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Several mood-stabilizing atypical antipsychotics and antidepressants weakly block

serotonin (5-HT) receptor type-7 (5-HT7R); however, the contributions of 5-HT7R

antagonism to clinical efficacy and pathophysiology are yet to be clarified. A novel

mood-stabilizing antipsychotic agent, lurasidone exhibits predominant binding affinity

to 5-HT7R when compared with other monoamine receptors. To date, we have

failed to discover the superior clinical efficacy of lurasidone on schizophrenia, mood,

or anxiety disorders when compared with conventional mood-stabilizing atypical

antipsychotics; however, numerous preclinical findings have indicated the possible

potential of 5-HT7R antagonism against several neuropsychiatric disorders, as well as

the generation of novel therapeutic options that could not be expected with conventional

atypical antipsychotics. Traditional experimental techniques, electrophysiology, and

microdialysis have demonstrated that the effects of 5-HT receptor type-1A (5-HT1AR)

and 5-HT7R on neurotransmission are in contrast, but the effect of 5-HT1AR is more

predominant than that of 5-HT7R, resulting in an insufficient understanding of the 5-HT7R

function in the field of psychopharmacology. Accumulating knowledge regarding the

pharmacodynamic profiles of 5-HT7R suggests that 5-HT7R is one of the key players in

the establishment and remodeling of neural development and cytoarchitecture during

the early developmental stage to the mature brain, and dysfunction or modulation

of 5-HT7R is linked to the pathogenesis/pathophysiology of neuropsychiatric and

neurodevelopmental disorders. In this review, to explore candidate novel applications

for the treatment of several neuropsychiatric disorders, including mood disorders,

schizophrenia, and other cognitive disturbance disorders, we discuss perspectives of

psychopharmacology regarding the effects of 5-HT7R antagonism on transmission and

intracellular signaling systems, based on preclinical findings.

Keywords: antipsychotics, bipolar disorder (BD), cognition, lurasidone, schizophrenia, 5-HT7, transmission

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2021.623684
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2021.623684&domain=pdf&date_stamp=2021-02-18
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:okadamot@clin.medic.mie-u.ac.jp
https://doi.org/10.3389/fpsyt.2021.623684
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.623684/full


Okubo et al. Potential of 5-HT7 Receptor Antagonism

INTRODUCTION

In the body, 95% of tryptophan is metabolized by the kynurenine
pathway and 5% by the serotonin (5-HT) pathway (1–4). Only 5%
of 5-HT is distributed in the central nervous system (CNS), and
the remainder is synthesized and degraded in peripheral tissues
(3). In the CNS, serotonergic transmission plays a fundamental
role in the pathophysiology of mood disorders and schizophrenia
(5, 6). 5-HT receptor type 7 (5-HT7R) is one of the most
recently (1993) identified members of the 5-HT receptor family
(7–10) and is highly expressed in functionally relevant regions
of the brain (11, 12). In the mammalian CNS, 5-HT7R is
most predominantly expressed in the thalamus, and in the
hypothalamus, hippocampus, prefrontal cortex, striatal complex,
amygdala, and dorsal raphe nucleus (DRN) (13–19). Over the
last two decades, preclinical studies have accumulated various
findings highlighting that 5-HT7R is one of the key players
in the regulation of mood, memory processing, cognition, and
emotional perception, as demonstrated by various experiments
using selective 5-HT7R antagonist and 5-HT7R knockout mice
model (20–25). Moreover, the predominant expression of 5-
HT7R in the limbic regions supports the hypothesis that 5-HT7R
contributes to the regulation of memory processing, cognition,
and emotional perception in association with several types of
cognitive domains (14, 16, 18, 19, 25).

It has been postulated that 5-HT7R antagonism probably
plays an important role in the clinical efficacy of several mood-
stabilizing antipsychotics, as aripiprazole, clozapine, quetiapine,
risperidone, and zotepine are known to antagonize 5-HT7R
(Table 1) (18, 26, 27, 29–34, 37–39). Additionally, a novel
antidepressant, vortioxetine, which is categorized as a 5-HT
partial agonist reuptake inhibitor (SPARI), inhibits 5-HT7R
(Table 1) (36, 39). However, the clinical potential of 5-HT7R
antagonism is yet to be comprehensively elucidated as binding
affinities of these conventional antipsychotics and vortioxetine
are more highly sensitive to other 5-HT receptor subtypes
than to 5-HT7R (Table 1). In contrast, a novel mood-stabilizing

TABLE 1 | Receptor binding profiles of antipsychotic agents.

