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Neurodegenerative diseases (NDs) involve complex cellular mechanisms that are

incompletely understood. Emerging findings have revealed that disruption of nuclear

processes play key roles in ND pathogenesis. The nucleus is a nexus for gene

regulation and cellular processes that together, may underlie pathomechanisms of NDs.

Furthermore, many genetic risk factors for NDs encode proteins that are either present

in the nucleus or are involved in nuclear processes (for example, RNA binding proteins,

epigenetic regulators, or nuclear-cytoplasmic transport proteins). While recent advances

in nuclear transcriptomics have been significant, studies of the nuclear proteome in

brain have been relatively limited. We propose that a comprehensive analysis of nuclear

proteomic alterations of various brain cell types in NDs may provide novel biological

and therapeutic insights. This may be feasible because emerging technical advances

allow isolation and investigation of intact nuclei from post-mortem frozen human brain

tissue with cell type-specific and single-cell resolution. Accordingly, nuclei of various brain

cell types harbor unique protein markers which can be used to isolate cell-type specific

nuclei followed by down-stream proteomics by mass spectrometry. Here we review the

literature providing a rationale for investigating proteomic changes occurring in nuclei in

NDs and then highlight the potential for brain cell type-specific nuclear proteomics to

enhance our understanding of distinct cellular mechanisms that drive ND pathogenesis.
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INTRODUCTION

Neurodegenerative diseases (NDs), including Alzheimer’s Disease (AD), afflict more than 50
million people worldwide, resulting in lower quality of life for both the afflicted individuals
and their caretakers (Prince et al., 2013). With increasing lifespans, the number of individuals
living with NDs is projected to double by 2050 (Prince et al., 2016). Effective disease-modifying
therapies for most NDs are currently lacking although some progress has been made recently in
AD therapeutics (Briggs et al., 2016; Sevigny et al., 2016; Tanzi, 2021).

Different cell types of the central nervous system (CNS) including neurons, microglia, astrocytes,
oligodendrocytes and endothelial cells are affected by (andmay in turn contribute to) NDpathology
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in a cell-type specific manner. To highlight this, De Strooper
and Karran describe a “cellular phase” of AD, which follows a
“biochemical phase” characterized by amyloid beta accumulation
and tau hyperphosphorylation (Strooper et al., 2016), in which
each cell-type has a unique phenotype invested with a profile of
mechanisms which react and contribute to disease pathogenesis
(Strooper et al., 2016). These cell-type specific mechanisms can
either accelerate or hamper disease pathogenesis. Thus, resolving
mechanisms of NDs requires molecular characterization of
distinct CNS cell types.

While bulk and single nuclear transcriptomics of post-
mortem human brain have provided several novel insights into
cell type-specific ND mechanisms, transcriptomic data is poorly
reflective of functional protein-level abundance data (Seyfried
et al., 2017; Higginbotham et al., 2020). This datamay be captured
by unbiased proteomics strategies such as mass spectrometry.
Unfortunately, proteomics of different CNS cell types from
human brain is limited due to limited fresh brain tissue
availability and low recovery of CNS cell types for downstream
proteomic analyses. Even from fresh human brain, recovery
of intact astrocytes, oligodendrocytes and neurons is highly
limited (Kelley et al., 2018). However, unlike the cell membrane,
the nucleus of the cell retains its structural integrity even in
frozen brain specimens. This feature allows for the potential to
isolate cell-type specific nuclei from archived brain specimens.
Proteomics of purified nuclei from the brain, therefore, holds
significant potential to elucidate disease-driving mechanisms
in humans.

The nucleus is a membrane-bound organelle within
eukaryotic cells that houses the genome, regulates cellular
activities, and plays critical roles in cellular homeostasis and
disease (Guo and Fang, 2014). Proteins that reside in the nucleus
or traffic to the nucleus regulate chromatin structure and folding,
DNA replication, RNA synthesis and splicing, and orchestrate
gene expression programs (Dundr and Misteli, 2001). Therefore,
characterization of the proteomic composition of nuclei could
provide a wealth of information regarding disease processes.
This could be done by leveraging existing biorepositories of
non-fixed frozen human brain tissues across several NDs.

In this review, we highlight nuclear processes that play
pathophysiological roles in NDs and discuss how CNS
cell-type specific nuclear proteomics can provide critical
insight into disease pathogenesis. Last, we review emerging
methodologies for cell type-specific nuclear proteomics using
human brain tissues.

Abbreviations: ND, Neurodegenerative disease; AD, Alzheimer’s disease; ALS,

Amyotrophic lateral sclerosis; PD, Parkinson’s disease; FTD, Frontotemporal

dementia; CNS, Central nervous system; FACS, Fluorescence-associated cell

sorting; MS, Mass spectrometry; NCT, Nucleocytoplasmic transport; CIN,

Chromosomal instability; GWAS, Genome-wide association study; RNA,

Ribonucleic acid; RBP, RNA binding protein; LATE, Limbic-predominant

Age-related TDP-43 Encephalopathy; hnRNPs, heterogeneous nuclear

ribonucleoproteins; SR, Serine/Arginine-Rich; NFT, Neurofibrillary tangle;

SCOPE-MS, Single cell proteomics by mass spectrometry.

STRUCTURE AND SUB-COMPARTMENTS
OF THE NUCLEUS

Proteins contained within the nucleus can be characterized by
their functional role in the nucleus and by their compartmental
localization in the nucleus. Unlike a cell which is organized
into subcellular organelles enclosed by membranes, the cell
nucleus is “spatially organized” into territories. The nucleus is
composed of distinct spatially organized compartments, such
as the nuclear envelope, nucleolus, nuclear speckles, nuclear
bodies, chromatin, and the nuclear lamina and matrix which
are represented in Figure 1A. Generally, distinct chromosomes
fold themselves into separate territories of chromatin, DNA
coiled around nucleosomes made of histone proteins. Chromatin
tends to arrange into configurations which co-localize genes with
similar functions (including those on different chromosomes).
For example, genes encoding ribosome subunits, rDNA, localized
into Nucleolar Organizing Regions (NORs) which compose the
nucleolus (Thompson et al., 2003; Kobayashi, 2008; Meldi and
Brickner, 2011). The nucleolus is a complex structure composed
of DNA, RNA, and proteins which regulate ribosome biogenesis.

The nucleus also houses structures which provide structural
and mechanical support, such as the nuclear lamina and the
nuclear matrix. The nuclear lamina is associated with the
inner membrane of the nuclear envelope and is composed
of various lipids and membrane proteins. The nuclear
lamina helps retain the structure of the nucleus, organize
chromatin and chromatin folding, and anchor the nuclear
pore complex in the nuclear envelope. The nuclear matrix
is similar in function to the nuclear lamina in that it
provides structural support, but it extends throughout the
nucleoplasm providing a scaffold upon which chromosomes
can fold and organize themselves. Both of these structures
associate to specific regions of repressed heterochromatin called
Lamina Associated Domains and Matrix Associated Domains,
respectively (Guerreiro and Kind, 2019). The association of
these chromatin domains to their respective structure aids in
folding of chromosomes as well as the maintenance of generally
transcriptionally repressed heterochromatin. In this way, these
components not only maintain the structural organization of
the nucleus, but also reinforce cell-type specific regulation of
gene expression.

