials, including the transition
f rom fundamental building blocks to complex hierarchical
structures. Digital manufacturing techniques, such as three-
dimensional (3D) printing, combined with advances in artif icial
intelligence, are also being used to create highly complex structures in
materials design. The goal is to achieve properties such as optical
clarity, loading with bioactive components, and tunable mechanical
performance. Overall, the transcending design principles aim to
create materials with enhanced properties and functionalities by
integrating experiments with theory, modeling, simulation, data
science, and artif icial intelligence tools.
Second, using Ontological Knowledge Graphs:
The transcending design principles across dif ferent materials

classes involve the incorporation of hierarchical structures and
multiple functionalities. These principles are observed in both
natural and synthetic materials. Hierarchical structures play a
crucial role in achieving the desired mechanical properties in
composite materials. They enable multiple deformation mechanisms,
self-healing, plasticity, and toughening across dif ferent length scales.
At the nanometer scale, compositional gradients and fuzzy
interphases facilitate intrinsic toughening through chain slippage,
stress delocalization, and nondestructive locking. At the micrometer
scale, hierarchical structures contribute to extrinsic toughening
through mechanisms such as crack-bridging and energy dissipation
via weak or sof t interfaces.

Multiple functionalities are achieved by incorporating diverse
components and interfaces into the synthetic processes. This involves
combining dif ferent material phases, creating composition gradients,
and enabling reversible energy dissipation. Examples of function-
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alities include shape morphing, stimuli-responsiveness, strengthening,

toughening, stif fness, chirality, anisotropy, phase transitions,

adhesion, self-healing, shear resistance, cracking resistance, and

stress redirection.

These design principles and functionalities are observed in various
materials classes. For instance, f ibrous composites found in nature,
such as silk, keratin, and cartilage, exhibit hierarchical structures
and multiple functionalities. In engineered heterogeneous materials,
ceramic and ballistic armor utilizes Bouligand structures for their

Table 2. Comparison of Responses of MechGPT Alone and with the Use of RAG for a Specific Topic around Flaw-Tolerance in
Graphenea

aThe RAG method uses the result of a Google Scholar search on the topic of “Deep learning flaw-tolerance”, downloading the most highly cited
paper (by Lew et al.64). Responses include details, facts, correct contexts, and references to the literature.

ACS Engineering Au pubs.acs.org/engineeringau Article

https://doi.org/10.1021/acsengineeringau.3c00058
ACS Eng. Au 2024, 4, 241−277

249

https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00058?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00058?fig=tbl2&ref=pdf
pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.3c00058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


optical, acoustic, and mechanical properties. Synthetic bioinspired
analogues are being developed to replicate the stif fness, strength, and
toughness found in natural materials.

Overall, the transcending design principles involve the incorpo-
ration of hierarchical structures and multiple functionalities across
dif ferent materials classes, both in nature and in synthetic materials.
These principles enable materials to achieve the desired mechanical
properties and multiple functionalities, making them versatile and
adaptable.
The second example is more detailed and includes more

mechanistic insights.
As an example to further explore Ontological Knowledge

Graphs based generation, we choose a complex domain at the
nexus of deep learning and flaw-tolerance that was discussed in
the recent literature.64 Table 2 depicts a comparison of
responses of MechGPT alone and MechGPT and Ontological
Knowledge Graphs based RAG for a specific topic around flaw-
tolerance in graphene. As can be seen, MechGPT alone fails to
provide accurate answers, similar to the earlier example. When
we use Ontological Knowledge Graphs built on the top cited
result of a Google Scholar search on the topic of “Deep learning
flaw-tolerance” (Lew et al.64), results are much improved. As can
be seen in Table 2, the model now accurately answers detailed
questions about this scientific topic. This general approach also
allows one to inject new knowledge, or potentially new data/
measurements or simulation results, to augment the base baked-
in knowledge of the LLM, and it is not limited to scientific
reports, papers, patents, and similar but can also incorporate
results from physics-based modeling (e.g., ab initio or MD or
FEM generated data). It demonstrates how the combination of
more complex sampling strategies, potentially implemented via

iterative strategies, can provide novel use cases that are
particularly relevant for specific scientific scenarios.
We now focus more deeply on graph-based methods and

specifically on how they can be utilized effectively for
mechanistic insights. Figure 3 depicts details of the process
that involves the construction of Ontological KnowledgeGraphs
from data sources. These graphs are then used to provide
context to generate responses for queries. Figure 3a shows an
example based on a review paper on natural nanofibrils63 and
Figure 3b shows an example of a paper on the fracture of
intermediate filament networks based on ref 65. A few subgraphs
are highlighted in the right panels to reveal the type of insights
the model develops from the data provided, clearly showing the
similarity in form to what is known as ontology logs.56,61,66,67 It
is noted that this information is used to provide useful context to
a query to help themodel understand not only what concepts are
important but also how they are related. This additional feature
of relatedness, expressed via directional graph edges, is uniquely
added to the knowledge graph strategy over a “regular” RAG
approach that relies on indexing based on embedding
similarities. Specifically, when using graph-based RAGmethods,
we consider an additional feature of related data chunks derived
from the directional graph edges. This means that we do not
only collect chunks of relevant context from the vector indexing
but also use the knowledge graph to understand how concepts
and associated data chunks are related. This is done for up to two
hops in the graph structure, thereby infusing concepts and their
relationships to one another into the process of question
answering. Results for these two specific papers are shown in
Tables 3 and 4, respectively. The responses show excellent detail
and a lucid tone and provide relevant information.

Figure 3. Construction of Ontological Knowledge Graphs from data sources. These graphs are then used by an LLM to provide context to generate
responses for queries. Panel a shows an example based on a review paper on natural nanofibrils (reference:63) and panel b shows an example of a paper
on the fracture of intermediate filament networks (ref 65). The knowledge graphs shown here describe the entire set of data provided here, scientific
papers, that were provided as PDF that is converted to a full-text complement.
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We now move to explore interpretability for specific tasks
executed by the LLM, not the entire knowledge graph. Indeed,
we can directly visualize the task-specific Ontological Knowl-
edge Graphs, here exemplified for the deformation behavior of
protein filament networks (Figure 4a, as reported in ref 65). For
instance, Figure 4b shows a knowledge graph for the question:
Tell me more about flaw-tolerance in protein networks.
For the case of the intermediate filament paper 65. The

extracted keywords include “tolerance”, “flaw”, “protein”,
“networks”, “flaw-tolerance”, and “protein networks”. From
this, a task-specific Ontological Knowledge Graph is constructed
and visualized in Figure 4b, with additional context provided in
Table 5. The model response is:

Flaw-tolerance in protein networks refers to their ability to
withstand and tolerate structural irregularities or f laws without
catastrophic failure. Unlike conventional solids, protein networks,
particularly α-helical protein networks, can dissipate a signif icant
amount of energy and stretch without af fecting neighboring bonds.
This is because there are no immediate interactions between
individual f ilaments in the network that prevent microscopic
rotations and shear, resulting in no strong stress concentrations at the
corners of cracks. The f law-tolerance of protein networks is
attributed to their unique geometric arrangement, the properties of
individual protein domains, and the ability to dissipate energy and
stretch without af fecting neighboring bonds. Additionally, protein
networks have a self-healing nature, as the utilization of hydrogen

