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Abstract. Natural gas constitutes one of the most actively traded
energy commodity with a significant impact on many financial activ-
ities of the world. The accurate natural gas price prediction and the
direction of price changes are considered essential since these forecasts
are utilized in energy sustainability planning, commodity trading and
decision making, covering both the supply and demand side of natural
gas market. In this research, a new deep learning prediction model is pro-
posed for short-term forecasting natural gas price and movement. The
proposed forecasting model exploits the ability of convolutional layers for
providing a deep insight in natural gas data and the efficiency of LSTM
layers for learning short-term and long-term dependencies. Additionally,
a significant advantage of the proposed model is its abilities to predict
the price of natural gas on the following day (regression) and also to
predict if the price on the next day will increase, decrease or stay sta-
ble (classification) with respect to today’s price. The conducted series
of experiments demonstrated that the proposed model considerably out-
performs state-of-the-art deep learning and machine learning models.

Keywords: Deep learning · Convolutional layers · LSTM · Natural
gas prediction · Time series

1 Introduction

Crude oil and natural gas play strategic roles in socio-economic development
around the world and global demand for energy is continuously rising because
developed countries consume large amounts of energy, while demand in devel-
oping countries is increasing. They constitute the major energy sources for the
global economy and price forecasting is significant for a variety of reasons includ-
ing energy investment, policy decisions, portfolio diversification and hedging
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capabilities. Benchmarks for the crude oil include the Brent crude oil from four
different fields in the North Sea, the Forties Blend, the Oseberg and Ekofisk, the
Western Texas Intermediate extracted from U.S. wells and sent via pipeline to
Oklahoma and the Dubai/Oman which consists a “basket” product from Mid-
dle East. Natural gas benchmark prices are the U.S. Henry hub natural gas,
the Russian natural gas border price in Germany and the Indonesian Liquefied
natural gas price in Japan.

Governments tighten up environmental regulations, seeking alternative
energy sources to meet energy demand via reduction of the dependency on oil,
with natural gas representing an economically viable alternative solution. While
the three natural gas benchmarks exhibited a co-movement, there was a devia-
tion (decoupling effect) of the U.S. natural gas [3,9,11], hereinafter referred as
natural gas, after the Global Financial Crisis. The rapidly increasing demand for
energy by emerging markets, along with the production decrease by the Orga-
nization of Petroleum Exporting Countries (OPEC) in Middle East, resulted in
high oil and natural gas prices for three years. In U.S., the hydraulic fracturing
(fracking) technique used to recover gas and oil from shale rocks reduced the
overall production costs and therefore the natural gas price. This was reinforced
by the locality of the market since unlike oil, natural gas is difficult to transport
without a pipeline, unless it is liquefied which is costly. As a result, the prediction
of natural gas price can potentially assist governments and financial investors
for making their investment policies, gain significant profits and decrease their
risks. Nevertheless, the accurate natural gas forecasting is generally considered,
due to its chaotic nature, a complex and significantly challenging task.

During the last decade, significant deep learning techniques have been suc-
cessfully applied in a variety of time-series forecasting problems [8,13,17]. These
advanced techniques are probably the appropriate methods to extract knowl-
edge from the noisy and chaotic nature of time-series data. Convolutional Neural
Networks (CNNs) and LSTM networks constitute the most popular and widely
utilized deep learning techniques. CNNs are based on convolutional layers which
extract more valuable features by filtering out the noise of the input data while
LSTM models are based on LSTM layers which capture sequence pattern infor-
mation due to their distinct architecture. Nevertheless, classical CNNs are well
suited to deal with spatial autocorrelation data, they are not usually adapted to
correctly identify complex and temporal dependencies [1] while LSTM networks
although they are dedicated to cope with temporal correlations, they manage
only the features in the training set. Thus, a time-series prediction model which
adopts the benefits of both techniques may significantly improve the forecasting
performance.