Additionally, proteins and RNA can localize into distinct
structures called “nuclear bodies” which can regulate key
biological processes such as transcription, mRNA splicing and
DNA repair. There are several well-known nuclear body subtypes
such as the Histone Locus Body, the Cajal Body, and the
Promyelocytic Leukemia nuclear body. During transcriptional
regulation, it is proposed that genes could either move
to nuclear bodies or that the appropriate nuclear bodies
could form de novo at transcriptional sites or at specific
chromosomal loci.

Finally, the nuclear speckles represent another group of
nuclear domains which are enriched with pre-mRNA splicing
factors such as small nuclear ribonucleoproteins (snRNPs)
and Serine/Arginine-rich (SR) proteins (Fu, 1995). Many
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FIGURE 1 | Nuclear compartments and functional groups of proteins perturbed in neurodegenerative diseases. (A) Visualization of nuclear structures (one way to

characterize nuclear proteins). (B) Visualization of aberrant nuclear mechanisms in neurodegeneration as discussed in paper.

other regulatory factors have been found in the nuclear
speckles which suggest their multi-functional roles in nuclear
homeostasis. Nuclear speckles are dynamic structures, where
some constituents with low complexity (LC) or LC prion-like
domains can interact and reversibly self-aggregate (Galganski
et al., 2017). However, unlike SR proteins and heterogeneous

nuclear ribonucleoproteins (hnRNPs) which have prion-like
domains that can bind RNA to dynamically enhance or
suppress splicing sites, snRNPs are more structurally rigid
protein complexes scaffolded by snRNA (Chatel and Fahrenkrog,
2012; Bai et al., 2013; Diner et al., 2014; Xue et al., 2019;
Khan et al., 2020).
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TABLE 1 | Specific neurodegenerative diseases and aberrant proteins associated

with each mechanism.

Aberrant nuclear

mechanism

Neurodegenerative

disease

Aberrant protein

Nucleocytoplasmic

transport

ALS/FTLD FUS, TDP-43

AD Tau

Chromosomal

instability

AD CDT2, Tau

Nuclear inclusions NIID SUMO-1

RNA processing ALS/FTD ATXN2, Optineurin,

Angiogen

Myotonic Dystrophy DMPK, MAPT

Tauopathies TIA1

AD Tau, BIN1, PiCALM, PTK2B,

FERMT

Transcription AD BACH1, ERG

ALS/FTD SOD1, TARDP

PD TFEB

In conclusion, the nucleus has functionally distinct
compartments which are spatially organized rather than
organized by membranes (Figure 1A). These distinct
compartments are vital to the homeostatic maintenance of
DNA transcription, and mRNA production, maturation, and
export among other nuclear functions. Proteins’ localization to
specific nuclear compartments helps determine their functional
role. As we examine nuclear proteomes during ND pathogenesis,
we may additionally consider pairing observations on the
subnuclear localization of significantly altered proteins, e.g.,
among associated chromatin domains, as well as determining
how major nuclear components are altered longitudinally over
the course of ND pathogenesis.

PATHOPHYSIOLOGICAL ROLES OF THE
NUCLEUS IN NEURODEGENERATIVE
DISEASES

The relevance of the nucleus in NDs is indicated by the results of
genomic studies, which have found that nuclear-expressed gene
products are risk factors for disease. Findings from genome-wide
association studies (GWAS) have helped define the genetic risk
architecture underlying NDs including late onset AD (LOAD)
(Lambert et al., 2013), amyotrophic lateral sclerosis (ALS) (van
Rheenen et al., 2016), frontotemporal dementia (FTD) (Ferrari
et al., 2014), Huntington’s disease (HD) [Genetic Modifiers of
Huntington’s Disease (GeM-HD) Consortium, 2015; Moss et al.,
2017], and Parkinson’s Disease (PD) (Grenn et al., 2020). Nuclear
expression and/or the impact on nuclear biology are common
themes among risk-associated genes across these NDs (Leeuw
et al., 2015; Kunkle et al., 2019). A high-level summary of nuclear
mechanisms that are disrupted in NDs is provided in Figure 1B.

One critical paradigm related to the genetic determinants
of NDs are genomic repeat expansions. These genetic variants

can have strong impacts on nuclear biology and are causally
linked to several known NDs. For example, expansions of
“triplet” CAG repeats within protein coding regions cause
Spinal Bulbar Muscular Atrophy (SBMA), Huntington’s Disease
(HD), Spinocerebellar Ataxia type 1 (SCA1), and Dentatorubral-
Pallidoluysian Atrophy (DRPLA) (La Spada et al., 1994). In
addition, GGGGCC hexanucleotide repeat expansions in non-
protein coding regions of the C9ORF72 gene can cause ALS and
FTD (DeJesus-Hernandez et al., 2011). While the mechanism
by which these mutations contribute to disease pathogenesis
is controversial in some diseases, it is suspected that these
mutations cause aberrant nucleocytoplasmic transport as shown
by the pathological sequestering of RNA binding proteins
in the nucleus (Zhang et al., 2015). Repeat-associated non-
AUG translation is another mechanism of disease pathogenesis
that occurs due to initiation of translation at disease-causing
repeat expansions, leading to toxic protein accumulation (Green
et al., 2017). Notably, the translated protein products of these
repeat expansions encode LC peptides, some of which undergo
liquid-liquid phase separation. This phase separation can affect
membraneless organelle (all sub-compartments of the nucleus)
formation and thus nuclear processes including transcription
(Chen et al., 2021).

Analysis of genetic risk markers have implicated nuclear
biology in the pathogenesis of many other NDs including
LOAD.Multi-marker analysis of genomic annotation (MAGMA)
of GWAS studies of over 100,000 subjects have used SNP
association data to nominate 1,822 genes with potential causal
links to LOAD (Jansen et al., 2019; Kunkle et al., 2019; Johnson
et al., 2020). To determine whether these LOAD risk genes
include an overrepresentation of genes that encode proteins
with known nucleus-associated localization or function, we
obtained a list of 7,639 protein-coding gene symbols that were
assigned to the Gene Ontology (GO) term “nucleus” (GO
term 0005634). Of the 1,822 MAGMA-identified LOAD risk
genes, 682 were annotated as producing at least one nuclear
localized isoform, representing approximately a third of LOAD
risk genes. From this list, we filtered 242 genes with MAGMA
significance of p-value < 0.01) with assignment to “nucleus”
GO category and performed pathway analyses (ClueGO v2.5.8,
a plugin within Cytoscape v3.5) (Chatel and Fahrenkrog,
2012). Pathway analysis of this intersection of nucleus-related
genes pertaining to LOAD risk identified groups of genes
(Figure 2, Supplementary Data 1) involved in regulation of
protein catabolism, amyloid beta metabolism, response to redox
stress, repression of gene transcription, interferon signaling, and
signaling pathways. Specific genes related to RNA polymerase
I expression, ribosomal RNA expression and gene expression
included CBX3, CHD4, ERCC2, MTA1, POLR2E, ACTB, and
those involved in nucleotide excision repair included ELL,
ERCC1, ERCC2, POLR2E, UBE2N. While this GO term-based
analysis of LOAD risk genes does not imply exclusive nuclear
localization or nucleus-associated function of these proteins,
it highlights the potential importance of nuclear biology in
LOAD pathogenesis.