Table 3. Example of Using Knowledge Graphs to Generate a Response, Which Allows Us to not only Capture Knowledge from
Pieces of the Data but also Learn Relationships between Concepts that are Included When the Response is Generated Here for
Original Reference by Ling et al., “Nanof ibrils in nature and materials engineering”63a

aTo do this, a PDF of the paper is analyzed using an LLM, and an Ontological Knowledge Graph is constructed using GPT-3.5-turbo (the graph
can be seen in Figure 3a). The knowledge graph is then used to construct responses using MechGPT. Such a graph is a way of visualizing data
across different representations and is composed of three main components: Nodes, edges, and labels. Any concept, material, method, person, etc.,
can be a node. An edge defines the relationship between the nodes.
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Table 4. Based on the Scientific Paper Titled “α-Helical Protein Networks are Self-Protective and Flaw-Tolerant” by Ackbarow et
al.,65 We Develop an RAG-Based Set of Model Queries and Responses (the Graph can be Seen in Figure 3b)a
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Table 4. continued

aFor comparison, a query of the MechGPT without RAG gives “The origin of f law-tolerance in α-helical protein networks is believed to be the ability of
the network to redistribute stress and strain around f laws or defects. This redistribution helps prevent the propagation of cracks or f ractures, thereby
enhancing the overall mechanical integrity of the network.” While this answer is generally correct, as can be seen in the examples below, graph
knowledge-based extraction provides more detailed, mechanistic insights.
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Figure 4.Construction and visualization of an Ontological Knowledge Graph that is constructed and used to answer a question about a protein-based
filament network65 (panel a showing the deformation behavior and key mechanisms leading to flaw-tolerance via a structural transformation of the
crack, mediated by the underlying mesh structure and protein filament stretching via helix unfolding). The query used is “Tell me more about f law-
tolerance in protein networks.” (panel b) and “What is the mechanism by which f ilaments ultimately fail?” (panel c). The graphs shown here are specific to
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bonds allows the structure to reform at moderate temperatures and
restore the initial α-helical structure even af ter severe deformation.
This f law-tolerance allows protein networks to withstand large
deformations and stresses, making them highly resilient and
mechanically robust. Understanding the mechanisms behind the
f law-tolerance of protein networks is important for developing
models that describe the structure−property relationships in these
networks under large deformation and for advancing knowledge in
f ields such as materials science and bioengineering.
We now proceed to the response to the question:
What is the mechanism by which f ilaments ultimately fail?
Extracted keywords are “filaments”, “fail”, and “mechanism”.

The response is
The mechanism by which f ilaments ultimately fail is through the

stretching of the α-helical protein domains, which leads to the

breaking of H-bonds within and between the f ilaments. This
stretching and breaking of bonds eventually cause the f ilaments to
fail.
The corresponding Ontological Knowledge Graphs are

shown in Figure 4c. The graphs in Figure 4b,c provide detailed
mechanistic insights into how the model recalls knowledge and
answers the questions. A close inspection of these graphs can
provide additional insights into the mechanisms of a system of
interest and thereby provide not only interpretability but also
the potential to develop new hypotheses or research questions
that can be realized in an AI-human collaboration.
Another is done using more sophisticated sampling methods

that build on the concept of adapting the way we interact with an
LLM and introducing alternatives to simple linear sampling,
using techniques such as Chain-of-Thought prompting,12 Tree-

Figure 4. continued

the question asked and explain a graphical visualization by which the task is addressed. This is in contrast to the graphs shown in Figure 3, which depict
the entire ontological knowledge of a larger data set. Images in panel a reprinted or adapted with permission under a Creative Commons CC BY 4.0
license from ref 65. Copyright 2009 Public Library of Science (PLOS).

Table 5. Raw Definition of the Ontological Knowledge Graphs Constructed for the Query “Tell MeMore About Flaw-Tolerance in
Protein Networks”, Obtained Using NebulaGraph, which Provides Detailed Information on the Relationship between Nodes via
Edges
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of-Thought strategies,68 and related approaches.69 Figure 5
shows the basic mechanics of this approach, whereas Figure 5a
shows the construction of responses based on direct, linear
sampling versus more complex, multiple-step sampling (Figure
5b). As depicted in Figure 5c, the assessment of responses, such
as concepts using an LLM serving the role of a critic, can provide
powerful nonlinear sampling mechanisms that significantly
enhance responses (and a multitude of ways can be
implemented depending on use cases). In its simplest form,
the general idea is that the LLM is first used to generate initial
thoughts (and we can enhance the creativity of the model by
increasing the sampling temperature−this may result in more
explorative answers). Then, in the second step, the model is
queried to develop the most critical concepts and list them
(these steps can be repeated multiple times). This set of critical
concepts is then used to answer the original question, to yield the
answer. This stepwise interactive use of LLMs can provide
advantages to extract more accurate, more nuanced, and more
refined knowledge.

Table 6 shows a specific example using multistep tree
sampling. The question asked is
What would be the likely failure mechanisms of a hybrid

silk−metal nanocomposite reinforced with carbon nano-
tubes?
We proceeded by asking several questions to sample

dynamically. Compared with the single-shot answer, the
complex prompting strategy elicits more nuanced and detailed
responses. Table 7 shows another result using multistep tree
sampling. Here, the question asked is
The mechanism of flaw-tolerance in α-helical protein

networks is “The geometric transformation of the crack
shape is believed to help minimize stress concentration at
corners, although the exact mechanism is not fully under-
stood. As the crack undergoes a series of changes, frommode
I to a circular hole and eventually becoming an elongated
crack aligned with the direction of loading, the stress
concentration at corners is reduced. This transformation
occurs as individual proteins within the crack continuously
unfold, independent of their neighboring proteins. The

Figure 5. Construction of responses based on direct, linear sampling (panel a) versus hierarchical tree sampling (panel b). Here, the LLM is first used
to generate initial thoughts. Then, in the second step, the model is queried to develop the most critical concepts and list them. This set of critical
concepts is then used to answer the original question, to yield the answer. This stepwise interactive use of LLMs can provide advantages to extract more
accurate, more nuanced, and more refined knowledge. As visualized in panel c, the assessment of responses, such as concepts using an LLM serving the
role of a critic, can provide powerful nonlinear sampling mechanisms that significantly enhance responses.
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reduced stresses in the vicinity of the elongated crack
contribute to a decrease in the stress concentration at
corners. Overall, this geometric transformation of the crack
shape is thought to provide self-protection and distribute
stress more evenly along the crack, ultimately minimizing
stress concentration.” Now, we describe how to translate this
concept to a material composed of thin glass fibers as
elementary building blocks. Define details of how the glass
fibers must be engineered and how they are arranged into
larger-scale structures.
We then proceeded by asking several follow-up questions,

with detailed results of the experiment provided via Table 7.
Compared to the single-shot answer, the complex prompting
strategy elicits more nuanced and detailed responses. This
example showed how additional augmentation and context can
be built into the query itself to then trigger a rich set of
generative steps with lots of nuanced responses that are helpful
for engineering and scientific processes.
Finally, the opportunities of using LLMs offer interesting

possibilities at the interface of knowledge domains, especially
using a variety of Ontological Knowledge Graphs. Figure 6
shows the results of such an experiment, where we use
MechGPT to elucidate analogies between disparate domains,
in this case, between music and proteins. We use the MechGPT
model to sample a set of responses to the query:
Discuss the analogies between music and proteins.

Specifically, address counterpoint and how it relates music
to protein. Provide a detailed and lengthy answer.
Using GPT-4, we then assemble an Ontological Knowledge

Graph from this set of data to elucidate key connections and
relationships identified. We find that the key connectors
between the various subgraphs are “basic units”, where these
are amino acids in proteins and notes in music. The model
further predicts several specific analogy concepts, such as that

analogies “lie in the organization of units” and “help us
understand wonders of life”, among many others (subgraph in
the right lower corner). Other connectors between subgraphs
are identified as “structures” and “notes” as key nodes. This
example can be expanded in future work, but it shows the
capacity of using LLMs as a design tool to connect disparate
domains of knowledge and to interact with data and knowledge
in innovative ways that can augment conventional engineering
workflows.
2.3. Multi-AI Agent-Based Strategies: Solving Tasks Using a
Team of LLMs

The previous examples were conducted by using one LLM to
solve tasks ranging from question answering to graph
generation. We now show how a set of LLM agents, organized
into a virtual team of AIs (Figure 1d), can effectively solve
complex problems via collaborative interactions. The individual
agents can have distinct properties, knowledge, and special
powers. For instance, in the first example, we create agents that
have special powers to generate molecular coordinates from
SMILES70 representations of arbitrary molecules and also have
powers to conduct a Density Function Theory (DFT)
simulation.71 The ability to conduct DFT simulations, in
particular, is highly relevant since it provides access to new
physics-based data; here, agents have the ability to complement
baked-in knowledge from pretraining with new measurements
or simulation results.