Receptor LUR APZ CLZ PMZ QTP RIS ZTP BNS VTX

5-HT1AR 6.8 5.6 124 650 432 423 471 804 15.0

5-HT2AR 2.0 8.7 5.4 48.4 100 0.2 2.7 0.8

5-HT3R >1,000 630 241 >1,000 >1,000 >1,000 472 >1,000 3.7

5-HT7R 0.5 10.3 18.0 0.5 307 6.6 12.0 183 19.0

α2A >1,000 74.3 37.0 >1,000 >1,000 16.5 180 (530)

α2B >1,000 102 26.5 821 90.0 108 5.4

α2C 10.8 37.9 6.0 377 28.7 1.3 106

D1R 262 >1,000 266 >1,000 712 244 71.0 >1,000

D2R 1.7 3.3 157 0.3 245 3.6 25.0 0.1

References (26) (27, 28) (29, 30) (31) (32) (28, 33) (34) (35) (36)

lurasidone (LUR), aripiprazole (APZ), clozapine (CLZ), pimozide (PMZ), risperidone (RIS), zotepine (ZTP), and blonanserin (BNS), and antidepressant vortioxetine (VTX) against serotonin

(5-HT) type 1A (5-HT1AR), type 2A (5-HT2AR), type 3 (5-HT3R), and type 7 (5-HT7R) receptor, and dopamine receptors type 1 (D1R) and 2 (D2R). Data are equilibrium constant (Ki)

values (nM).

antipsychotic agent, lurasidone, is the only antipsychotic agent
with the highest binding affinity to 5-HT7R when compared with
other monoamine receptors (26) (Table 1). Therefore, to clarify
crucial clinical targets of 5-HT7R antagonism for the treatment
of neuropsychiatric disorders, including schizophrenia, mood
disorders, and other cognitive disturbance disorders, in this
review, we discuss the psychopharmacological perspectives of 5-
HT7R antagonism, based on the preclinical findings of 5-HT7R
antagonism and clinical evaluation of lurasidone to date.

CLINICAL EVALUATION OF LURASIDONE
AND PRECLINICAL POTENTIALS OF
5-HT7R ANTAGONISM

Lurasidone has been approved for the treatment of schizophrenia
by the United States Food and Drug Administration (FDA),
the European Medicines Agency (EMA), and Japanese
Pharmaceuticals and Medical Devices (PMDA) (40).
Additionally, lurasidone is has been approved by the FDA
and PMDA, but not by the EMA, for the treatment of bipolar
depression in monotherapy and combined with lithium or
valproate in adults, and as monotherapy in children and
adolescents (41).

Schizophrenia
A network meta-analysis of placebo-controlled and head-to-
head randomized controlled trials indicated that lurasidone
significantly improves positive, negative, and depressive
symptoms, and improves the quality of life and social functioning
when compared with placebo (42). Therefore, the general efficacy
of lurasidone for the treatment of schizophrenia seems to be
comparable to other atypical antipsychotics; however, the crucial
superiority and specific targets responsible for the clinical
efficacy of 5-HT7R antagonism remain to be detected.

Moreover, the optimal dose outcomes of lurasidone remain
unknown as this drug is being assessed further in ongoing clinical
trials. Indeed, a dose-response meta-analysis demonstrated
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that the 95% effective dose (ED95) of lurasidone for acute
schizophrenia symptoms was achieved at 147 mg/day, which
was calculated by six dose-finding studies. However, the dose-
response curve suggested that higher doses could be more
efficacious than the highest dose tested so far (160 mg/day)
(43) Therefore, in combination with these findings, the clinical
evaluation of a higher dose of lurasidone is possibly more
efficacious than that of the conventional rating scale.