In this work, we propose a new prediction model for short-term forecasting
natural gas price which is based on the idea of exploiting the advantages of deep
learning techniques. The proposed forecasting model exploits the capability of
convolutional layers for learning the internal representation of the natural gas
data and extracting useful patterns as well as the efficiency of LSTM layers
for identifying short and long term dependencies. Additionally, the proposed
prediction model has also ability of predicting the natural gas movement direc-
tion (increase, decrease or stay stable) of the next day with respect to today’s
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price. Our conducted numerical experiments illustrate that the proposed model
considerably outperforms state-of-the-art deep learning and machine learning
models for the prediction of the natural gas daily price and movement.

The remainder of this paper is organized as follows: Sect. 2 presents a survey
of recent studies, regarding the application of machine learning techniques in
natural gas forecasting. Section 3 presents a detailed description of the proposed
advanced deep learning model. Section 4 presents the data collection and Sect. 5
presentes a series of numerical experiments. Section 6 discusses the findings of
this research and presents our conclusions.

2 Natural Gas Forecasting: State of the Art

The recent developments of data mining and deep learning drew the attention of
scientific community, attempting to gain significant insights on forecasting prin-
cipal resources prices such as natural gas. During the last years, the problem of
predicting the next day’s price of natural gas arises frequently, due to its signifi-
cance as a profitable commodity. This led to the requirement and developement
of new innovative forecasting models. In the sequel, we report the findings and
outcomes from some rewarding studies regarding forecasting methodologies for
natural gas price and movement.

Yu and Xu [16] proposed an improved back-propagation neural network
model based on a combinational approach for short-term gas load forecasting.
The proposed model was optimized by the real-coded genetic algorithm. They
performed several modifications including an improved momentum factor and
a self-adaptive learning rate as well as the determination of the initial weights
and thresholds of the network by the genetic algorithm to avoid being trapped
in local minimum. Such improvements exerted maximum performance of the
neural network by accelerating the convergence speed and facilitating the fore-
casting efficiency. The data used in their research were recorded from Nov-2005
to Oct-2008 regarding natural gas load for Shanghai. Based on their preliminary
numerical experiments, the authors stated that the proposed model was ideal
for natural gas short-term load forecasting, presenting satisfactory prediction
accuracy with a relatively small computation time.

Čeperić et al. [5] conducted a performance evaluation of traditional time-
series models: Naive, AR and ARIMA as well as of the machine learning mod-
els: neural networks and strategic seasonality-adjusted support vector regression
machines for short-term forecasting of Henry Hub spot natural gas prices. Addi-
tionally, they investigated the benefits of utilizing a feature selection technique
as a pre-processing step. To evaluate the successfulness of the compated models
in the short term forecasting of natural gas prices, they conducted a variety of
numerical experiments ranging of different input variables and transformations,
combinations of periods and window lengths. Their detailed experimental anal-
ysis illustrated the forecasting efficiency of machine learning models as well as
the usefulness of feature selection techniques.

Merkel et al. [14] applied deep neural network methodologies for predict-
ing natural gas short-term load. The authors utilized historical data from 62
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operating areas from U.S. local distribution companies, covering a wide area
of different geographical regions hence, represent a variety of climates. Their
proposed model was evaluated against the traditional models: linear regression
and artificial neural network. Their numerical experiments presented that the
proposed deep learning model exhibited better short-term load forecasts on aver-
age. Moreover, they stated that even the much simpler linear regression model
outperformed the proposed model, in some test cases. Finally, they concluded
that although the deep learning techniques are a dominant option which usu-
ally outperforms simpler forecasting methods, it may not constitute the proper
methodology for every operating area.

Nevertheless, none of the mentioned studies considered the adoption and
combination of advanced deep learning techniques for natural gas price predic-
tion and movement. Our contribution aims on imposing convolutional layers for
learning the internal representation of the natural gas data and LSTM layers for
efficiently identifying short-term and long-term dependencies. Moreover, in con-
trast to previous research studies, we provide performance evaluation of various
deep learning and machine learning models for both regression and classification
problems.

3 CNN-LSTM Model for Short-Term Forecasting
Natural Gas

The main contribution of this research is the development of a forecasting model,
named CNN-LSTM, utilizing advanced deep learning techniques for the short-
term prediction of natural gas price and movement. The proposed model is based
on of two main components.