2.3.1. Molecular Design. As a first example, Table 8 shows
a result of such agent-based modeling applied here to solve a
molecular design problem. The question posed here is “Consider
this molecule in SMILES representation: CCCCXCC, where X is
one of (C, O, N). Which of these options leads to the lowest energy
structure?” The agents devise a plan, carry out the simulations,
analyze the data, and provide the final response to the user. The

Table 6. Multistep Sampling Inspired by the Tree-of-Thought Methoda

aThe question asked is “What would be likely failure mechanisms of a hybrid silk−metal nanocomposite, reinforced with carbon nanotubes?”. We proceed
by asking several questions to sample dynamically. Compared to the single-shot answer, the complex prompting strategy elicits more nuanced and
detailed responses that generally agree with the literature of related materials.107

ACS Engineering Au pubs.acs.org/engineeringau Article

https://doi.org/10.1021/acsengineeringau.3c00058
ACS Eng. Au 2024, 4, 241−277

257

https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00058?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00058?fig=tbl6&ref=pdf
pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.3c00058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


conversational transcript shown in the table provides a detailed
account of how the problem is solved and how the answer is
ultimately provided. The set of agents includes the following
entities:

• “User” (human who poses the question),

• “Planner” who develops a plan to answer the question,
• “Coordinate retriever” that can retrieve coordinates from
SMILES coordinates or its own knowledge

• “Chatbot” with broad skills and execution power.

Table 7. Multistep Sampling Inspired by the Tree-of-Thought Method, Implemented via Variegated Uses of the LLM as a
Generator of Ideas/Concepts and to Judge These against Their Usefulness to Solve a Particular Taska

aThe question asked is “The mechanism of flaw-tolerance in α-helical protein networks is “The geometric transformation of the crack shape is
believed to help minimize stress concentration at corners, although the exact mechanism is not fully understood. As the crack undergoes a
series of changes, from mode I to a circular hole, and eventually becoming an elongated crack aligned with the direction of loading, the stress
concentration at corners is reduced. This transformation occurs as individual proteins within the crack continuously unfold, independent of
their neighboring proteins. The reduced stresses in the vicinity of the elongated crack contribute to a decrease in stress concentration at
corners. Overall, this geometric transformation of the crack shape is thought to provide self-protection and distribute stress more evenly
along the crack, ultimately minimizing stress concentration.″ Now, describe how to translate this concept to a material composed of thin
glass fibers as elementary building blocks. Define details of how the glass fibers must be engineered and how they are arranged into larger-
scale structures.” We proceed by asking several questions to sample dynamically and iteratively by using MechGPT to judge and assess its own
responses. Compared to the single-shot answer, the complex prompting strategy elicits more nuanced and detailed responses. It is noted that in this
example, we do not use RAG, and only the question designated above is used to prompt the model.
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The agents have access to a Python function that converts
SMILES code into atom types and molecular coordinates (the
molecular structure) as well as a Python function that conducts a
DFT simulation given a molecular structure as an input. In the
example provided here, the Python functions were provided by a
human expert, but it is also possible that LLMs can write and
execute their own code. Having human experts code up such
special functions aids in achieving a streamlined process by
which key information is obtained. As can be seen in the table,
the agents work out the solution and identify that CCCCOCC is
the structure with the lowest energy. Such tasks can easily be
extended to more complex design objectives, including more

complex molecular or other scenarios. Due to the use of custom
functions, highly complex workflows can be implemented where
the LLM agents are aware of the various function calls they can
execute (see Materials and Methods for details).

2.3.2. Team of Experts to Answer Complex Research
Questions. Agent-based models can also be used to answer
complex research questions and inquiries using a team of LLMs
with particularly organized knowledge via a set of expert agents.
The set of agents includes:

• “Boss” (human who poses the question),
• “Senior Engineer” who develops a plan to answer the
question,

Figure 6. We use MechGPT to elucidate analogies between disparate domains, here music and proteins, via the construction of Ontological
Knowledge Graphs. Here, we use the model to sample a set of responses to the query “Discuss the analogies between music and proteins. Specif ically,
address counterpoint and how it relates music to protein. Provide a detailed and lengthy answer.” (in the example reported here, we sampled 25 times and
collated all responses into a data set that is then further analyzed as a corpus of knowledge). The system prompt used here is “You are a philosopher who
likes to talk about relationships between music and proteins. You provide detailed answers.”. Based on this set of generated results, we then assemble an
Ontological Knowledge Graph from this set of data to elucidate key connections and relationships identified. The key connector between the various
subgraphs is “basic units”, where these are amino acids in proteins and notes inmusic. Themodel further predicts several specific analogy concepts, such
as that analogies “lie in the organization of units” and “help us understand wonders of life”, among many others (subgraph in the right lower corner).
Other connectors between subgraphs are identified as “structures” and “notes” as key nodes.
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Table 8. Agent-Based Modeling, Applied Here to Solve a Molecular Design Problema
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Table 8. continued
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• “Modeling Expert”

• “Reviewer” who critically assesses the responses and
integrates knowledge.

The boss is a proxy for the human user, who asks the questions
and gives approval and input at different stages of the
conversation; in this case, we set up the conversation so that
human input is sought periodically to allow for follow-up
questions and refinements of the answer. Each of the agents can
use experts with deep technical knowledge for additional
information, and we define three expert agents using RAG
with access to specific knowledge (see Materials and Methods
for details). Table 9 shows the results of the agent set shown in
Figure 7, used to answer a complex design question: “Design
molybdenene 2D materials by using ideas of f law-tolerance in α-
helical protein meshes. Develop three design principles that
incorporate important mechanisms.”.

2.3.3. Agent-Based Force-Field Development: Coding,
Execution, Data Analysis, File Saving, and Plotting. The
final example provides the most powerful illustration of how
LLMs can not only answer complex questions via a team of
agents but also write de novo code that is utilized to develop an
answer by executing it and collecting all relevant data via an
active learning process by which physical ground truths are
generated via DFTmodeling on the fly. Sophisticated LLMs can
also write and execute code and need not rely on predetermined
functions, as in the previous example. Figure 8 shows an
experiment of using a set of two LLM agents, each with specific
expertise and capabilities, to write, execute code, and analyze the

data produced. Here, we exemplify this approach in automatic
force-field fitting. The task given is
Use PySCF to calculate the energy of an O2 molecule for

varying bond lengths between 0.7 and 1.8 Å in increments of
0.1 Å. Fit a piecewise spline curve to the data. Then, the
energy over the bond length for the data and the fitted
potential was plotted and saved as plot_O2_spline_fit_po-
tential.svg. Save the parameters of the spline curve fit into a
file in JSON format. Save the calculation results in a file in
JSON format. What is the lowest energy configuration?
Giving a general task, the set of agents automatically defines

the problem and strategy, writes code, executes code, and
provides the required output: A graph showing the raw energy vs
geometry data, JSON file outputs of energies, a spline fit to the
data, including saving the force-field parameters as a JSON file.
The final output created by the set of two agents (Figure 8a) is

Great! The code was executed successfully.
The lowest energy conf iguration for the O2 molecule is at a bond

length of approximately 1.3 Å with an energy of
−148.08420987269093 Hartree.

The plot of the energy over the bond length for the data and the
f itted potential has been saved as ‘plot_O2_spline_f it_poten-
tial.svg’.

The parameters of the spline curve f it have been saved in a f ile
named ‘spline_params.json’ in JSON format.

The calculation results have been saved in a f ile named
‘calculation_results.json’ in JSON format.

Please check these f iles in your current directory.

Table 8. continued

aThe set of agents include the “User” (human who poses the question), a “Planner” who develops a plan to answer the question, a “Coordinate
retriever” that can retrieve coordinates from SMILES coordinates or its own knowledge, and a “Chatbot” with broad skills and execution power.
The agents have access to a Python function that converts SMILES code into atom types and molecular coordinates (the molecular structure), as
well as a Python function that conducts a DFT simulation given a molecular structure as an input. The question posed here is “Consider this
molecule in SMILES representation: CCCCXCC, where X is one of (C, O, N). Which of these options leads to the lowest energy structure?”
The agents devise a plan, carry out the simulations, analyze the data, and provide the final response to the user.
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Table 9. Agent-BasedModeling Applied Here to Answer a Complex DesignQuestion: “DesignMolybdenene 2DMaterials by Using
Ideas of Flaw-Tolerance in α-Helical Protein Meshes. Develop three design principles that incorporate important mechanisms.”a
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Table 9. continued
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A full summary of the conversation between the agents is
provided in Table 10, and Figure 8b shows the key result of the
experiments, including the code produced, as well as the figure
generated, and the JSON data files that feature a full
representation of the raw DFT data and the force-field fitting.
We emphasize that no predetermined functions are used.