In addition to genetic insights from GWAS and repeat
expansion disorders, a number of different nuclei-related
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FIGURE 2 | ClueGO analysis of cell-type specific proteome. Molecular mechanisms regulated by nuclear-expressed proteins of AD relevance. (A) ClueGO analysis

was performed on the 242 proteins encoded by AD risk genes as identified by MAGMA analysis of human AD GWAS (Kunkle et al., 2019), and with known nuclear

function (based on GO Nucleus term membership). This analysis identified 12 clusters of biological and molecular processes. Each node represents a GO term and

(Continued)
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FIGURE 2 | connectivity indicates shared gene symbols. Size of the node represents strength of statistical significance and intensity of color represents number of

genes (fewer: red, higher: brown). (B) STRING analysis was performed on these 242 AD risk nuclear proteins to identify functional groups of proteins based on

protein-protein interactions (PPI), either functional and/or physical interactions. K means clustering revealed 4 clusters of proteins and key GO terms for each cluster

have been shown. Conntectivity represents known PPI (thickness represents strength of connectivity between two proteins). Gene symbols for each are indicated.

mechanisms are implicated in NDs. Here we highlight a subset
of these mechanisms (Figure 1B) including nucleocytoplasmic
transport (NCT), chromosomal maintenance and stability,
RNA processing via protein association, and specific proteins
misfolding into “inclusion body”-type pathology within
the nucleus. Examining the abundance, post-translational
modifications and localization of nuclear proteins in
neurodegeneration could provide valuable information about
ND-driving mechanisms. Below, we briefly review these distinct
mechanisms in the context of NDs. To accompany the discussion
below, Table 1 displays specific proteins and NDs which are
associated with each of the mechanisms discussed.

Nucleocytoplasmic Transport (NCT)
One key nuclear process that has been implicated in ND
pathogenesis is NCT (Zhang et al., 2015; Boeynaems et al., 2016;
Gasset-Rosa et al., 2017; Grima et al., 2017; Eftekharzadeh et al.,
2018). ND-related NCT dysfunction can manifest in both the
failure to import and retain normally nuclear material and failure
to export normally cytoplasm-bound material. The resulting
mislocalized macromolecules include both proteins and RNA
(DiFiglia et al., 1997; Amador-Ortiz et al., 2007; Bichelmeier et al.,
2007; Dormann et al., 2010; Gasset-Rosa et al., 2017; Grima et al.,
2017; Chou et al., 2018; Eftekharzadeh et al., 2018). The current
knowledge of the mechanisms underlying NCT dysfunction
in neurodegeneration is limited. Possible mechanisms include
(mis)targeting of the proteins/mRNA themselves, dysfunction
of the nuclear transport receptors (NTRs) (Kapinos et al.,
2017), or of the nuclear pore complex (NPC) (Ori et al.,
2013; Sakiyama et al., 2016; Eustice et al., 2017). Despite the
incomplete knowledge to date, there are compelling indications
that NCT dysfunction contributes to NDs (Zhang et al., 2015;
Boeynaems et al., 2016; Gasset-Rosa et al., 2017; Grima et al.,
2017; Eftekharzadeh et al., 2018).

NCT dysfunction has been implicated in FUS and TAR-
DNA binding protein 43 kDa (TDP-43) proteinopathies
because both of these proteins are normally enriched in the
nucleus, although in ALS/FTD spectrum disorders, they are
mislocalized in the cytoplasm (Arai et al., 2006; Dormann
et al., 2010). This mislocalization of FUS/TDP-43 is conspicuous
in FTD-TDP, ALS, and in Limbic-predominant age-related
TDP-43 encephalopathy (LATE). Some cases of ALS are
caused by mutations in the nuclear localization signal (NLS)
of the FUS protein (Belzil et al., 2009; Lopez-Erauskin
et al., 2018) which disable the translocation of FUS to the
nucleus (Dormann et al., 2012). It has been hypothesized
that the mislocalization of FUS and TDP-43 causes a loss-
of-function disease pathogenesis by disabling their nuclear
functions of transcription and pre-mRNA splicing, and also

a gain-of-function toxic impact in the cytosolic compartment
(Shelkovnikova et al., 2014; Suk and Rousseaux, 2020).

In AD, tau proteins have been hypothesized to play active
roles in NCT function and dysfunction (Eftekharzadeh et al.,
2018). Not only are tau proteins apparently mislocalized
themselves, but they also interact with nucleoporins of the NPC,
amplifying the disruption of NCT (Eftekharzadeh et al., 2018). In
addition, NCT dysfunction may also be a downstream effect of
pathogenetic germline DNA repeat expansions which are linked
to several neurodegenerative diseases. For example, C9ORF72
hexanucleotide expansion in patients with FTD and ALS is
linked to the failure to transport TDP-43 from the cytoplasm
to the nucleus (Balendra and Isaacs, 2018; Zhang et al., 2018).
Triplet repeat disorders have also been shown to sequester RNA-
binding proteins, which can disrupt NCT (Nalavade et al., 2013;
Zhang et al., 2018). To further test whether mislocalization of
other molecular entities could be attributed to NCT dysfunction,
protein transport assays have been developed and performed
(Shani et al., 2017; Hutten and Dormann, 2020). These assays
can quantitatively measure the nuclear cargoes imported and/or
exported using photobleaching assays or import assays in vitro
or in intact cells (Zhang et al., 2015; Eftekharzadeh et al., 2018;
Hutten and Dormann, 2020). The same methodology may in
the future be combined with proteomics methods to expand the
understanding of NCT in healthy and disease states.

Chromosomal Proteins
Chromosome-associated proteins provide complex structural
and functional support for the genome and gene regulation, and
have been shown to be affected in AD and other NDs (Iourov
et al., 2009; Arendt et al., 2010; Potter et al., 2019; Yurov et al.,
2019). Chromosomal function and stability are crucial to the
homeostatic maintenance within the nuclei of all cell types
by reducing aneuploidy (abnormal number of chromosomes
in a cell), as well as protecting against chromosomal damage,
deletions, insertions, or other chromosomal aberrations
(Masai et al., 2010; Vijg and Suh, 2013).

Recent research has demonstrated a strong association
between chromosomal instability (CIN) and aging-related
neuronal deterioration. CIN mediates neuronal loss and acts as
a key feature of the pathogenic cascade in NDs (Yurov et al.,
2019). This is evidenced by the obstruction of DNA repair
and replication efficiency observed in neurodegeneration which
is correlated with CIN (Jeppesen et al., 2011; Yurov et al.,
2011). Additionally, neurons with chromosomal aberrations
or aneuploidy are much more susceptible to cell death,
potentially underlying the shared theme of age-related or regional
vulnerability of neurons in different NDs (Arendt et al., 2010).
Arendt et al. assert that 20–30% of neurons are aneuploid during
early stages of AD, and that aneuploid neurons can account
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for 90% of neuronal loss observed at autopsy (Arendt et al.,
2010). Understanding triggers and mechanisms of CIN and/or
aneuploidy in neurons and other CNS cell types could provide
valuable information for not only the nuclear pathogenesis of
neurodegeneration but also possible future drug targets.