It has been well-established that dopamine D2 receptor
(D2R) antagonism with 5-HT receptor type 2A (5-HT2AR)
antagonism or 5-HT1AR partial agonism, with well-known
receptor binding profiles in atypical antipsychotics, contribute
to the clinical efficacy of antipsychotics against positive and
negative symptoms of schizophrenia (44, 45). Although each
antipsychotic has subtly distinct receptor binding profiles,
lurasidone reportedly exhibits a receptor binding profile like
an atypical antipsychotic agent, because lurasidone is a potent
partial agonist of 5-HT1A, as well as a D2R and 5-HT2AR
antagonist (44, 45). A positron emission tomography (PET)
study demonstrated that clozapine, olanzapine, risperidone, and
ziprasidone display high 5-HT2AR occupancy even at a low dose
(∼70–80%), but dose-dependently increase D2R occupancy (46–
48), whereas lurasidone preferentially displayed D2R, rather than
5-HT2AR, occupancy (48, 49). D2R and 5-HT2AR occupancy
levels of lurasidone (80mg) were ∼70–80% and lower than
40%, respectively (48, 50). Consistent with the in vitro receptor
binding profile of lurasidone to 5-HT1AR (6.8 nM), 5-HT2AR
(2.0 nM), 5-HT7R (0.5 nM), and D2R (1.7 nM) (Table 1) (26), the
approved dosage of lurasidone probably displays predominant
binding to D2R and 5-HT7R over binding to 5-HT1AR and 5-
HT2AR. Therefore, the clinical efficacy of relatively low doses
of lurasidone can be evaluated as 5-HT7R antagonism, whereas
the clinical effects of a relatively high dose of lurasidone are
probably affected by additional effects associated with 5-HT2A
antagonism, along with 5-HT1AR partial agonism.

Several clinical studies have reported that clinical targets of
5-HT7R antagonism might differ from those of conventional
atypical antipsychotics (51–59). Notably, 5-HT7R variants are
not associated with response to atypical antipsychotics in
schizophrenia (60, 61). Furthermore, a recent meta-analysis
study revealed a significant association between responses to
positive and negative symptoms with lurasidone and functional
polymorphism of 5-HT receptor type 1A (5-HT1AR), but not
those of 5-HT7R (62). The candidate superiorities of lurasidone
are an improvement of atypical antipsychotic-resistant cognitive
impairments (55, 57, 63) and prevention of relapse/recurrence,
resulting in an improvement in the quality of life (51, 52, 56, 58,
59, 64–66).

For schizophrenia, improvements in cognitive impairment
by atypical antipsychotics are limited (67). It is well-known
that the executive function cognitive domain is a critical
antipsychotic-resistant cognitive domain (68). Both atypical
antipsychotics, clozapine and olanzapine, slightly improved the
executive function in schizophrenia (67, 69), but only lurasidone
has been confirmed to improve executive function in patients
with atypical antipsychotics-resistant schizophrenia (57). The
overall effectiveness of lurasidone against treatment-resistant

schizophrenia is reportedly considered to be almost equal to that
observed with clozapine, olanzapine, and risperidone. However,
a recent clinical study demonstrated that lurasidone improved
several cognitive domains, including executive function in
patients with atypical antipsychotics-resistant schizophrenia
(especially clozapine-resistant schizophrenia) (57). Interestingly,
the approved dose of lurasidone (80 mg/day) improved
the executive functions in atypical antipsychotic-resistant
schizophrenia rather than higher doses (57). In particular,
the improvement of executive function by lurasidone was
independent of improvements in the positive and negative
syndrome scales (57). The improvement of executive functions
(atypical antipsychotic-resistant cognitive domains) in atypical
antipsychotic-resistant schizophrenia suggested that 5-HT7R
antagonism plays an important role in the cognitive promoting
effects of lurasidone during atypical antipsychotic-resistant
cognitive impairment, rather than 5-HT2A antagonism or 5-
HT1AR partial agonism. Therefore, the discrepancy between the
therapeutic dose ranges of lurasidone for cognitive promoting
action (55, 57, 63) and acute schizophrenia symptoms (43)
suggests that relatively low doses contribute to the cognitive
promoting effects via predominantly 5-HT7R antagonism, but
the improvement of acute schizophrenia symptoms requires
a relatively high dose via 5-HT2AR antagonism with 5-
HT1AR partial agonism. Collectively, relatively low doses
of lurasidone improved executive functions in a significant
proportion of atypical antipsychotic-resistant schizophrenia
via different pharmacological mechanisms with conventional
atypical antipsychotics (possibly 5-HT7R antagonism).