Instead, the LLMs write and execute all code simply driven by
the task given. Such an AI system driven by an amalgamation of
LLMs and other codes and methods is a modern realization of
earlier concepts to develop materials design paradigms, such as
the Computational Materials Design Facility (CMDF49). With
the advent of increasingly sophisticated LLMs it is likely that

Table 9. continued

aThe set of agents include the “Boss” (human who poses the question), a “Senior Engineer” who develops a plan to answer the question, a
“Modeling Expert”, and a “Reviewer” who critically assesses the responses and integrates knowledge. The boss is the human user who asks the
questions and gives approval and input at different stages of the conversation. For instance, this includes approval of the plan and follow-up
questions. Human input in the conversation below is marked in italics. Each of the agents can use experts with deep technical knowledge for
additional information (see Figure 7 for a flowchart and overview of the approach). Below is a summary of how the conversation unfolds.

Figure 7.Using a set of seven LLM agents, each with specific expertise and capabilities, we can answer complex questions here: “Design molybdenene 2D
materials by using ideas of f law-tolerance in α-helical protein meshes. Develop three design principles that incorporate important mechanisms.”. The result of
the conversation is summarized in Table 9. Note only agents #1−4 participate in the group chat conversation, whereas expert agents #5−7 are called
upon by any of the agents #2−4 to retrieve information as needed from the experts. An arbitrary set of data can be made accessible to the expert agents;
here, we use the molybdenene paper,62 the protein mesh paper,65 and a book on multiscale modeling,60 respectively.
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Figure 8. Using a set of two LLM agents, each with specific expertise and capabilities, to write, execute code, correct errors, and analyze the data
produced used here to develop a computational design framework based on first-principles simulations. Panel a shows the implementation of the
model (left) and the task given (right). Panel b shows three key elements of the results produced. Giving a task, the set of agents automatically defines
the problem and strategy, writes code (shown on the left), executes code, and provides the required output: A graph showing the raw energy vs
geometry data (top right), JSON file outputs of energies (lower right), a spline fit to the data (top right), including saving the force-field parameters as a
JSON file (lower right). The plot is contained in a file named plot_O2_spline_f it_potential.svg, as requested in the task. The resulting code is stored in a
folder (as specified when the agent is defined) so that it can be retrieved later and used outside of the AI agent chat via human users. This modality
allows users to expand the solution generated by the agents toward other related use cases with additional domain knowledge.
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Table 10. Agent-Based Modeling, Applied Here to Write Code, Execute, and Plot the Resultsa
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Table 10. continued
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such tasks can be more easily realized at scale and with full
autonomy.

3. CONCLUSIONS
While fine-tuned LLMs are powerful tools, they can fall short of
providing an accurate response or to provide up-to-date
scientific results. Through a series of strategies, especially
using Retrieval-Augmented Generation strategies (RAG), the
use of Ontological Knowledge Graphs, and sets of LLMs
interacting as autonomous agents that collaborate to solve tasks,
we showed that we can inject knowledge into the generative
process to enhance model performance and adapt it to new data
and ultimately to being able to provide well-specified results.
The case of Ontological Knowledge Graphs, in particular, is a
powerful computational strategy to develop ontological insights
akin to “ologs” as introduced in the earlier literature on category
theory50−53 for use in materials science38,54,56−58,61 (see
examples for such graphs pertinent to a particular scientific
question in Figure 4b,c). Another avenue we discussed was the
use of Tree-of-Thought sampling, which overcomes the
limitation of a single, linear sampling step to obtain results
and instead uses multidirectional and multidimensional
sampling (Figure 5). Therein, we use the LLM itself to critique
its own responses to filter out the most relevant details. This

takes advantage of the fact that LLMs are often excellent in
providing first, generative results akin to brainstorming and also
provide an accurate means to classify key responses. By breaking
down a single task into multiple steps, we can generate better,
more informed, and accurate outcomes.
We find that RAG and its variants are powerful methods that

will likely play an important role in the future evolution of LLMs
in engineering and science, especially when combined with
nonlinear sampling methods. Other work in the use of retrieval-
augmented LLM use cases, such as mathematical proof
development,72 underscores these exciting possibilities. In
particular, the benefit of using Ontological Knowledge Graphs
is that they provide interpretable results that human scientists
can read, understand, and use for either developing under-
standing, hypothesis, or solving complex tasks such as the
building block replacement problem.56 The examples shown in
the paper showcase the construction of such graphs not only on
the general corpus of data (Figure 3) but also specifically on the
answering mechanism of a question (Figure 4b,c) that helps to
elucidate insights into how questions are responded to within
the context of knowledge. This not only provides insights that
can be used, say, in an analysis or design process but also
generates detailed insights into the mechanics by which the
LLM constructs an answer. This can help understand the origin

Table 10. continued

aThe task given is “Use PySCF to calculate the energy of an O2 molecule, for varying bond lengths between 0.7 and 1.8 Å in increments of 0.1 Å.
Fit a piecewise spline curve to the data. Then, plot the energy over the bond length for the data and the fitted potential and save it as
plot_O2_spline_fit_potential.svg. Save the parameters of the spline curve fit into a file in JSON format. Save the calculation results in a file in
JSON format. What is the lowest energy configuration?” As can be verified in the conversation, the set of agents not only write code, install any
required libraries, and execute it but also correct any errors that may occur (this self-correcting behavior is key to achieve successful complex code
development and execution).
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of answers and can help to reverse engineer if a model predicts
incorrect or unreliable results or if a user has questions.
Similar arguments can be made for complex nonlinear

sampling strategies where the conventional linear mechanism
of prompting and answer pairing is expanded to include
interactive decision mechanisms, as also pointed out in ref 73,
that are highly promising, especially when combined with active,
interactive, or innovative data collection strategies (data
collection can range from human experts to sensors to ab initio
modeling). These decision mechanisms can be automated by
using the LLM to judge its own responses or can be augmented
by human expert input. This fundamentally changes the
paradigm from a black-box retrieval system toward a more
transparent tool that typically leads to more useful insights and
can answer questions that cannot be reliably retrieved using
single-shot answers.68,74,75 In addition to the Ontological
Knowledge Graphs constructed (Figures 3, 4), Table 2 is a
key result of this paper, showing a comparison of responses of
MechGPT alone and with the use of RAG for a specific topic
around flaw-tolerance in graphene. The RAG method uses the
result of a Google Scholar search on the topic of “Deep learning
flaw-tolerance”, downloading the most highly cited paper (by
Lew et al.64). The result showed that MechGPT alone was not
able to provide correct results for this specific, recently published
paper, but MechGPT with RAG was able to provide accurate
results with specific details.
Another key advantage of using retrieval-augmentedmethods,

especially when combined with Ontological Knowledge Graphs
methods, is that sources used to generate responses can be
identified. This information is included in the initial processing
step that provides data about what document was used and,
within the document, which section or paragraph was utilized.
We can extract this information by examining metadata
produced by the RAG algorithm or directly querying the LLM
to provide this detail. The combination of a fine-tuned special
purpose LLM in conjunction with RAG or KGmethods is hence
not only more accurate but also provides users with details on
the origin and citation of concepts used. This provides a better
integration with the scientific process and acknowledgment.
Ontological Knowledge Graphs of ontological knowledge can
also be automatically constructed to relate disparate concepts or
domains of knowledge. As an example, we presented in Figure 6
the results of using MechGPT to elucidate analogies between
music and proteins, identifying a rich set of insights from key
connecting principles, subgraphs, and an overall visual
representation of this area of scholarship. It nicely builds on
and complements earlier work54,76−78 based on analytical or
physics-based methods that attempted to generate such
relationships. It also complements adversarial language-based
strategies, as proposed in ref 79, with a much different focus,
specifically to capture the natural language and its innate
interpretability. Using the computational method proposed
here, we can dive deeper into more complex cross-disciplinary
connections. If the generated graph is further queried, we could
also construct graphs specifically relevant to the answering
mechanism of a question (akin to what we present in Figure
4b,c). While this is left to future work, it is an exciting possibility
to explore cross-cutting ties in an interpretable manner.
Finally, agent-based modeling is a powerful technique that

offers enhanced problem-solving capacity, as shown in various
examples, including determining energetic details about
molecular design and optimization (Table 8), question
answering via a team of AI agents (Figure 7 and Table 9) and

de novo code generation, and execution and problem-solving
(here exemplified for force-field development, see Table 10 and
Figure 8). The ability to generate code, retrieve new physical
data, and integrate various information for inclusion in easily
readable file formats (like JSON) offers enhanced capabilities for
computational materials design with an innate integration of
codes that operate acrossmodalities and scales. The ability of the
system of AI agents to develop code and processes (including
error correction, as shown in Table 10) strategically through
collaboration (including the possibility of human expert input)
offers new paradigms for material design workflows.
Much future work is necessary to explore the behavior and use