The first component consists 2 convolutional layers of 32 and 64 filters of size
(2, ), using same padding. Convolutional layers are specially designed data pre-
processing layers which filter the input data for learning their internal represen-
tation. More specifically, the convolution kernel, called filter, can be considered
as a tiny window which “slides” through each input instance and applies complex
mathematical operations (convolutions) on each sub-region which this specified
window “meets”. The application of several convolution kernels on the input
data, results in the development of new convolved features which are usually
more useful than the original ones.

The second component consists of a LSTM layer of 70 units and a dense
layer of 16 neurons. LSTM layers process the generated features in order to
identify short-term and long-term dependencies in the times series and provide an
accurate prediction. Memory blocks and adaptive gate units constitute the major
novelty of a LSTM layer. The former contain memory cells with self-connections
for memorizing the temporal state while the latter control the information flow
in the memory block. With the treatment of the hidden layer as a memory unit,
LSTM can cope the correlation within time-series in both short and long term.

An overview of the proposed CNN-LSTM forecasting model architecture is
depicted in Fig. 1.
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Fig. 1. CNN-LSTM forecasting model architecture

4 Data

The data utilized in this research concern the daily natural gas prices in USD
from Jan-2015 to Dec-2019 which were obtained from U.S. Energy Informa-
tion Administration (www.eia.gov). Table 1 summarizes the descriptive statistics
including the measures: Minimum, Mean, Maximum, Median, Standard Devia-
tion (Std. Dev.), Skewness and Kurtosis.

Table 1. Descriptive statistics for natural gas daily prices

Minimum Mean Maximum Median Std. Dev Skewness Kurtosis

1.49 2.75 6.24 2.78 0.37 0.98 5.25

The data were divided into training set and testing set. The training set
consists of natural gas daily prices from 01-Jan-2015 to 31-Dec-2018 (1129 days)
which ensures an adequate range of long and short-term trends. The testing
set consists of daily prices from 01-Jan-2018 to 31-Dec-2019 (146 days) which
ensures a substantial amount of unseen “out-of-sample” data for evaluating the
compared forecasting models.

At this point, it is worth mentioning that in any attempt to increase the
training dataset utilizing prices from past years, lead to the reduction of the
performance of all evaluated forecasting models.

5 Experimental Methodology

In this section, we evaluate the performance of the proposed forecasting model
against LSTM forecasting models and the state-of-the-art machine learning mod-
els: Support Vector Regression (SVR) [7], Artificial Neural Network (ANN) [6]

www.eia.gov
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Fig. 2. Daily natural gas prices trend from January 2015 to December 2019

and Decision Tree Regression (DTR) [2]. For fairness and for performing an
objective comparison, the hyper-parameters of all algorithms were selected in
order to maximize their experimental performance. A brief description of the
specification of each prediction model and its hyper-parameters is presented in
Table 2.

The implementation code was written in Python 3.4 on a PC (Intel(R)
Core(TM) i7-6700HQ CPU 2.6GHz, 16 Gbyte RAM) while the deep learning
and machine learning models were implemented using Keras library [10] and
Scikit-learn library [15], respectively. Notice that all LSTM models, the ANN as
well as the proposed CNN-LSTM model were trained utilizing Adaptive Moment
Estimation (ADAM) algorithm for 100 epochs with a batch size equal to 128 and
a mean-squared loss function which reported the best overall results.

The regression performance of all forecasting models was measured using the
performance metrics: Root Mean Square Error (RMSE) metric and the Mean
Absolute Error (MAE). Furthermore, regarding the classification problem of
predicting whether the natural gas price on the next day would increase (Up),
decrease (Down) or stay stable (−) with respect to today’s price, the performance
of each model was evaluated using the performance metrics: Accuracy (Acc),
Area Under Curve (AUC) and F1-score (F1). In this research, we utilized three
different prices for the forecasting horizon, namely 4, 6 and 12. The forecasting
horizon F stands for the number of natural gas daily prices which are taken into
consideration by each model for predicting the daily price on the following day.
Its price is critical for the efficiency of an intelligent forecasting model [12].