This hypothesis is supported by preclinical behavioral findings
(70). Social withdrawal, which is a core negative symptom of
schizophrenia, can be modeled in the social interaction test using
N-methyl-D-aspartate receptor (NMDA)/glutamate antagonists
in rodents (70, 71). Acute administration of SB269970 (a 5-HT7R
antagonist) ameliorated ketamine-induced social withdrawal,
whereas sulpiride was ineffective (72). Interestingly, the co-
administration of an inactive low dose of SB269970 displayed
the prosocial effects of sulpiride (72). Another behavioral
study demonstrated that lurasidone ameliorated the deficits
of novel object recognition induced by phencyclidine and
was antagonized by AS-19 (5-HT7R agonist) (22). Therefore,
D2R antagonism with 5-HT7R antagonism may be a novel
candidate pharmacological profile of an atypical antipsychotic
class. In particular, the D2R, 5-HT1AR, 5-HT2AR, and 5-
HT7R occupancies mediated by the approved dose of lurasidone
(80mg) should be determined by employing PET.

Mood and Anxiety Disorders
A Bayesian network meta-analysis reported that lurasidone
was more efficacious than aripiprazole and ziprasidone, and
demonstrated comparable efficacy to quetiapine and olanzapine
monotherapies for the management of bipolar depression (73).
The efficacy of lurasidone in the acute treatment of bipolar
depression, as both monotherapy and adjunctive therapy to
lithium/valproate, has been reported in clinical trials (74, 75).
Therefore, the general efficacy of lurasidone for the treatment
of bipolar depression seems to be comparable with other
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mood-stabilizing atypical antipsychotics, whereas neither the
superiority nor specific targets of the clinical efficacy of 5-HT7R
antagonism have been demonstrated.

Although 5-HT7R variants are not associated with response
to 5-HT7R antagonistic atypical antipsychotics in schizophrenia
(see section Schizophrenia), a promoter single-nucleotide
polymorphism in 5-HTR7 gene, rs7905446, which increases 5-
HT7R expression (76), was positively associated with response
to SSRI in individuals with mood disorders (76). These clinical
findings indicates that 5-HT7R antagonism probably provides
antidepressant-like action.

Major depression with mixed-features is regarded as
conventional antidepressant-resistance and is associated with
suicide ideation, manic switching agitation, and impulsivity;
however, the standard medication for the mixed-features variant
is yet to be clarified (77, 78). The specific “mixed-features
variant” was incorporated in the Diagnostic Statistical Manual
of Mental Disorders 5th edition. Therefore, the clinical efficacy
of conventional mood-stabilizing atypical antipsychotics and
antidepressants, except for lurasidone, remain to be clarified
(78). A randomized double-blind, placebo-controlled study
and its post-hoc studies demonstrated that lurasidone improved
symptoms of depression/mania, anxiety, and irritability in
post-menopausal women (79–82). Furthermore, a double-
blind placebo control study revealed that lurasidone improved
depressive symptoms without affecting manic symptoms in
mixed-feature variants (83). Several studies have compared
mood-stabilizing atypical antipsychotics (including olanzapine,
lurasidone, brexpiprazole, ziprasidone, and cariprazine) with
placebo, assessing the efficacy in the acute phase of presumptive
mixed-feature variants (40, 84, 85). The available studies support
the expected benefits of mixed-feature variants, whereas the
overall effect may be similar in these mood-stabilizing atypical
antipsychotics (40, 84, 85). To explore the efficacy of 5-HT7R
antagonism against mixed-feature variants, the detailed clinical
effects of conventional mood-stabilizing atypical antipsychotics
and antidepressants on mixed-features variants need to be
clinically investigated.

Preclinical findings using selective 5-HT7R antagonist and
5-HT7R knockout mice suggest that 5-HT7R inhibits both
antidepressant-like and anxiolytic-like effects (21, 24, 86, 87).
A selective 5-HT7R antagonist, SB269970, exhibited anti-
immobility-like and antidepressant-like effects in the forced
swim and tail suspension tests (21, 24). Furthermore, 5-
HT7R knockout mice displayed tolerability to depression-like
behavior in these tests (21, 88). These preclinical behavioral
findings suggest that activation of 5-HT7R contributes to the
pathomechanisms of depression. 5-HT7R antagonism mediated
by SB269970 or JNJ18038683 produced antidepressant-like
effects and promoted the antidepressant effects of several
antidepressants, including citalopram, imipramine, desipramine,
and moclobemide (24, 89, 90). Notably, SB269970 displayed
rapid-acting antidepressant effects (91).