cases of LLMs and how they can be made relevant for
engineering and science. We stress that more direct and simpler,
and perhapsmore effective, use cases of transformermodels exist
in various specific tasks, such as property prediction and
forward/inverse design tasks, as outlined in recent pa-
pers.15,30,59,80 Another area of great relevance is various societal
implications that can also relate to the way engineers work in the
future.73,81 So far, we deliberately focused much of the
discussion and use cases of fine-tuned LLMs on open-source
variants; however, other future work could explore the use of
much larger LLMs such as GPT-3.5 and GPT-4, in general, or
fine-tuned variants, for tasks discussed in this study. This can
provide additional insights into use cases in which RAG and
graph-based methods can be utilized. Careful assessment of the
use of LLMs in a scientific and engineering context is critical,
reflecting potentially harmful impacts that such technologies can
have if used carelessly. Further investigations may also focus on
the uses of larger open-source models, such as the MechGPT-
70b models based on the Llama-2-70b family of models (not
used here). This, together with new larger-scale fine-tunable
models such as GPT-3.5-turbo or GPT-4 can open even more
powerful avenues for applications of LLMs in engineering,
multiscale modeling, and complex problem solving. The use of
agent models is particularly useful also to infuse key physical
insight; as done in the example, we use first-principles modeling
using DFT to enhance the AI system with novel data. This
strategy can principally be used also to conduct various other
operations such as physical soundness (e.g., mass conservation),
whether a result satisfies one or more principles or a partial
differential equation, or constraints or design objectives. The use
of natural language, combined with the capabilities of LLMs to
effectively deal with numbers, data, code, and its execution,
offers a wide array of possibilities in materials science and
engineering and beyond, including, but not limited to,
interpretability and the possibility of direct engagement with a
human expert.

4. MATERIALS AND METHODS
Figure 1 provides a summary of the strategies used in this study. Figure
1a shows a general perspective of howLLMs, such as a fine-tunedmodel
like MechGPT, use context and queries to provide an answer. In a
conventional setting, LLMs are queried against their parameter-based
knowledge that was developed during the initial training and/or fine-
tuning stages. By developing a knowledge base from data sources, as
shown in Figure 1b, we can augment the response of an LLM by
providing relevant context retrieved from the knowledge base with the
question to provide an answer (Figure 1c). Other mechanisms for
sampling discussed in this paper include nonlinear sampling, where we
repeatedly query the LLM with a context and task and iterate through
multiple generations to ultimately develop an answer (see feedback
loop from the answer to formulate new context and query).
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4.1. Initial Fine-Tuned MechGPT Development
All work reported here is done based on fine-tuned LLMs derived from
the Llama-2 architecture, an open LLM foundation model46 developed
for interactive chat modality. The original development of MechGPT is
described in earlier papers.28,59 We provide just a brief summary here
for completeness. The MechGPT model is based on a pretrained LLM
that is fine-tuned with “textbook” mechanics and materials knowledge.
In the first step, we use a general-purpose languagemodel (in our case, a
combination of the Llama-2 70b chat model38 and GPT-3.5/4 in order
to extract knowledge from the text in the form of question−answer
pairs. To do this, we show the LLM sections of the source data (books,
Wikipedia pages, etc.) and ask them to (1) develop a question to which
the answer is the section considered and then (2) develop a concise
summary of the section considered. This achieves multiple purposes,
including a cleanup of the text; the question−answer pairs are then
reviewed, cleaned up (remove any data with references to figures), and
complemented by additional question−answer pairs curated from
human feedback. The models are developed in PyTorch82 and
implemented within the Hugging Face ecosystem. Training of the
MechGPT model is performed based on the Llama-2 transformer
architecture, using the OpenOrca-Platypus2−13B83 as basis (license
for all Llama derivative works: https://github.com/facebookresearch/
llama/blob/main/LICENSE). The extended data set used for training
the model includes ∼2600 question−answer pairs from the “Atomistic
modeling of materials failure” textbook60 and ∼5600 question−answer
pairs developed from Wikipedia sources related to mechanics concepts
with a total of ∼8200 question−answer pairs. The maximum length of
question−answer pairs in the prompt template is 768 tokens. The
prompt template, using “{Question}” and “{Answer}” as stand-ins for
the corresponding question−answer pair, is

User: {Question}<|end_of_turn|>Assistant: {Answer}<|end_of_turn|
>
For a specific example of a training pair of question and answer:
User: How does hyperelasticity, or the elasticity of large strains, af fect the

dynamics of brittle f racture, and why is it important to consider this ef fect in
understanding the behavior of materials under stress?<|end_of_turn|
>Assistant: Hyperelasticity, or the elasticity of large strains, plays a crucial
role in the dynamics of brittle f racture. Unlike linear elastic behavior, which
assumes that materials will return to their original shape af ter stress,
hyperelasticity takes into account the fact that materials can undergo large
deformations without breaking. This means that the elastic behavior of
materials under stress can be signif icantly dif ferent f rom the linear elastic
behavior assumed in many existing theories of dynamic fracture.\n
\nExperiments and computer simulations have shown that the crack
propagation speed can be signif icantly reduced compared to the predictions
by linear elastic theory. This discrepancy cannot be attributed solely to the
presence of imperfections in real materials, as similar discrepancies are
observed in molecular dynamics simulations of perfect atomic lattices.\n
\nThe importance of considering hyperelasticity in understanding the
behavior of materials under stress lies in its ability to explain phenomena
related to crack branching and dynamic crack tip instability. Hyperelasticity
can also help explain why the maximum crack propagation speed observed
in some experiments and simulations is signif icantly lower than predicted by
linear elastic theory.\n\nOverall, considering hyperelasticity is essential to
developing a complete understanding of the dynamics of brittle f racture. By
taking into account the large deformations that materials can undergo
without breaking, researchers can better understand the behavior of
materials under stress and develop more accurate predictions of their
behavior.<|end_of_turn|>
Another one:
User: How does molecular dynamics simulation dif fer f rom purely

continuum mechanics theories in handling stress concentrations and
describing bond breaking at the nanoscale?<|end_of_turn|>Assistant:
Molecular dynamics simulations can handle stress concentrations and
describe bond breaking at the nanoscale better than purely continuum
mechanics theories. Unlike continuum mechanics, molecular dynamics
simulations can accurately describe the behavior of materials at the atomic
scale, where stress concentrations and bond breaking occur. This is because
molecular dynamics simulations use simplistic model potentials to represent

atomic interactions, allowing for a more straightforward and accurate
description of the mechanics of brittle f racture at the nanoscale.
Additionally, the use of simplistic model potentials enables immediate
comparison with continuum theories, which can help develop a deeper
understanding of the mechanics of brittle f racture at the nanoscale.
Furthermore, advances in computational power allow for modeling at length
scales on the order of micrometers, making atomistic-based modeling a
promising tool for future research in the area of modeling nanomechanical
phenomena and linking to continuummechanical theories.<|end_of_turn|>
To fine-tune the model, we used a paged 32-bit AdamW optimizer

(“paged_adamw_32bit”) with a learning rate of LR = 0.0002, ε = 1E8,
with a warmup ratio of 0.03, a cosine learning rate schedule, and a
gradient norm clipping of 0.3. See Figure S1 for the distribution of
token length in the training set, as well as the loss over steps and learning
rate (LR) over steps.
To parallelize training, we implemented the use of Hugging Face