Tables 3, 4 and 5 present the performance of the proposed CNN-LSTM fore-
casting model against the state-of-the-art prediction models, relative to fore-
casting horizon 4, 6 and 12, respectively. It is worth mentioning that for each
performance metric the best performance was highlighted in bold. Regarding
the natural gas price prediction problem, CNN-LSTM and SVR highlighted
the lowest RMSE and MAE score, followed by ANN and LSTM models which
exhibited similar regression performance. Regarding the classification problem
of predicting if the price will increase, decrease or stay stable on the following
day, CNN-LSTM exhibited the best performance considerably outperforming all
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Table 2. Parameter specification of state-of-art machine learning and deep learning
forecasting models

Model Description

SVR Kernel = RBF, C = 1.0, gamma = 10−1

ANN 1 hidden layer with 20 neurons and an output layer of 1 neuron

DTR Criterion = ‘mse’, max depth = unlimited, min samples split = 2

LSTM1 LSTM layer with 70 units

Output layer with 1 neuron

LSTM2 LSTM layer with 70 units

Dense layer with 8 neurons

Output layer with 1 neuron

LSTM3 LSTM layer with 70 units

LSTM layer with 30 units

Output layer with 1 neuron

LSTM4 LSTM layer with 50 units

LSTM layer with 20 units

Dense layer with 8 neurons

Output layer with 1 neuron

other state-of-the-art models. More specifically, CNN-LSTM reported 55.25%,
55.03% and 53.97% accuracy for forecasting horizon equal to 4, 6 and 12, respec-
tively, followed by LSTM2 which reported 50.69%, 50.69% and 49.44%, in the
same situations. Moreover, CNN-LSTM exhibited the best (highest) AUC for all
prices of forecasting horizon and the best F1-score for F = 6 and F = 12.

Next, we demonstrate a deeper insight about the classification efficiency of
the proposed forecasting model CNN-LSTM by presenting the confusion matrix
regarding all forecasting horizons and compare it with that of the LSTM2 model
which presented the best performance among state-of-the-art models. The confu-
sion matrix can be considered as a complete evaluation methodology for describ-
ing and depicting in a compact way, valuable and useful information, regarding
to a model’s forecasting performance.

Tables 6 and 7 present the confusion matrices of LSTM2 and CNN-LSTM,
respectively. Notice that each row and each column of all confusion matrices rep-
resent the instances in an actual and in a predicted class, respectively. Firstly,
based on the presented confusion matrices we can easily conclude that the exclu-
sive prediction accuracy of the “Stable” class is very high for both compared
prediction model. Additionally, the CNN-LSTM model managed to exhibit the
best distribution of correctly identified instances per class for every forecast-
ing horizon. This probably means that this model managed to keep a balance
on learning the patterns which describe every class, consisting in total a more
reliable and robust prediction model. In contrast, the LSTM2 model seems to
be significantly biased since it misclassified most “Down” instances as “Up”.
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This implies that it ignored most data patterns and information which describe
and seperate “Up” and “Down” classes.

Table 3. Performance comparison of the CNN-LSTM model against traditional regres-
sion models for F = 4

Model RMSE MAE Acc AUC F1

ANN 0.113 0.087 51.53% 0.651 0.584

SVR 0.093 0.067 50.69% 0.638 0.565

DTR 0.125 0.100 47.22% 0.578 0.473

LSTM1 0.109 0.083 49.44% 0.632 0.557

LSTM2 0.112 0.086 50.69% 0.656 0.638

LSTM3 0.110 0.084 49.44% 0.618 0.532

LSTM4 0.111 0.084 50.07% 0.605 0.508

CNN-LSTM 0.093 0.067 55.25% 0.680 0.571

Table 4. Performance comparison of the CNN-LSTM model against traditional regres-
sion models for F = 6