RNA Processing
RNA processing is another crucial aspect of nuclear homeostatic
maintenance that may be disrupted in ND pathogenesis (Hsieh
et al., 2019). Key players in this process are RNA binding proteins
(RBPs) which regulate post-transcriptional gene regulation as
well as mRNA splicing, transport, export, and localization
(Gerstberger et al., 2014). Therefore, RBPs are partly responsible
for the diversity of the proteome. RBP-encoding transcripts
as well as genetic mutations in RBPs have been shown to be
associated with NDs, including ALS and FTD, where mutations
in TARDP, FUS, ATXN2, MATR3, TIA-1, HNRNPA1, and
HNRNPA2B1 occur (Sreedharan et al., 2008; Kwiatkowski et al.,
2009; Kim et al., 2013a; Johnson et al., 2014; Conlon and Manley,
2017; Kapeli et al., 2017; Mackenzie et al., 2017; Abramzon
et al., 2020). In NDs, some of the cognate proteins of these RBP
genes become mislocalized (e.g., TDP-43 and FUS), and may be
observed in cytosolic stress granules (Arai et al., 2006; Ederle and
Dormann, 2017). Thismislocalization likely causes loss of normal
homeostatic function of these RBPs, resulting in problems in
the maturation, splicing, export, and translation of mRNA (Ling
et al., 2013). Evidence for this dysregulation may be visible at
the proteomic level, displaying incorrectly and dysfunctionally
spliced or folded proteins. A proteomic investigation of the
nucleus across different cell types and conditions could provide
insight into the effect of ND pathogenesis on RBP localization
that would not otherwise be revealed by bulk brain proteomics
or whole-cell proteomics. Nucleus-specific proteomics could also
identify the resulting effect that RBP mislocalization has on
protein products that maintain homeostasis in the nucleus.

One disease that is partially attributable to RBPs is myotonic
dystrophy (MD) (Lee and Cooper, 2009). MD Type 1 is caused
by repeat (CTG)n expansion in the 3′ untranslated region of
the DMPK gene (Takahashi and Ishiura, 1999; Orengo et al.,
2008). When the expansion becomes large enough, the DMPK
transcript binds and sequesters RBPs in the nuclei of cells
throughout the body, including in neurons (Lee and Cooper,
2009). The sequestration of RBPs in MD leads to a deleterious,
positively reinforcing cycle of mRNA mis-processing and
aberrant splicing. Among the MD Type 1-associated phenomena
is mis-splicing of the MAPT gene which encodes the protein
tau. Tau “tangles” are a characteristic pathologic biomarker of
MD type 1, similar to tau neurofibrillary tangles (NFTs) in AD
(Caillet-Boudin et al., 2014). MD Type 1 affected individuals
develop a tauopathy due to the mis-splicing of tau transcripts in
the cell nucleus (Sergeant et al., 2001; Park et al., 2016). Stress
granules containing aberrant RBPs were found to be correlated
with tau NFT pathology (Maziuk et al., 2018). Additionally,
an in vitro study by Apicco et al. determined that reducing
levels of the RNA binding protein, TIA-1, protects against the
accumulation of tau oligomers and increased neuronal survival

(Apicco et al., 2018). This provides further indication that RBPs
play a role in tau-mediated neurodegeneration.

A relevant bulk brain proteomic analysis of post-mortem
human cases, performed by Johnson et al., discerned that RBPs
were a class of proteins which were differentially expressed in
asymptomatic AD (persons with presumed preclinical disease, or
a high pathologic load still below the threshold that generates
cognitive impairment), and symptomatic AD (Johnson et al.,
2018). Johnson et al. also investigated how loss of splicing
function of RNA binding proteins became evident at the protein
level by utilizing a proteogenomic approach which examined
alternative exon-exon junctions in AD risk proteins such as
BIN1, PICALM, PTK2B, and FERMT2 (Johnson et al., 2014).
Based on these observations, it is likely that a nucleus-specific
proteomic analysis could yield further insights into aberrant
splicing machinery mechanisms involving RBPs in NDs.

Nuclear Inclusion Bodies
Although cytoplasmic inclusion bodies, neuritic (Langfelder and
Horvath, 2008) (axonal and dendritic) and extracellular protein
accumulation is associated with various NDs, proteinaceous
deposits may also occur within cell nuclei. Such deposits may
be pathognomonic, as is the case of neuronal Intranuclear
Inclusion Disease (NIID) (Sone, 2020). NIID is characterized by
eosinophilic hyaline intranuclear inclusions in both the CNS and
PNS (Sone et al., 2016). Nuclear inclusions are also seen in other
conditions including FTD-TDP, HD, and others (Sieradzan et al.,
1999; Woulfe et al., 2001).

NIID is caused by a CGG repeat expansion in the 5′UTR
of the NOTCH2NLC (a gene that plays roles in neuronal
development by regulating Notch signaling), was discovered
in Japanese populations and recently replicated in a European
ancestry cohort (Nakamura et al., 2020). The NIID intranuclear
inclusions are immunoreactive for ubiquitin, p62/SQSTM1,
SUMO1, FUS, and OPTN, suggesting that nuclear ubiquitin-
mediated proteasome pathways are normally functioning in the
nucleus and those pathways are aberrantly stimulated in NIID
(Pountney et al., 2003; Franic et al., 2021). Nuclear inclusions
are also seen in other conditions including FTLD-TDP, HD, and
others (Sieradzan et al., 1999; Woulfe et al., 2001).

Post-translational Modifications
Post-translational modifications (PTMs) of proteins contribute
to the functional diversity of the human proteome by covalently
attaching functional groups to amino acids, impacting a
protein’s localization, functionality, (re)folding and stability.
These PTMs include phosphorylation, ubiquitination, and
methylation, among many others. Maintenance of homeostatic
PTMs is critical to retaining a cell’s function and health.

Phosphorylation is one of the most widespread PTMs,
and homeostatic regulation of phosphorylation by protein
kinases and protein phosphatases can drastically alter the
functionality of target proteins. Aberrant hyper-phosphorylation
is seen in many NDs, including tauopathies (in which tau
becomes hyperphosphorylated and forms NFTs) and TDP-
43 proteinopathies (where C-terminal phosphorylated
TDP-43 is aberrantly localized outside the nucleus).
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Hyperphosphorylation of specific amino acid residues on
tau is seen to directly incite conformational changes in the
protein. Tau hyperphosphorylation is further implicated in
neuronal toxicity because hyperphosphorylation of tau precedes
NFT aggregation and is also seen to contribute to neuronal
toxicity independent of the aggregation of NFTs (Sato-Harada
et al., 1996; Cowan et al., 2010; Hoover et al., 2010; Didonna
et al., 2019). Phosphorylation is also implicated in other
pathologies such as Parkinson’s disease, in which aberrant
alpha-synuclein aggregates into cytoplasmic inclusions called
“Lewy Bodies.” Several phosphorylation sites undergo aberrant
phosphorylation in alpha-synuclein proteins, such as Ser129,
which is phosphorylated in 4% of homeostatic alpha-synuclein
and in 90% of Lewy Body alpha-synuclein (Anderson et al.,
2006). The aberrant phosphorylation of Ser129 is seen to
modulate the transport of alpha-synuclein between the nucleus
and cytoplasm (Goncalves and Outeiro, 2013).