Based on the fast-acting antidepressant-like effects of 5-
HT7R antagonists (91), several psychiatrists anticipated the
development of a novel rapid-onset antidepressant class
when compared with conventional antidepressants prescribed
in clinical settings. Available medications using monoamine

transporters that inhibit antidepressants and psycho-behavioral
therapies require more than several weeks for the onset of
beneficial effects (92). The delay of conventional monoaminergic
antidepressants and psycho-behavioral therapies remains one
of the major drawbacks of current treatments for depressive
disorder, and faster-acting antidepressants are needed for
patients with suicidal tendencies (93). Unfortunately, the onset
of the antidepressant effect of lurasidone seems to require a
duration equivalent to those of conventional antidepressants
(73, 80, 82, 94, 95). However, a recent clinical trial demonstrated
that both intravenous and oral administrations of vortioxetine
displayed significant improvements in depression (Montgomery
Åsberg Depression Rating Scale and Hospital Depression
Scale) and anxiety (Hospital Anxiety Scale) after 3 days
(95). Vortioxetine is a high-affinity inhibitor of human 5-HT
transporter (Ki = 1.6 nM), 5-HT3R (Ki = 3.7 nM), 5-HT7R
(Ki = 19 nM), and an agonist of 5-HT1AR (Ki = 15 nM)
(Table 1) (36). Although the affinity of vortioxetine to rat 5-
HT7R (Ki = 200 nM) is lower compared to human 5-HT7R
(96), subacute administration (within 3 days) of effective dose
of vortioxetine rapidly downregulates rat 5-HT7R (97). These
preclinical demonstrations suggest that vortioxetine is a relatively
low affinity to 5-HT7R compared to other 5-HT receptor
subtypes, but suppresses 5-HT7R function with rapid 5-HT7R
downregulation as an inverse agonist, similar to other 5-HT7R
inhibiting mood-stabilizing atypical antipsychotics, clozapine,
lurasidone, and olanzapine (97, 98). In other words, the
rapid-acting antidepressant and anxiolytic actions of 5-HT7R
antagonism have not been completely refuted and are worth
reassessing after future clinical findings have accumulated.

Local hippocampal administration of SB269970 produced
antidepressant-like activity in the rat forced swim test (87).
Thus, blockade of 5-HT7R in the hippocampus might be
beneficial in depression. Enhanced serotonergic transmission
(activation of 5-HT1AR) plays an important role in the anti-
depressive mechanisms of selective 5-HT reuptake inhibitors,
but hippocampal 5-HT7R suppression is probably required for
anti-depressive action. Acute stress increased 5-HT7R mRNA
expression in the hippocampus (99). The anxiolytic-like effects
of SB269970 were revealed in the Vogel drinking test, the
elevated plus-maze test, and the four-plate test in mice (24).
Local administration of SB269970 exhibited anxiety-like effects
in the Vogel conflict test (87). SB269970 decreased the number
of marbles buried in the marble-burying test (86). These findings
suggest the effectiveness of 5-HT7R antagonists in the treatment
of obsessive-compulsive disorder and anxiety disorders. 5-HT7R
knockout mice exhibited similar behaviors in mice treated
with SB269970 and antidepressants (21, 88); however, 5-HT7R
knockout mice showed decreased immobility in forced swim
and tail suspension tests and decreased both the duration and
frequency in the rapid-eye-movement sleep phase (21, 88).

Neurodevelopmental and
Neurodegeneration Disorders
Themajority of approved agents for the treatment of tic disorders
and Tourette syndrome, aripiprazole, clozapine, olanzapine,
quetiapine, risperidone, and pimozide, which reportedly reduce
the severity of tic disorders and Tourette syndrome, are
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weak 5-HT7R antagonists (Table 1) (100–102). It is generally
known that α2/α2A adrenoceptor agonism reduces the severity
of tic disorders and Tourette syndrome (100, 102), whereas
these agents are insensitive or α2 adrenoceptor antagonists
(Table 1). Taken together with the in vitro binding profiles, 5-
HT7R antagonism is a candidate target for the improvement
of neurocognition.

Activation of 5-HT7R during adolescence induced persistent
upregulation of 5-HT7R (17), and LP211 (selective 5-HT7R
agonist) enhanced learning and memory in Fmr1 knockout
mice, a genetic fragile-X syndrome mouse model (20).
During adolescence, SB266970 enhanced impulsive behavior
but attenuated the methylphenidate-induced reduction of
impulsivity (103). These preclinical findings suggest the clinical
potential of 5-HT7R agonists for the treatment of autism
spectrum disorder and fragile-X syndrome (congenital X-linked
disease associated with autistic traits and cognitive deficits)
(20, 25). Conversely, chronic exposure to methylphenidate
during postnatal and adolescence probably provides persistent
structural rearrangements of the brain reward pathways
associated with 5-HT7R (103). Therefore, the effects of 5-HT7R
activation on neuronal plasticity during early development are
not limited to embryonic and early postnatal development, but
can also persist during adolescence and adulthood.