Accelerate (https://huggingface.co/docs/accelerate/index). The
training objective used here is to maximize the likelihood of predicting
the next token (that is, a letter, part of, or a word) given the previous
words for the training set developed via question−answer pairs. We use
Quantized Low-Rank Adaptation (QLoRA)84,85 to fine-tune the model
by adding additional trainable layers and freezing the original pretrained
model to avoid catastrophic forgetting of the original knowledge base
(this approach involves freezing parameters of the original pretrained
model and introducing small additional layers that consist of trainable
rank decomposition matrices (added in each of the 40 transformer
layers of the model), thereby significantly reducing the number of
trainable parameters (LoRA rank = 64, LoRAα = 16, LoRAdropout = 0.1,
modules with adaptor include “q_proj”, “up_proj”, “o_proj”, “k_proj”,
“down_proj”, “gate_proj”, and “v_proj”). This reduction leads to
improved memory efficiency and a faster training throughput.
Once trained, we used the model for inference. Typical sampling

temperatures are 0.4 (except for the initial thought collection in the tree
search method, which uses a higher temperature to tend the output
toward more creative responses).
4.2. Generative Strategies and Sampling Methods
We use the Llama Index (https://github.com/jerryjliu/llama_index)
as a tool to implement Retrieval-Augmented Generation, RAG, as well
as the graph-based variant. RAG allows us to combine LLMs with
additional, new knowledge bases, live data, or other external sources
(see schematics in Figure 1b,c). In this study, we use RAG for
knowledge-intensive natural language processing tasks by allowing
LLMs to access data and incorporate new information. We use
LangChain (https://github.com/langchain-ai/langchain) to imple-
ment embeddings via the “all-MiniLM-L6-v2” model (https://
huggingface.co/sentence-transformers/all-MiniLM-L6-v2 and
https://www.sbert.net/). The embedding model maps text sections
to a 384-dimensional vector space that is then used by the Llama Index
for indexing.
For the graph-basedmethods, we further use NebulaGraph (https://

github.com/vesoft-inc/nebula) in conjunction with the Llama Index to
conduct the experiments. NebulaGraph is an open-source distributed
graph database that can handle large-scale graphs with high efficiency.
In the context of the Llama Index, it provides useful features that allow
the extraction of Ontological Knowledge Graphs for specific contexts
and questions asked and the ability to visualize graphs using Networkx
(https://networkx.org/). We use GPT-3.5-turbo and GPT-4 to
construct Ontological Knowledge Graphs from the raw data due to
computational efficiency and the fact that a general-purpose model is
suitable for this initial extraction step (principally, this can be done with
any other model).
Multistep sampling inspired by the Tree-of-Thought method is

implemented by successively sampling the model using the series of
questions delineated in Figure 5b. The series of interactions with the
model unfolds using the following prompts to answer ‘{question}’:
1. Generate a list of initial thoughts that are relevant for answering
this question: ‘{question}’. Do not answer the question.

2. Read this: ‘{Response #1}’. List the most important concepts to
answer the question ‘{question}’.
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3. Considering ‘{Response #2}’, answer this question with a
detailed response: {question}

It is noted that both nonlinear sampling and RAG can help to
minimize hallucinations. Nonlinear sampling tends to bemore powerful
in larger models; RAG is effective, even in small models.
4.3. Agent-Based Modeling: Autonomous Interactions of
Multiple LLMs to Solve Complex Multimodal Problems
Agent modeling is implemented using AutoGen as the overarching
framework (https://github.com/microsoft/autogen).86 This frame-
work provides access to a Python implementation of concurrent
integration of text generation, prompting, and logical control that
allows us to exploit the natural text, code, and processing modality of
LLMs, including the possibility to execute code. We consider a set of
agents with different behaviors, properties, and capabilities (details in
the text, but an overview can be seen in Figure 1d). The agents then
conduct a collaborative conversation to solve a task. The conversation
may or may not involve human input (if human input is prompted, the
user can ask follow-up questions, clarify issues, or give further guidance
to the AI system). All agents used GPT-4 as a backbone LLM.
Three example setups are used with agents that have different

capabilities. In the first example (Section 2.3.1), we define four agents:
“User”, “Planner”, “Coordinate retriever”, and “Chatbot” (details in the
text). To facilitate the specific tasks of coordinate generation from
SMILES code, we define a function “coords_from_SMILES” that is
made available to the agents, with the description “With a SMILES
string as input, provides atom type, and coordinates of a molecule.” We
use RDKit (https://github.com/rdkit/rdkit) for the conversion of
SMILEs codes to coordinates (we first convert the SMILES codes to
coordinates, then add H atoms, then relax the structure using
MMFF94.87 Further, a function is defined to conduct a DFT
simulation, “query_DFT”, with the description: “With coordinates as
input, calculate the energy of a molecule.” The Density Functional
Theory simulations are carried out using PySCF (https://pyscf.org/
).88−90 This code was chosen since it is easily executable within a
Python environment (in general, any other simulation code can be
used).
The Coordinate retriever is instructed, via its system message, to

retrieve coordinates in a certain format:
You retrieve coordinates of molecules f rom SMILES strings or based on

your own knowledge. The coordinates of the molecule must be provided in
the following form in units of Angstrom:

coordinates = ‘C 0.000000 0.000000 0.117790;C 0.000000 0.000000
0.117790’
The “Planner” has the following system message:
Planner. Suggest a plan to solve the task.
The “Chatbot” has the following system message:
You carry out energy calculations and answer the task. Reply

TERMINATE expression was given when the task was done.
Finally, the agent “User” that acts on behalf of the human user is

instructed as follows:
You interact with the planner to develop a plan to solve the problem.
The “TERMINATE” message is used to signal that the question has

been answered; once received, the conversation ends. Tables S1−S3
provide code snippets to showcase the definition of this setup.
In the second example (Section 2.3.2), we use a total of 7 agents, as

defined in Figure 7. The system message of the “Boss” is
Boss who asks questions and gives tasks. Interact with the planner to

approve the plan. Reply ′TERMINATE′ in the end when everything is done.
We further instruct the “Boss” to request human input when the

“TERMINATE” message is received; that is, before the conversation is
finalized, the human user has the opportunity to either end the
conversation or ask a follow-up question. The “Senior Engineer” is
instructed as follows:

Planner. You are a senior materials scientist with broad knowledge.
Suggest a plan. Revise the plan based on feedback from the researcher,
modeling expert, and reviewer and ask the boss for approval. The plan may
involve a researcher who can retrieve information about materials, a
modeling expert who suggests modeling methods, and a reviewer who gives
critical feedback. Explain the plan f irst. Be clear which step is performed by

the researcher, which step is performed by the modeling expert, and which
step is performed by the reviewer. Once the plan is created, ask the boss to
approve.
The “Modeling expert” is instructed as follows:
Modeling expert. You followed an approved plan. You are an expert in

atomistic and multiscale modeling who contributes to the discussion by
providing ideas for how simulation can enhance solving the problem.
The reviewer is instructed:
Reviewer. You follow an approved plan. You are a scientif ic reviewer who

gives critical feedback, adds new ideas, and integrates the concepts.
The expert agents defined in Figure 7 use RAG to generate

responses, where each of the agents (agents #5, #6, and #7) use data
generated from the raw PDF of the respective papers, converted into
markup language using the Nougat91 optical character recognition
(OCR)model. The systemmessages for the protein, molybdenene, and
modeling experts are, respectively, “Assistant who has extra content
retrieval power for solving difficult problems in protein materials.”,
“Assistant who has extra content retrieval power for solving difficult
problems in molybdenene materials and other 2D materials.” and
“Assistant who has extra content retrieval power for information related
to atomistic and multiscale modeling, especially related to materials
failure.” We use Chroma to develop the vector index (https://github.
com/chroma-core/chroma) with all-MiniLM-L6-v2 as an embedding
model, as above.
For the results shown in Section 2.3.3, no predetermined Python

functions are used. Instead, the LLMs write and execute all code simply
driven by the task given (code generated is listed in the results table,
including iterative error correction, and in Figure 8). To do this, we
define two agents: an “Assistant” that helps develop code and answer
questions and a “User” that is a proxy for the human that can
autonomously execute code. Code execution is conducted directly in
the local environment (optionally, code execution can also be done in a
Docker container, which works in the same way but can be a bit slower
since Docker images are downloaded and launched at every code
execution step). As can be seen in Table 10, the agents not only write
and execute code but also develop a plan to install the proper Python
libraries needed for the execution. Note that we specify a folder name in
which the codes generated by the agents are stored so that they can be
retrieved separately and used for other purposes.
We emphasize that for the results in Tables 8, 9 and Figure 7, we use

specially designed functions to (i) retrieve 3D coordinates from
SMILES codes and (ii) conduct a DFT simulation based on
coordinates. In the results in Figure 8 and Table 10, no such functions
are necessary since we rely on the LLM’s capability to write code/input
files and conduct a variety of other tasks.
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(69) Dhuliawala, S.; Ai, M.; E., Zürich; Komeili, M.; Xu, J.; Raileanu,
R.; Li, X.; Celikyilmaz, A.; Weston, J. Chain-of-Verification Reduces
Hallucination in Large LanguageModels, (2023). arXiv:2309.11495v1.
arXiv.org e-Print archive. https://arxiv.org/abs/2309.11495v1 (ac-
cessed September 24, 2023).
(70) Weininger, D. SMILES, a Chemical Language and Information
System: 1: Introduction to Methodology and Encoding Rules. J. Chem.
Inf. Comput. Sci. 1988, 28, 31−36.
(71) Parr, R. G.; Weitao, Y.Density-Functional Theory of Atoms and