Other PTMs such as aberrant acetylation and ubiquitination
are also seen in several NDs. In triplet repeat expansion
disorders (such as pathogenetic GAA triplet expansions in
Friedreich ataxia or Polyglutamine diseases such as HD) hypo-
acetylation of histone proteins can decrease the expression of
specific proteins or cause widespread transcriptional deficits at
several loci (He and Todd, 2011; Nageshwaran and Festenstein,
2015). Furthermore, ubiquitin is found in pathological protein
aggregates in proteinopathies, implicating aberrant regulation of
the ubiquitin-proteasome system which is meant to rid a cell of
misfolded proteins (Schmidt et al., 2021).

Proteomic studies are able to detect the presence and location
of PTMs such as phosphorylation, acetylation, and ubiquitination
(Mann and Jensen, 2003). Such modifications can be monitored
at different stages of NDs and across different cell types,
providing novel proteomic insights in NDs that would otherwise
go unnoticed by genomic or transcriptomic approaches.

THE ROLE OF TDP-43 AND TAU PROTEINS
IN THE NUCLEUS IN NDS

TAR DNA-Binding Protein 43 (TDP-43)
TDP-43 is a nuclear-enriched protein that binds both DNA
and RNA (Furukawa et al., 2016) and is expressed throughout
many organs and cell types. TDP-43 plays key roles in RNA
processing including regulating mRNA splicing and stability
(Arnold et al., 2013; Donde et al., 2019). TDP-43 proteinopathy
is now known to be a pathologic hallmark in multiple NDs
including FTLD, ALS, and LATE (Feneberg et al., 2018;
Nelson et al., 2019; Prasad et al., 2019). Under homeostatic
conditions, TDP-43 is dephosphorylated at critical residues
including serine 403/404 and 409/410 and localized in the
nucleus (Hasegawa et al., 2008; Inukai et al., 2008; Mackenzie
et al., 2011). However, under pathological conditions and cellular
stress, TDP-43 appears in cellular microdomains called stress
granules in the cytoplasm (Khalfallah et al., 2018). In dementias,
the cytoplasmic TDP-43 can become hyperphosphorylated
(including at the aforementioned critical residues) and arrayed
in fibrillary polymers (Prasad et al., 2019). Dysfunction of the

NPC may contribute to TDP-43 mislocalization and cytoplasmic
aggregation in a deleterious feed-forward mechanism (Chou
et al., 2018). In this hypothetical framework, TDP-43 aggregates
can induce defects in the NPC, leading to dysfunction in NCT
via mislocalization of nucleoporins and transport factors, which
may result in more severe TDP-43 pathology. While TDP-43
proteinopathy was initially discovered in the context of ALS/FTD
spectrum disorders, TDP-43 proteinopathy is also a pathological
hallmark of the more common ND, Limbic-predominant Age-
related TDP-43 Encephalopathy (LATE). While FTLD and ALS
afflict∼1/1,000 individuals, LATE afflicts∼1/3 persons above the
age of 80 (Hogan et al., 2016; Talbott et al., 2016). The impact of a
nuclear-enriched protein such as TDP-43 in a broad spectrum of
different diseases—some rare, some very common—underscores
the relevance of the nuclear proteome to NDs. Because TDP-
43 proteinopathy is an essential marker in many NDs and it
is predominantly nuclear, changes of nuclear TDP-43 across
cell-types and disease phenotypes could provide valuable cell
autonomous and non-cell autonomous insights into the nuclear
landscape of ND pathogenesis.

Tau Protein
Tau protein isoforms result from alternate splicing of the
microtubule associated protein (MAPT) gene (Andreadis, 2006).
These proteins are found in both neuronal cells, and to a
lesser degree, non-neuronal cells in the CNS (Guo et al.,
2017). Tau proteins are most well-known for their role in
microtubule assembly and stability, but they also assist in
additional functions such as axonal transport (Guo et al., 2017).
Aggregated, hyperphosphorylated tau intracellular inclusions
characterize “tauopathies,” which are a subclass of NDs that
include AD and FTLD subtypes (Kovacs, 2017).

Tau has been found to be present in the nuclei of human
brain cells, where it is predominantly present in nucleoli (Brady
et al., 1995; Greenwood and Johnson, 1995; Thurston et al.,
1996). Different tau isoforms resulting from alternative splicing,
localize to different cellular compartments (Goedert et al., 1989;
Xia et al., 2016). Additionally, immunofluorescence and western
blot analyses indicate that the majority of tau in the nucleus is
dephosphorylated (Arrasate et al., 2000). Ortega et al. determined
that nuclear dephosphorylated tau was diminished in the CA1
and dentate gyrus (hippocampal) regions of diseased tissue, and
further, practically disappeared in the nuclei of neurons with
tau tangles (Hernandez-Ortega et al., 2016). This insight in
addition to the known nature of tau-mediated neurodegeneration
provides reason to investigate the impact of both homeostatic and
diseased tau on nuclear mechanisms. Via separate mechanisms,
tau may impact both DNA stability and NCT.

Abnormal tau is implicated in CIN by both the effects of
tau hyper- phosphorylation (as seen in tauopathies) and by
mutations of the MAPT gene affecting increased instability
and vulnerability of chromatin (Rossi et al., 2013; Alonso
et al., 2018; Colnaghi et al., 2020). Lu et al. determined that
hyperphosphorylated nuclear tau lost its ability to bind to DNA
and thereby to also protect the cell from differing stressors
including thermal denaturation and reactive oxygen species
attack (Lu et al., 2013). Hua and He also found that nuclear tau
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protein, both in its native and phosphorylated states, had the
ability to bind to and stabilize DNA (Hua and He, 2002). They
also determined that aggregated (pathologic) tau lost its ability
to bind to and support DNA. These results indicate that as tau
proteins become phosphorylated and form aggregates in NDs
such as AD, they lose their ability to stabilize DNA.

In addition to investigating the effect of aberrant
phosphorylation of tau proteins on CIN, Rossi et al. assessed
the effect of different mutations in the MAPT gene on the
ability of tau to stabilize chromatin, further implicating
nuclear tau in chromosomal stability (Rossi et al., 2013; Bukar
Maina et al., 2016). Furthermore, tau motifs that bind to
DNA can also become phosphorylated in neurodegeneration
(Guo et al., 2017; Kimura et al., 2018). It was hypothesized
that tau protects DNA by binding to the DNA backbone,
which induces an adaptive conformational change, this
mechanism has been seen in other DNA protecting proteins
(Multhaup et al., 2015; Guo et al., 2017).