Although the 5-HT7R density decreased in correlation
with age-dependent spatial memory deficits, which is possibly
compensated by the 5-HT7R agonist (104), both 5-HT7R
antagonists lurasidone and vortioxetine could clinically improve
global cognitive performance (94, 105). Indeed, lurasidone is
also significantly efficacious in older adults (≥55 years old)
with bipolar depression (94), and bipolar depression comorbid
with attention-deficit hyperactivity disorder (ADHD) in children
and adolescents (106). The clinical improvement in cognitive
disturbances in the elderly (94) and neurodevelopmental
disorders (100, 102, 106) of 5-HT7R antagonism are in line with
the preclinical findings on the effects of 5-HT7R antagonists on
transmitter release. However, preclinical studies have previously
reportedmore potentially important mechanisms associated with
5-HT7R antagonism. It is well-known that neurodegenerative
processes and neurite retraction are considered to play
important roles in the pathomechanisms of dementia and
neurodevelopmental disorders (107). Preclinical findings support
the clinical advantages of these 5-HT7R antagonistic agents
owing to protection via inhibition of active polymerization and
neurite retraction.

Cognition
Both 5-HT1AR partial agonism and 5-HT7R antagonism
improved executive functions in a mouse model, but 5-HT7R
agonism failed to demonstrate this effect (108). Lurasidone
improved executive function, but the selective 5-HT1AR
antagonist, WAY100635, blocked the ability of lurasidone
(108). These results indicate that the combination of 5-HT7R
antagonism and 5-HT1AR partial agonism plays an important
role in executive functioning. The cognitive promoting action
of 5-HT7R antagonist is constructed by 5-HT1AR sensitive
hippocampal-dependent and other hippocampal-independent

neural circuits (25, 109, 110). Executive functions have been long
known to involve the frontal cortex, and two projections from
the hippocampus and thalamus (111). Mediodorsal thalamic
nucleus (MDTN), which regulates outputs to the frontal cortex
via integration of sensory and emotional inputs, is an essential
partner of the frontal cortex inmediating executive functions (71,
112–115). Along with findings on 5-HT7R expression regions
(14, 16, 18, 19, 25), the thalamocortical pathway is a candidate
cognitive bottom-up regulation system (113, 115) associated with
5-HT7R antagonism.

Tonic hyperactivation of thalamocortical glutamatergic
transmission has been observed in patients and experimental
animal models of schizophrenia, ADHD, and autism
(39, 112, 116–121). Although enhancement of serotonergic
transmission plays an important role in the clinical efficacy of
several atypical antipsychotics and conventional antidepressants,
activation of serotonergic transmission to the MDTN, at least
partially, negatively affects executive functions associated with
the thalamocortical pathway via activation of excitatory
postsynaptic 5-HT7R in the MDTN (18, 38, 122). A
potent 5-HT1AR and 5-HT7R agonist, 8-hydroxy-2-(di-n-
propylamino)tetralin (8-OH-DPAT) (9) suppresses several
types of learning (25, 110). 8-OH-DPAT administration
suppressed retention performance in passive avoidance training;
however, SB269970 facilitated the negative effects of 8-OH-
DPAT on the passive avoidance task for emotional learning
(110). 5-HT1AR and 5-HT7R are expressed in hippocampal
CA3 dendritic and neuronal cell body regions, respectively
(123, 124). Administration of a selective 5-HT1AR antagonist
and selective 5-HT7R agonist enhanced emotional memory in
the passive avoidance behavior test (125). These findings indicate
that 5-HT7R enhances emotional memory via hippocampal
serotonergic transmission independent of 5-HT1AR.