Molecules; Oxford University Press, 1995 DOI: 10.1093/oso/
9780195092769.001.0001.
(72) Yang, K.; Swope, A. M.; Gu, A.; Chalamala, R.; Song, P.; Yu, S.;
Godil, S.; Prenger, R.; Anandkumar, A.; U., Santa Barbara; Austin, U.
LeanDojo: Theorem Proving with Retrieval-Augmented Language
Models, (2023). arXiv:2306.15626v1. arXiv.org e-Print archive.
https://arxiv.org/abs/2306.15626v1 (accessed September 23, 2023).
(73) van der Zant, T.; Kouw, M.; Schomaker, L.Generative artificial
intelligence. In Studies in Applied Philosophy, Epistemology and Rational
Ethics; Springer: Berlin Heidelberg, 2013; Vol. 5, pp 107−120.
DOI: 10.1007/978-3-642-31674-6_8/COVER.
(74) Long, J. Large Language Model Guided Tree-of-Thought,
(2023). arxiv:2305.08291v1. arXiv.org e-Print archive. https://arxiv.
org/abs/2305.08291v1 (accessed September 23, 2023).

(75) Chen,W.;Ma, X.; Wang, X.; Cohen,W.W. Program of Thoughts
Prompting: Disentangling Computation fromReasoning for Numerical
Reasoning Tasks, (2022). arxiv:2211.12588v3. arXiv.org e-Print
archive. https://arxiv.org/abs/2211.12588v3 (accessed September
23, 2023).
(76) Franjou, S. L.; Milazzo, M.; Yu, C.-H.; Buehler, M. J. A
perspective on musical representations of folded protein nanostruc-
tures. Nano Futures 2021, 5, 012501.
(77) Yu, C. H.; Qin, Z.; Martin-Martinez, F.; Buehler, M. J. A self-
consistent sonification method to translate amino acid sequences into
musical compositions and application in protein design using Artificial
Intelligence. ACS Nano 2019, 13, 7471−7482.
(78) Milazzo, M.; Anderson, G. I.; Buehler, M. J. Bioinspired
translation of classical music into de novo protein structures using deep
learning and molecular modeling. Bioinspir. Biomim. 2022, 17,
No. 015001.
(79) Buehler, M. J. Unsupervised cross-domain translation via deep
learning and adversarial attention neural networks and application to
music-inspired protein designs. Patterns 2023, 4, No. 100692.
(80) Lew, A. J.; Buehler, M. J. Single-shot forward and inverse
hierarchical architected materials design for nonlinear mechanical
properties using an Attention-Diffusion model.Mater. Today 2023, 64,
10.
(81) Baldassarre, M. T.; Caivano, D.; Fernandez Nieto, B.; Gigante,
D.; Ragone, A.The Social Impact of Generative AI: An Analysis on
ChatGPT. In Proceedings of the 2023 ACM Conference on Information
Technology for Social Good; ACM, 2023; pp 363−373 DOI: 10.1145/
3582515.3609555.
(82) Paszke, A.; Gross, S.; Bradbury, J.; Lin, Z.; Devito, Z.; Massa, F.;
Steiner, B.; Killeen, T.; Yang, E. PyTorch: An Imperative Style, High-
Performance Deep Learning Library, 2019, arXiv:1912.01703.
arXiv.org e-Print archive. https://arxiv.org/abs/1912.01703.
(83) Open-Orca/OpenOrca-Platypus2−13B Hugging Face, URL:
https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B (ac-
cessed August 27, 2023).
(84) Hu, E. J.; Shen, Y.; Wallis, P.; Z., Allen-Zhu; Li, Y.; Wang, S.;
Wang, L.; Chen, W. LoRA: Low-Rank Adaptation of Large Language
Models, (2021). arxiv:2106.09685v2. arXiv.org e-Print archive.
https://arxiv.org/abs/2106.09685v2 (accessed June 26, 2023).
(85) Dettmers, T.; Pagnoni, A.; Holtzman, A.; Zettlemoyer, L.
QLoRA: Efficient Finetuning of Quantized LLMs, (2023). ar-
Xiv:2305.14314v1. arXiv.org e-Print archive. https://arxiv.org/abs/
2305.14314v1 (accessed September 12, 2023).
(86) Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Li, B.; Zhu, E.; Jiang, L.;
Zhang, X.; Zhang, S.; Liu, J.; Awadallah, A. H.;White, R.W.; Burger, D.;
Wang, C. AutoGen: Enabling Next-Gen LLM Applications via Multi-
Agent Conversation, (2023). arXiv:2308.08155v2. arXiv.org e-Print
archive. https://arxiv.org/abs/2308.08155v2 (accessed October 28,
2023).
(87)Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A.
Development and testing of a general Amber force field. J. Comput.
Chem. 2004, 25, 1157−1174.
(88) Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N. S.;
Bogdanov, N. A.; Booth, G. H.; Chen, J.; Cui, Z. H.; Eriksen, J. J.; Gao,
Y.; Guo, S.; Hermann, J.; Hermes, M. R.; Koh, K.; Koval, P.; Lehtola, S.;
Li, Z.; Liu, J.; Mardirossian, N.; McClain, J. D.; Motta, M.; Mussard, B.;
Pham, H. Q.; Pulkin, A.; Purwanto, W.; Robinson, P. J.; Ronca, E.;
Sayfutyarova, E. R.; Scheurer, M.; Schurkus, H. F.; Smith, J. E. T.; Sun,
C.; Sun, S. N.; Upadhyay, S.; Wagner, L. K.; Wang, X.; White, A.;
Whitfield, J. D.; Williamson, M. J.; Wouters, S.; Yang, J.; Yu, J. M.; Zhu,
T.; Berkelbach, T. C.; Sharma, S.; Sokolov, A. Y.; Chan, G. K. L. Recent
developments in the PySCF program package. J. Chem. Phys. 2020, 153,
No. 024109, DOI: 10.1063/5.0006074.
(89) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li,
Z.; Liu, J.; McClain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters, S.;
Chan, G. K. L. PySCF: the Python-based simulations of chemistry
framework. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8 (1),
No. e1340, DOI: 10.1002/WCMS.1340.