Model RMSE MAE Acc AUC F1

ANN 0.106 0.081 50.14% 0.651 0.579

SVR 0.092 0.067 48.61% 0.633 0.566

DTR 0.125 0.099 47.64% 0.578 0.472

LSTM1 0.107 0.082 51.36% 0.643 0.566

LSTM2 0.102 0.077 50.69% 0.631 0.553

LSTM3 0.106 0.080 49.86% 0.634 0.561

LSTM4 0.114 0.087 50.83% 0.618 0.527

CNN-LSTM 0.093 0.067 55.03% 0.674 0.589

Table 5. Performance comparison of the CNN-LSTM model against traditional regres-
sion models for F = 12

Model RMSE MAE Acc AUC F1

ANN 0.119 0.092 49.86% 0.629 0.550

SVR 0.094 0.069 48.39% 0.635 0.558

DTR 0.128 0.099 50.97% 0.592 0.482

LSTM1 0.111 0.086 48.33% 0.632 0.563

LSTM2 0.109 0.084 49.44% 0.628 0.551

LSTM3 0.104 0.079 51.67% 0.649 0.579

LSTM4 0.127 0.100 49.31% 0.624 0.545

CNN-LSTM 0.104 0.078 53.97% 0.670 0.620
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Table 6. Confusion matrices of LSTM2 model for forecasting horizon 4, 6 and 12

Down − Up

Down 14 0 55

− 2 15 0

Up 9 0 49

F = 4

Down − Up

Down 22 0 47

− 5 12 0

Up 16 0 42

F = 6

Down − Up

Down 40 0 29

− 10 7 0

Up 31 0 27

F = 12

Table 7. Confusion matrices of CNN-LSTM model for forecasting horizon 4, 6 and 12

Down − Up

Down 28 0 41

− 5 12 0

Up 20 0 38

F = 4

Down − Up

Down 31 0 28

− 5 12 0

Up 20 0 38

F = 6

Down − Up

Down 35 0 34

− 9 8 0

Up 27 0 31

F = 12

Summarizing, it is worth mentioning that the interpretation of Tables 3, 4, 5,
6 and 7 highlight that CNN-LSTM model is generally preferable for forecasting
natural gas price and movement, considerably outperforming traditional state-
of-the-art models in both regression and classification tasks.

In the sequel, we evaluate the forecasting reliability of the proposed model
CNN-LSTM, by performing a test of autocorrelation in the residuals [4]. This
test examines the presence of autocorrelation between the residuals (differences
between predicted and actual prices) which in case it exists, implies that the
forecasting model may be inefficient, since it did not manage to capture all the
possible information contained in the training set. Two significant tools for test-
ing the autocorrelation of the residuals are the Auto-Correlation Function (ACF)
plot and the Ljung-Box Q-test. The ACF [4] is obtained from the linear correla-
tion of each residual to the others in different lags and illustrates the intensity of
the temporal auto-correlation. The portmanteau Ljung-Box Q-test [4] assesses
the null hypothesis (H0) that “a series of residuals exhibits no autocorrelation
for a fixed number of lags”.

Figures 3, 4 and 5 present the Auto-Correlation Function (ACF) plot of
LSTM2 and CNN-LSTM, for forecasting horizon equal to 4, 6 and 12, respec-
tively. Notice that the confident limits (blue line) are constructed assuming that
the residuals follow a Gaussian probability distribution. The ACF plot of CNN-
LSTM are within 95% percent confidence interval for all lags regarding F = 6,
which verifies that the residuals have no auto-correlation while for F = 4 and
F = 12 the ACF plots present a small spike at lag 5, which reveal that there
exists some negligibly autocorrelation in the residuals. In contrast, the ACF plots
of LSTM2 indicated that the assumption of no auto-correlation in the errors is
violated which suggests that the model’s forecasts may be inefficient, relative to
all utilized prices of the forecasting horizon.