Both aripiprazole and clozapine suppressed the tonic
activation of thalamocortical glutamatergic transmission
via activation of group II and III metabotropic glutamate
receptors in the frontal cortex, respectively (116, 117). Contrary
to aripiprazole and clozapine, lurasidone suppressed tonic
hyperactivation of thalamocortical glutamatergic transmission
through inhibition of postsynaptic 5-HT7R in the MDTN
(18, 38). The different pharmacodynamic suppressive
mechanisms of lurasidone and aripiprazole/clozapine on tonic
hyperactivation of thalamocortical glutamatergic transmission
suggest that the complementary effects of lurasidone on the
rational integration of signaling inputs to the thalamocortical
pathway regarding thalamic executive function are more effective
than those of clozapine. Therefore, the cognitive (executive
function) promoting effects of adjuvant lurasidone on atypical
antipsychotic-resistant schizophrenia are probably demonstrated
when tonic hyperactivation of thalamocortical glutamatergic
transmission cannot be sufficiently improved by other atypical
antipsychotics, via additional inhibition of excitatory 5-HT7R in
the MDTN. The 5-HT7R antagonist facilitated the consolidation
and reconsolidation of contextual fear conditioning memory
(23). Local administration of SB269970 into the basolateral
amygdala, but not the hippocampal CA1 region, facilitated
the extinction of contextual fear conditioning memory (109).
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5-HT7R inhibition appears to facilitate memory processes
in broader cortico-limbic circuits, but not the hippocampus
alone (109). Thus, 5-HT7R inhibition probably improves
contextual learning and memory through a mechanism
independent of the hippocampus (25). 5-HT7R may contribute
to effective switching between hippocampus-dependent and
hippocampus-independent learning strategies (126).

Others
Recent findings have elucidated the role of 5-HT7R in a wide
range of physiological functions in the mammalian CNS
and peripheral organs (127–131). Noticeable modulation of
peripheral 5-HT7R is expected to progress to the development
of clinical applications in the medical field for autoimmune
diseases and carcinoma. In peripheral tissues, the majority
of 5-HT is produced by enterochromaffin cells of the gut
mucosa and various immune cells. Peripheral 5-HT, which is
produced in T lymphocytes and mast cells, is one immune
system modulator that affects various immune cells via
5-HT receptors (3). A clinical study reported that several
psychiatric disorders, including bipolar disorder, anxiety
disorder, and major depression, are highly comorbid with
inflammatory bowel diseases (around 50%) (132). Functional
abnormalities of the serotonergic system contribute to the
pathogenesis/pathophysiology of inflammatory bowel diseases
(133). Silencing 5-HT7R, which is predominantly expressed in
the immune system (134), reduced the severity of inflammation
in an ulcerative colitis experimental mouse model (135). These
findings suggest that functional abnormalities in 5-HT7R
signaling in the brain, gut, and immune cells are involved
in several inflammation- and immune-induced psychiatric
disorders in the gut and brain.

A comprehensive in vivo screen test demonstrated that
297 psychoactive agents were 18-fold more likely to exert
antiproliferative effects when compared with a random molecule
population (136). Numerous clinical and meta-analysis studies
reported that despite most patients with schizophrenia smoking
heavily, the pooled overall cancer incidence rates for these
patients were lower than their cancer risk factor exposure
(136). Based on this clinical evidence, several antipsychotics are
attracting attention as candidates for new treatment options for
brain cancers owing to their ability to cross the blood-brain
barrier (31). 5-HT7R antagonists have been proposed to block the
growth of glioblastomas via inhibition of extracellular-regulated
kinase (Erk) and interleukin 6 activities (137).

5-HT7R AND SIGNAL TRANSDUCTION

Effects of 5-HT7R on Organizing and
Remodeling of Neural Circuits
The effects of 5-HT7R on intracellular signal transduction are
summarized in Figure 1. 5-HT7R expresses several functional
splice variants, distinct in their carboxyl terminals due to introns
in the 5-HT7R gene (11, 138–140). Splice variants of 5-HT7R
(5-HT7Ra, 5-HT7Rb, and 5-HT7Rc in rodents, and 5-HT7Ra,
5-HT7Rb, and 5-HT7d in humans) have been established (11,
98, 138–141). Functional differences among the splice variants

include the 5-HT7Ra isoform activating types 1 and 8 of
adenylyl cyclase (AC) Gs-independently (Figure 1) (142), and the
internalization pattern of 5-HT7Rd differs from those presented
by other isoforms (98, 141).

To clarify the mechanism of 5-HT7R on neuronal plasticity
and cognitive and mood regulation, psychopharmacological
studies have focused on the impact of 5-HT7R on
neurodevelopmental processes, including migration, axon
guidance, dendrite development, synapse formation, and nerve
wiring during the early developmental stage.