In addition to chromosomal stability, tau is implicated
in nuclear processes by its effect on NCT. A recent study
by Eftekharzadeh et al. revealed that cytosolic tau interacts
with the NPCs and that cytosolic tau impacts NCT function
(Eftekharzadeh et al., 2018; Diez and Wegmann, 2020). The
conditions under which tau is localized in the nucleus, how
this effects CIN, and how nuclear tau effects NCT are still
controversial topics that warrant further investigation. Proteomic
studies focusing on how tau is affected by and correlated with
proteins that regulate different nuclear mechanisms could help
develop our understanding of these mechanisms.

NETWORK BASED PROTEOMICS IN
NEURODEGENERATION

The development of network-based proteomics in recent years
has contributed considerably to our understanding of ND
pathogenesis (Seyfried et al., 2017; Johnson et al., 2020, 2022;
Rayaprolu et al., 2021). Proteomics using mass spectrometry-
based approaches enables high-throughput analyses of protein
expression using unbiased and targeted approaches. Network-
based analyses of proteomic data can help elucidate how the
proteins interact with and affect each other by organizing large-
scale proteomic data into “modules” of co-expressed proteins
(Langfelder and Horvath, 2008). The proteins in these modules
are likely to share biological characteristics, cellular functions
and potentially, upstream regulation. Individual modules can
then be analyzed for their associations with markers of specific
cell types, organelles, biological factors, genetic risk factors
and disease traits (Rayaprolu et al., 2021). By associating
proteomic network modules to quantitative measures of disease
pathogenesis, these studies provide insight into the mechanistic
factors that are altered in the course of disease pathogenesis and
provide a framework for validation and mechanistic studies. This
approach, summarized by Rayaprolu et al., highlights six primary
modules associated with AD, three of which are increased in
AD, and three of which are decreased in AD. These modules are
characterized by their cell-type specificity, biological pathways

and ontologies, and “common hubs” seen across networks of ND
brain proteomes (Rayaprolu et al., 2021).

One strong indicator of the value of network-based
brain proteomics approaches in ND research is by its
comparison to transcriptomic studies. Modules in the network
transcriptome and the network proteome only overlap by
30–40% (Seyfried et al., 2017; Higginbotham et al., 2020).
This suggests that there are significant post-transcriptional
and post-translational effects occurring in the AD brain in
addition to genetic and transcriptional alterations. Thus, it
is evident that proteomic studies provide crucial information
regarding disease pathogenesis that cannot be obtained from
transcriptomic studies.

Network based proteomics of human post-mortem brain
samples have mostly been “bulk” tissue analyses, meaning that
proteomic analyses were performed on the entirety of the
tissue. While bulk proteomic analyses of diseased and control
brain tissue have provided valuable insight into alterations at
a global scale, we hypothesize that more nuanced proteomic
investigations will provide complementary information. By
solely examining the proteome at a global level, significant
disease related alterations may be missed. These alterations
may be missed because they are not deemed significant on
the global level, or because they may localize differently in
neurodegeneration, but retain similar global abundance levels.
For example, a given protein may be homeostatic in astrocytes
and disease-driving in neurons, or differentially distributed in
cytoplasm and nuclei. Furthermore, alterations in relatively rare
cell types such as microglia (∼10% of brain cells) may be
significant mediators of ND pathogenesis, but are very difficult
to detect and distinguish cell-type-specific changes using bulk
proteome analysis. By conducting more focused (including cell-
type or compartment-specific) proteomic analyses, we may
overcome these barriers, and prove more detailed, targeted,
and ultimately valuable insights into local changes during ND
pathogenesis (Rangaraju et al., 2018; Rayaprolu et al., 2020).

Cell-Type Specific Proteomics
The brain is composed of distinct cell types that react and
contribute via specific mechanisms to pathogenic triggers.
Understanding how a disease effects different cell types’
proteomic landscapes could be very valuable to elucidating how
cellular mechanisms contribute to disease and would eventually
provide therapeutic insights. Bulk proteomic analysis cannot
directly resolve cell-type specific changes because changes in cell-
types which comprise the minority of brain cells gets diluted or
under-sampled in bulk analysis. We thus suggest an emphasis
on investigating the proteome of specific cell-type populations in
the brain.

One reason for investigating a cell-type specific proteome is
the implication of specific cell types in modules identified by
bulk network proteomics. A large proportion of co-expression
modules with associations with AD pathology identified by
network-based approaches in AD pathogenesis were found to
be enriched in cell-type specific markers (Higginbotham et al.,
2020). Specifically, glia-enriched modules were increased in AD,
and neuronal modules were decreased in AD. These cell-type
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assignments derive from a gene set enrichment analysis which
is followed by assignment of known cell-type specific markers to
the various modules (Eden et al., 2009; Zambon et al., 2012). One
important module identified in several bulk network proteomic
analyses is enriched with astrocytic and microglial proteins and
highlights several “hub proteins” implicated in neuroprotection
(Seyfried et al., 2017; Johnson et al., 2020; Swarup et al., 2020).
This module is seen to increase in both asymptomatic and
symptomatic AD, which suggests that these glial cells play a
critical role in neuroimmunity against the progression of ND
pathogenesis (Seyfried et al., 2017). The implication of specific
cell types in modules of bulk proteomic analyses serves as a basis
to investigate the network-based proteome of specific cell types
as well as their correlation to disease progression.

In addition to the implication of specific cell-types by modules
identified in the bulk proteomic analyses, there exists substantial
evidence to suggest that disease pathogenesis both affects and is
affected by different cell types in a cell-type specific manner. Here
we will provide a brief description of themanner in which specific
cell types are distinctly affected in neurodegeneration.

Microglia
Microglia are phagocytic immune cells that comprise ∼10%
of adult CNS cells (Seyfried et al., 2017). The manner in
which neuroinflammation contributes to and is affected by
ND pathogenesis is partly microglia dependent, identifying
microglia as a possible modulator of disease. Hickman
et al. identify three primary roles of microglia: sensing their
environment, conducting physiological housekeeping, and to
protect against injurious agents (Hickman et al., 2018). Microglia
recognize pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) and produce
proinflammatory cytokines which help the CNS to recognize
pathological agents and phagocytose them, while also recruiting
other cells to participate. While these are neuroprotective
mechanisms, pro-inflammatory cytokines activate resting
microglia to produce pro-inflammatory factors which may be
detrimental in NDs. This heterogenous microglial response
produces microglia that have been broadly characterized
as neurotoxic and neuroprotective (Kwon and Koh, 2020);
although these simplistic characterizations do not capture
the heterogeneity seen within microglia in human and non-
human brain with or without pathology (Keren-Shaul et al., 2017;
Masuda et al., 2020; Rayaprolu et al., 2020). The understanding of
the contribution of microglia in ND pathogenesis is complicated
by the presence of the complex and heterogeneous microglial
phenotypes. Much remains unknown regarding the manner
in which microglia, including homeostatic, pro-inflammatory
and anti-inflammatory phenotypes or states, progress during
ND pathogenesis.