ACS Engineering Au pubs.acs.org/engineeringau Article

https://doi.org/10.1021/acsengineeringau.3c00058
ACS Eng. Au 2024, 4, 241−277

276

https://doi.org/10.1016/j.nantod.2012.09.001
https://doi.org/10.1016/j.nantod.2012.09.001
https://doi.org/10.1002/adem.201200109
https://doi.org/10.1002/adem.201200109
https://doi.org/10.1002/adem.201200109
https://doi.org/10.1002/adem.201200109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adem.201200109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsbiomaterials.5b00251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsbiomaterials.5b00251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsbiomaterials.5b00251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/0957-4484/27/2/024002
https://doi.org/10.1088/0957-4484/27/2/024002
https://doi.org/10.1088/0957-4484/27/2/024002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/0957-4484/27/2/024002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1115/1.4063843
https://doi.org/10.1115/1.4063843
https://doi.org/10.1115/1.4063843
https://doi.org/10.1007/978-0-387-76426-9?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1371/journal.pone.0023911
https://doi.org/10.1371/journal.pone.0023911
https://doi.org/10.1371/journal.pone.0023911?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1371/journal.pone.0023911?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41565-023-01484-2
https://doi.org/10.1038/natrevmats.2018.16
https://doi.org/10.1038/natrevmats.2018.16
https://doi.org/10.1038/natrevmats.2018.16?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41699-021-00228-x
https://doi.org/10.1038/s41699-021-00228-x
https://doi.org/10.1038/s41699-021-00228-x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1371/journal.pone.0006015
https://doi.org/10.1371/journal.pone.0006015
https://doi.org/10.1371/journal.pone.0006015?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-94-007-1611-7
https://doi.org/10.1007/978-94-007-1611-7?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://arxiv.org/abs/2305.10601v1
https://arxiv.org/abs/2309.11495v1
https://doi.org/10.1021/ci00057a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00057a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/oso/9780195092769.001.0001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/oso/9780195092769.001.0001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://arxiv.org/abs/2306.15626v1
https://doi.org/10.1007/978-3-642-31674-6_8/COVER
https://doi.org/10.1007/978-3-642-31674-6_8/COVER
https://doi.org/10.1007/978-3-642-31674-6_8/COVER?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://arxiv.org/abs/2305.08291v1
https://arxiv.org/abs/2305.08291v1
https://arxiv.org/abs/2211.12588v3
https://doi.org/10.1088/2399-1984/abcf1b
https://doi.org/10.1088/2399-1984/abcf1b
https://doi.org/10.1088/2399-1984/abcf1b
https://doi.org/10.1021/acsnano.9b02180?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.9b02180?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.9b02180?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.9b02180?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/1748-3190/ac338a
https://doi.org/10.1088/1748-3190/ac338a
https://doi.org/10.1088/1748-3190/ac338a
https://doi.org/10.1016/J.PATTER.2023.100692
https://doi.org/10.1016/J.PATTER.2023.100692
https://doi.org/10.1016/J.PATTER.2023.100692
https://doi.org/10.1016/j.mattod.2023.03.007
https://doi.org/10.1016/j.mattod.2023.03.007
https://doi.org/10.1016/j.mattod.2023.03.007
https://doi.org/10.1145/3582515.3609555
https://doi.org/10.1145/3582515.3609555
https://doi.org/10.1145/3582515.3609555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1145/3582515.3609555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://arxiv.org/abs/1912.01703
https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B
https://arxiv.org/abs/2106.09685v2
https://arxiv.org/abs/2305.14314v1
https://arxiv.org/abs/2305.14314v1
https://arxiv.org/abs/2308.08155v2
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1063/5.0006074
https://doi.org/10.1063/5.0006074
https://doi.org/10.1063/5.0006074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/WCMS.1340
https://doi.org/10.1002/WCMS.1340
https://doi.org/10.1002/WCMS.1340?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.3c00058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(90) Sun, Q. Libcint: An efficient general integral library for Gaussian
basis functions. J. Comput. Chem. 2015, 36, 1664−1671.
(91) Blecher, L.; Cucurull, G.; Scialom, T.; Stojnic, R.; Ai, M. Nougat:
Neural Optical Understanding for Academic Documents, (2023).
arXiv:2308.13418v1. arXiv.org e-Print archive. https://arxiv.org/abs/
2308.13418v1 (accessed October 11, 2023).
(92) Buehler, M. J.; Gao, H. Dynamical fracture instabilities due to
local hyperelasticity at crack tips. Nature 2006, 439, 307−310,
DOI: 10.1038/nature04408.
(93) Buehler, M. J.; Gao, H. A mother-daughter mechanism of mode i
cracks: Supersonic crack motion along interfaces of dissimilar materials.
MRS Proc. 2005, 904, No. 09040305.
(94) Buehler, M. J.; Kong, Y.; Gao, H.; Huang, Y. Self-folding and
unfolding of carbon nanotubes. J. Eng. Mater. Technol. 2006, 128 (1),
3−10, DOI: 10.1115/1.1857938.
(95) Buehler, M. J.; Abraham, F. F.; Gao, H. Hyperelasticity governs
dynamic fracture at a critical length scale. Nature 2003, 426, 141−146.
(96) Buehler, M. J.; Hartmaier, A.; Gao, H. Hierarchical multi-scale
modelling of plasticity of submicron thin metal films. Modell. Simul.
Mater. Sci. Eng. 2004, 12, S391 DOI: 10.1088/0965-0393/12/4/s07.
(97) Buehler, M. J.; Hartmaier, A.; Gao, H. Atomistic and continuum
studies of crack-like diffusion wedges and associated dislocation
mechanisms in thin films on substrates. J. Mech. Phys. Solids 2003, 51
(11-12), 2105−2125, DOI: 10.1016/j.jmps.2003.09.024.
(98) De La Rubia, T. D.; Yip, S.Scientific modeling and simulations:
Advocacy of computational science (editors’ preface). In Lecture Notes
in Computational Science and Engineering; Springer: Netherlands, 2008;
pp 1−2 DOI: 10.1007/978-1-4020-9741-6_1.
(99) Shima, H. Buckling of Carbon Nanotubes: A State of the Art
Review. Materials 2012, 5, 47.
(100) Anderson, T. L. Fracture Mechanics: Fundamentals and

Applications; Taylor & Francis, 2005.
(101) Anderson, P. M.; Hirth, J. P.; Lothe, J. Theory of Dislocations,
Third ed.; Cambridge University Press, 2017; p 1543.
(102) Scheraga, H. A.; Khalili, M.; Liwo, A. Protein-folding dynamics:
overview of molecular simulation techniques. Annu. Rev. Phys. Chem.
2007, 58, 57−83.
(103) Gao, H.; Yao, H. Shape insensitive optimal adhesion of
nanoscale fibrillar structures. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
7851−7856.
(104) Kelly, C.; Gage, M. J. Protein Unfolding: Denaturant vs. Force.

Biomedicines 2021, 9 (10), 1395 DOI: 10.3390/BIOMEDI-
CINES9101395.
(105) Zhang, T.; Li, X.; Kadkhodaei, S.; Gao, H. Flaw insensitive
fracture in nanocrystalline graphene. Nano Lett. 2012, 12, 4605−4610.
(106) Falconer, K. J. The Hausdorff dimension of self-affine fractals.

Math. Proc. Cambridge Philos. Soc. 1988, 103, 339−350.
(107) Khalid, S.; Nazir, R.Hybrid Metal-Polymer Nanocomposites:
Synthesis, Characterization, and Applications. In Handbook of Polymer
and Ceramic Nanotechnology; Springer International Publishing, 2021;
pp 1−36 DOI: 10.1007/978-3-030-10614-0_78-1.
(108) Qin, Z.; Cranford, S.; Ackbarow, T.; Buehler, M. J. Robustness-
strength performance of hierarchical alpha-helical protein filaments. Int.
J. Appl. Mech. 2009 , 01 (01), 85−112, DOI: 10.1142/
S1758825109000058.

ACS Engineering Au pubs.acs.org/engineeringau Article

https://doi.org/10.1021/acsengineeringau.3c00058
ACS Eng. Au 2024, 4, 241−277

277

https://doi.org/10.1002/jcc.23981
https://doi.org/10.1002/jcc.23981
https://arxiv.org/abs/2308.13418v1
https://arxiv.org/abs/2308.13418v1
https://doi.org/10.1038/nature04408
https://doi.org/10.1038/nature04408
https://doi.org/10.1038/nature04408?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1557/PROC-0904-BB03-05
https://doi.org/10.1557/PROC-0904-BB03-05
https://doi.org/10.1115/1.1857938
https://doi.org/10.1115/1.1857938
https://doi.org/10.1115/1.1857938?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature02096
https://doi.org/10.1038/nature02096
https://doi.org/10.1088/0965-0393/12/4/s07
https://doi.org/10.1088/0965-0393/12/4/s07
https://doi.org/10.1088/0965-0393/12/4/s07?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jmps.2003.09.024
https://doi.org/10.1016/j.jmps.2003.09.024
https://doi.org/10.1016/j.jmps.2003.09.024
https://doi.org/10.1016/j.jmps.2003.09.024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-1-4020-9741-6_1
https://doi.org/10.1007/978-1-4020-9741-6_1
https://doi.org/10.1007/978-1-4020-9741-6_1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/ma5010047
https://doi.org/10.3390/ma5010047
https://doi.org/10.1146/annurev.physchem.58.032806.104614
https://doi.org/10.1146/annurev.physchem.58.032806.104614
https://doi.org/10.1073/pnas.0400757101
https://doi.org/10.1073/pnas.0400757101
https://doi.org/10.3390/BIOMEDICINES9101395
https://doi.org/10.3390/BIOMEDICINES9101395?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/BIOMEDICINES9101395?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl301908b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl301908b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1017/S0305004100064926
https://doi.org/10.1007/978-3-030-10614-0_78-1
https://doi.org/10.1007/978-3-030-10614-0_78-1
https://doi.org/10.1007/978-3-030-10614-0_78-1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1142/S1758825109000058
https://doi.org/10.1142/S1758825109000058
https://doi.org/10.1142/S1758825109000058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1142/S1758825109000058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.3c00058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