Table 8 reports the statistical analysis, performed by Ljung-Box Q-test for
10 lags with significance level α = 5%. The portmanteau test suggests that the
CNN-LSTM model does not violate the assumption of no autocorrelation in the
errors for F = 4 and F = 6 which implies that its forecasts may be efficient; while
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for the LSTM2 model, it suggests that there exists significant autocorrelation in
the residuals at the 5% level.
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Fig. 3. ACF plots on the residuals of LSTM2 and CNN-LSTM for F = 4
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Fig. 4. ACF plots on the residuals of LSTM2 and CNN-LSTM for F = 6

-0.2

0

0.2

0.4

0.6

0.8

1

A
ut
o-
C
or
re
la
tio

n

0 1 2 3 4 5 6 7 8 9 10

Lag

(a) LSTM2

-0.2

0

0.2

0.4

0.6

0.8

1

A
ut
o-
C
or
re
la
tio

n

0 1 2 3 4 5 6 7 8 9 10

Lag

(b) CNN-LSTM

Fig. 5. ACF plots on the residuals of LSTM2 and CNN-LSTM for F = 12

6 Discussion and Conclusions

In this section, we perform a discussion regarding the numerical performance of
our proposed CNN-LSTM model for forecasting natural gas price and movement
as well as the main findings and the limitations of this research.
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Table 8. Ljung-Box Q-test for 10 lags with significance level α = 5%

Model F = 4 F = 6 F = 12

p-value H0 p-value H0 p-value H0

LSTM2 0.0001 Rejected 0.0270 Rejected 0 Rejected

CNN-LSTM 0.0974 Accepted 0.1072 Accepted 0.0207 Rejected

The main contribution of this work is the development of a new forecasting
model for the short-term prediction of natural gas price and movement. The
proposed forecasting model exploits the capability of convolutional layers for
learning the internal representation of the natural gas data and the efficiency
of LSTM layers for identifying short-term and long-term dependencies. A sig-
nificant advantage of the model is that it has the ability to predict the price of
natural gas on the next day (regression) and also predicts if the price on the
next day will increase, decrease or stay stable (classification) with respect to
today’s price. The presented numerical experiments highlighted that although
LSTM models constitute a wide and efficient choice for addressing time-series
problems, their use along with convolutional layers could provide a significant
boost in increasing the forecasting performance.

The problem of forecasting natural gas price and movement can be considered
to belong on chaotic time series problems. This means that accurate and reliable
predictions are almost impossible since these problems are close to random walk
processes, while the identification of possible existing patters and their proper
distinguishment among a large pool of noisy instances, seems to be a significantly
challenging task.

The proposed forecasting model managed to achieve a noticeable performance
increase in terms of accuracy, compared to traditional state-of-the-art prediction
models, although the RMSE and MAE scores were slightly better. One possible
reason is that the feature preprocessing stage, provided by the convolutional
layers, managed to restrict the noise of each input sequence instance, extracting
valuable and meaningful feature maps which assisted the LSTM model on its
final prediction task.

It is worth mentioning that in real world applications such as the decision
support for investment tasks regarding to natural gas stocks, a prediction model
which achieves high classification accuracy would be considered much more effi-
cient and valuable, compared to a model with better regression performance
but lower accuracy score, since these investment decisions follow a “buy, hold,
sell” strategy based on the price movement predictions “Up, Stable, Down”.
Therefore, the proposed model has a potential to assist trading and investment
decisions forming up a reliable natural gas price movement predictor.

Finally, a limitation of the prediction model that it is unable to efficiently
identify and report possible input sequences which can actually lead to more
accurate predictions. This ability could be crucial and significant in real world
applications, since investment and trading decisions would be performed just



176 I. E. Livieris et al.

only when the model identified reliable and accurate patterns, while noisy and
uncertain input signals would be totally ignored, leading to safer decisions and
probably higher returns. This constitutes an interesting and promising idea,
which we intend to pursue in our future research.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

2. Breiman, L.: Classification and Regression Trees. Routledge, Abingdon (2017)
3. Brigida, M.: The switching relationship between natural gas and crude oil prices.

Energy Econ. 43, 48–55 (2014)
4. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer,

Heidelberg (2016). https://doi.org/10.1007/978-3-319-29854-2
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