Astrocytes
Astrocytes are the most abundant glial cell-type in the
CNS (Freeman and Rowitch, 2013). These cells are very
dynamic and perform many different roles including
maintenance of the blood brain barrier, formation and
maintenance of neuronal synapses, and tissue repair after

injury (Phatnani and Maniatis, 2015; Strooper et al., 2016).
Additionally, astrocytes aid microglia in mediating the
inflammatory response of the CNS (Vainchtein and Molofsky,
2020; Baxter et al., 2021). In reaction to pathophysiological
changes in AD, astrocytes undergo “astrogliosis” which is
accompanied by cellular proliferation and hypertrophy.
Astrogliosis responds in stimuli-specific manners in different
individuals, specific anatomical microdomains, and NDs
(Zamanian et al., 2012; Phatnani et al., 2013; Liddelow and
Barres, 2017; Jiwaji et al., 2022; Ziff et al., 2022). During
astrogliosis, astrocytes release inflammatory modulators and
various neurotropic factors. Similar to the aforementioned
microgliosis, the factors released by astrocytes can be either
neuroprotective or neurotoxic.

Astrocytes are also implicated in the pathogenesis of PD
by genetic studies. Of the 17 monogenetic mutations found to
be associated with PD by Herdandez et al., 8 are shown to
have roles in astrocytes biology (Hernandez et al., 2016; Booth
et al., 2017). Among the 8 protein products of these genes is
DJ1 which is encoded by the PARK7 gene (Hernandez et al.,
2016). In astrocytes, the DJ1 protein regulates the assembly
of lipid rafts which are membrane microdomains involved in
endocytosis, exocytosis, and signal transduction (Simons and
Ehehalt, 2002; Kim et al., 2013b, 2016). Mutations in the PARK7
gene result in degradation of lipid raft proteins, and thus
dysfunctional astrocytes which contribute to PD pathogenesis
(Kim et al., 2016).

Astrocytes are further implicated in many tauopathies
including Progressive Supranuclear Palsy, Corticobasal
degeneration, and Aging-related tau astrogliopathy, by the
presence of tau aggregates in diseased astrocytes (Togo and
Dickson, 2002; Kouri et al., 2011; Kovacs et al., 2016; Reid et al.,
2020). While Tau aggregates are typically found in neurons, their
localization to astrocytes in these NDs implicate that in disease
pathogenesis astrocytes internalize exogenous tau and may have
roles in propagating this pathology.

Oligodendrocytes
Oligodendrocytes generate and maintain the lipid-rich myelin
sheaths which insulate neuronal axons and facilitate rapid signal
transduction (Strooper et al., 2016; Kipp, 2020). Several studies
have revealed myelination disfunction in the early stages of NDs
which implicate oligodendrocytes in ND pathogenesis (Scheltens
et al., 1992; Bartzokis, 2011; Tosto et al., 2015; Mot et al.,
2018). Using magnetic resonance imaging (MRI)-based studies,
scientists have shown that the myelin changes occurring with
aging is exacerbated in NDs (Scheltens et al., 1992; Bartzokis,
2004; Tosto et al., 2015). Furthermore, other MRI studies
have demonstrated that individuals with the APOE4 allele, the
strongest known genetic risk factor of AD, have increased
myelin breakdown in AD (Bartzokis, 2011). Yet another recent
study has demonstrated that white matter lesions attributable
to myelination dysfunction have been found in individuals in
the early stages of NDs (Tosto et al., 2015). In addition to the
correlation of myelin breakdown with early ND pathogenesis, it
has also been demonstrated that the reforming and maturation
of myelin sheaths is significantly altered in the presence of
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amyloid-beta peptides, one of the two essential hallmarks of
AD (Dean et al., 2017; Papuc and Rejdak, 2020). This implies
that myelination is affected in the AD brain not only by
myelin breakdown, but also in the inhibition of homeostatic
myelin reformation.

Neurons
Neurodegeneration is characterized by the progressive loss of
function and eventual death of neurons and synapses in the
nervous system. Thus, neurons are a natural focal point of cell-
type specific studies related to NDs. Neuronal death occurs
in a disease specific manner in many NDs (Gorman, 2008).
In AD, neuronal death begins in the entorhinal cortex and
hippocampus, and later is found in other areas of the cerebral
cortex as the disease progresses (DeTure and Dickson, 2019). In
contrast, PD is characterized by a loss of dopaminergic neurons
focally in the substantia nigra (Kinoshita et al., 2015). It would
be very interesting to compare neuron-specific proteomes with
different disease-specific phenotypic traits to understand which
characteristics make neurons vulnerable to specific diseases.
Additionally, it would be important to compare the proteomes of
neurons from different brain regions within specific phenotypes
to identify mechanisms of regional vulnerability and resistance of
neurons to different NDs.

In the sections above, we have demonstrated that
neurodegeneration develops via cell-type specific mechanisms,
although much remains unknown regarding the details of these
mechanisms. We propose that by investigating the proteome
of specific cell types using network-based approaches, we will
obtain a much greater understanding of how cell-types mediate
disease at different stages and thus, will understand the network
of biological processes interacting across cell types at each stage
of disease.

Furthermore, while we have discussed both that
neurodegeneration is mediated by specific cell types and
that several nuclear mechanisms are dysfunctional in
neurodegeneration, we do not know what how these nuclear
mechanisms functionally vary with cell type and disease state.
We suggest that a proteomic analysis of cell-type specific
nuclei, which has become possible with emerging technologies,
will elucidate gaps in our understanding of both cell-type
specific disease states and the how the nucleus contributes
to neurodegeneration.

CELL TYPE-SPECIFIC NUCLEAR
PROTEOMICS FROM POST-MORTEM
HUMAN BRAIN

Analyses of human brain tissue at the proteomic level have been
mostly performed at the bulk brain level rather than at the
level of specific cell types. This is due to technical limitations
related to isolating pure and intact cell populations from frozen
brain tissue. While microglia and other cell types can be isolated
intact from post-mortem brain, neurons do not survive cell
isolation approaches, and further, the immense cellular and
tissue complexity of human brain as compared to mouse brain,

poses additional technical challenges (Bohlen et al., 2019). Mouse
models have often been used, because of the great potential for
experimental manipulation of rodent models and control over
tissue quality. While mouse models have provided invaluable
information into ND pathogenesis, there are limitations due to
substantial species differences, which exist at molecular, cellular
and pathological levels (Maloney et al., 2007; Monaco et al., 2015;
Breschi et al., 2017).

Recent advances in single cell nuclear transcriptomics from
mouse and human brain have revealed cellular heterogeneity in
healthy, aging and disease states (LoVerso and Cui, 2016; Mathys
et al., 2019; Lau et al., 2020; Cid et al., 2021), but protein-level
inferences cannot be drawn confidently frommRNA levels. Since
intact cells cannot be isolated from frozen or fixed human brain,
cellular proteomic insights into human ND from human post-
mortem tissues are very limited. However, the nucleus of the cell
retains its structural integrity even after frozen tissue is thawed.
This unique property allows the isolation of intact nuclei from
frozen brain tissue for downstream analyses.

In a study by Dammer et al., NeuN-positive (neuronal)
and NeuN-negative (non-neuronal) nuclei were isolated from
frozen post-mortem human brain by wide-clearance dounce
homogenization, centrifugation, and then flow cytometry based
sorting of nuclei, followed by mass spectrometry proteomic
analyses. Using this approach, termed Fluorescence Activated
Nuclear Sorting (FANS), Dammer et al. identified 487 nuclear
proteins that were highly enriched in NeuN+ve nuclei and 420
which were highly enriched in NeuN-ve nuclei. Using these
differentially expressed nuclear proteins, we cross referenced
these lists against known genetic risk factors for AD, PD and
ALS (Figure 3, Supplementary Data 1) (Nalls et al., 2014; Zhang
et al., 2014; Sharma et al., 2015; Iacoangeli et al., 2020; Sarkar
et al., 2020), and identified several disease-relevant markers
expressed in nuclei of neurons and non-neuronal cells that
could serve as nuclear and cell type-specific markers for future
FANS approaches. If these markers can be leveraged for further
optimization and coverage of brain cell types, the preservation
of nuclear proteomic integrity in the frozen human brain can be
leveraged to investigate nuclear specific proteomic mechanisms
of NDs with cell type-specific resolution. Accordingly, a recent
protocol describes a method to extend FANS to non-neuronal
cells using markers such as SOX10 (oligodendrocyte), IRF8
(microglia) and the absence of these markers to purify nuclei
from frozen human brain in a cell type-specific manner
(Policicchio et al., 2020).

PROPOSED METHOD FOR CELL
TYPE-SPECIFIC NUCLEAR PROTEOMICS

The study of the nuclear proteome offers intriguing possibilities,
not only because of its enabling of cell-type specific proteomics,
but additionally because of the ability to investigate nuclear
alterations that occur during ND pathogenesis that may be
missed by whole cell or bulk tissue proteomics. Alterations in
protein can be linked to additional omic data obtained from
additional samples of the same purified nuclei. As previously
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FIGURE 3 | Proteomics of neuronal and non-neuronal nuclei from frozen human post-mortem brain. Volcano plot of proteomic differences between NeuN+ vs.

non-NeuN Nuclei with highlighted disease markers that have p-value <0.05 and fold change >2. The reannotated data demonstrates that proteins found in cell-type

specific nuclear populations are correlated to disease. List of MAGMA genes associated with each ND displayed in this figure can be found in

Supplementary Table 1.

mentioned, numerous studies implicate nuclear pathways in
NDs, including but not limited to: NCT, chromosomal stability,
RBPs, and nuclear inclusion bodies. Thus, investigating cell-
type specific nuclear proteomes would provide us with a better
understanding of how these biological pathways, and specific cell
phenotypes are altered in a cell type specific manner over the
course of NDs.

Recently, Nott and colleagues designed a protocol aimed at
isolating cell type specific nuclei for the purpose of genomic
and epigenomic investigation. The authors of this new protocol
asserted that nuclei isolated using their protocol can be used
to identify chromatin features including chromatin architecture
and to identify the binding sites of transcription factors using
chromatin immunoprecipitation-sequencing (ChIP-seq) (Nott
et al., 2021). While the protocol proposed by Nott et al. aimed

to isolate the transcriptome of cell-type specific nuclei, a study
conducted by Dammer et al. used similar methods to isolate
the proteome of neuronal specific and non-neuronal specific
nuclei. This proteomic study implemented LC-MS/MS which
identified 1,755 proteins, ∼20% of which were significantly up
or down regulated in the neuronal cell populations compared to
the non-neuronal cell populations (Dammer et al., 2013). The
protocol proposed by Nott et al. attempts to label and purify
nuclei of microglia, astrocytes, and oligodendrocytes in addition
to neurons. Specifically, they used the nuclear markers NeuN
for neurons, PU.1 for microglia, and Olig2 for Oligodendrocytes
(Nott et al., 2021).

While these experiments aimed to investigate the nature
of cell-type specific alterations at different levels, they both
implemented a similar workflow to isolate the cell-type specific
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FIGURE 4 | A proposed pipeline for cell type-specific nuclear proteomics of human brain. Proposed specific cell-type specific nuclear markers for flow cytometry are

listed. A proposed workflow for nuclear proteomics is also outlined once nuclei have been purified.

nuclei. Both studies prepared the tissue, isolated pure nuclei,
and then implemented antibody tagging of the nuclei to
distinguish between cell-types, followed by fluorescence activated
nuclei sorting (FANS) to sort the nuclei. Dammer et al. found
that FANS not only allowed cell-type specific nuclear sorting
but additionally reduced non-nuclear protein contamination
(Dammer et al., 2013) when comparing to the proteome of
unsorted nuclei. Based on these studies, we propose a workflow
for CNS cell type-specific FANS (Figure 4) to decipher cell type-
specific nuclear mechanisms of NDs using frozen human post-
mortem brain samples.

The proposed FANS approach takes advantage of the integrity
of the nucleus in the brain, even from archived frozen samples.
This is important because cellular architecture is typically lost
during thawing frozen brain tissue, which limits the ability
perform proteomic analyses of intact cells, or to subject them
to down-stream cellular purification using cell surface markers.
This is in stark contrast to handling fresh brain samples
which are amenable to cell type dissociation and intact cell
isolation for bulk and single cell omics approaches. Rapidly
evolving mass spectrometry-based proteomics strategies (eg.

proteoCHIP and single cell proteomics by mass spectrometry
or SCOPE-MS) are also promising approaches that may be
capable of obtaining deep proteomes from single cells or nuclei
or pools of small numbers of nuclei (10–100) from brain
(Budnik et al., 2018; Zhu et al., 2018). Apart from mass
spectrometry, high-dimensional proteomic profiling methods,
such as mass cytometry by time-of-flight, and high-dimensional
flow cytometry can also be used to capture several parameters
from single cells or single nuclei (Korin et al., 2018; Weber
et al., 2019). From frozen human brain tissues, it is possible that
future single nuclear proteomics approaches can complement
or serve as an alternative approach to FANS. As with current
single nuclear transcriptomics approaches, the depth of the
proteome from single nuclear omics is likely to be an order
of magnitude lower than depth of a bulk nuclear proteome.
A limitation of the FANS approach is that it is biased against
cytosolic proteins by design, and will therefore not capture
cellular mechanisms that occur outside the nucleus. However,
when comparing nuclear proteomes of distinct cell types from
disease cases and controls, relative abundance or absence of
nuclear proteins will provide clues toward protein trafficking and
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mislocalization, which will warrant additional studies to verify
these findings.

SUMMARY

We have reviewed the importance of key nucleus-specific
mechanisms and of individual cellular contributions in the
pathogenesis of NDs. Despite advances in bulk and cell type-
specific transcriptomics and bulk brain proteomics of human
NDs, there is an immense knowledge gap in cellular mechanisms
of NDs occurring at the proteomic level. Deciphering these
cell type-specific proteomic mechanisms in human NDs can
provide a deeper understanding of disease mechanisms and
identify therapeutic targets for NDs. While cell type-specific
proteomics of intact cells from human post-mortem brain is
technically challenging, the nucleus of the cell is preserved even
in archived human brain samples, representing an untapped
resource to investigate molecular mechanisms of NDs specifically
occurring within the nucleus. We have highlighted the FANS
approach as a promising method for nuclear proteomics of
neurons and non-neuronal cells from post-mortem human
brain. While further studies are warranted to improve this
method, the cell type-specific FANS approach holds great

promise for proteomic analyses of diverse CNS cell types in
human neurodegeneration.
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