5-HT7R was found to activate several signaling pathways
involved in molecular mechanisms, such as Gαs and Gα12
proteins, which underlie neural remodeling (Figure 1). 5-
HT7R activates AC via activation of Gαs activity (10). Apart
from Gαs, the 5-HT7Ra isoform activates AC1 and AC8
via Ca2+/calmodulin-dependent and Gs-independent signaling
(142). Increased cyclic adenosine monophosphate (cAMP)
stimulates both protein kinase A (PKA) and subsequent
activation of cyclin-dependent kinase 5 (Cdk5) (19, 143), Ras
(144, 145), and exchange protein directly activated by cAMP
(EPAC) (146), resulting in Erk signaling activation (144, 147).
Furthermore, 5-HT7R-induced Ras and EPAC signaling promote
the activation of mammalian target of rapamycin (mTOR)
(Figure 1) (148).

Additionally, 5-HT7R activates several signaling pathways
associated with Gα12 (143). 5-HT7R/Gα12 activates both Ras
homolog gene family member A (RhoA) and cell division cycle
protein 42 (Cdc42) (143, 149). Another 5-HT7R pathway was
recently reported: in the detachment from the extracellular
matrix (ECM), 5-HT7R cleaves the extracellular domain
of the hyaluronic acid receptor (CD44) via activation of
metalloproteinase-9 (MMP9) (150). The detachment from ECM
via CD44/MMP9 plays an initial role in both dendritic spine
remodeling and synaptic pruning, followed by neurite retraction
by RhoA and neurite extension/branching by mTOR, Erk, and
Cdc42 (Figure 1).

The serotonergic system, which is one of the initial organizing
systems in development, generates neurogenesis, cell migration,
axon guidance, dendritogenesis, synaptogenesis, and brain
wiring throughout life (151). The impact of 5-HT7R on
neuronal morphology in early developmental stages plays a
fundamental role in the establishment andmaintenance of neural
connectivity and synaptic plasticity. During the embryonic
stage, 5-HT7R induces neurite outgrowth of cortical, striatal,
and hippocampal neurons via activation of Cdk5 and mTOR
(145, 152). 5-HT7R is thought to contribute to the modulation
of synaptic plasticity and neuronal connectivity during the
developing and mature brain (128). Chronic 5-HT7R activation
generates dendritic spine formation and increases the number
of structurally intact synapses and expression of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate
receptor in hippocampal neurons (143). Neural circuits can
be remodeled, induced by reactions to physiological and
pathological inputs well into adulthood, continuing to exhibit
robust plasticity throughout the entire lifespan of individuals
(153). During the pre- and postnatal periods, exposure to
selective serotonin reuptake inhibitors generates long-term
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FIGURE 1 | Morphogenic signaling mediated by the 5-HT7R. AC, Adenylyl cyclase; cAMP, cyclic adenosine monophosphate; Cdc42, cell division cycle protein 42;

Cdk5, cyclin-dependent kinase 5; EPAC, exchange protein directly activated by cAMP; Erk, extracellular-regulated kinase; mTOR, mammalian target of rapamycin;

PKA, protein kinase A; RhoA, Ras homolog gene family member A; CD44, hyaluronic acid receptor; MMP9, metallo proteinase 9; ECM, extracellular matrix.

anxiety in adulthood without affecting the morphological
alterations of the brain (104, 154). Therefore, reorganization of
dendritic morphology induced by 5-HT7R signaling provides
new synapse growth and initial neuronal network formation,
which is the target of event-related structural and functional
plasticity in the early developmental stage (Figure 1) (155, 156).

A recent study suggest that rs300774, which is a candidate
variant of LMWPTP associated with suicide, various
transmission, including 5-HT and GABA (157). It has been
reported that CD44 plays as a signaling receptor for LMWPTP
induction (158), whereas redox-dependent downregulation of
RhoA activity is modulated by oxidative modification of low-
molecular weight protein tyrosine phosphatase (159). Therefore,
the interaction between downstream signaling of LMWPTP
and 5-HT7R possibly provides us a novel pathophysiological
hypothesis regarding mood disorder and/or suicidal ideation.
Furthermore, it has been demonstrated that a heterodimer and
homodimers composed of 5-HT1AR and 5-HT7R, together
with monomers, coexist in the cells (160). The heterodimer
suppresses and enhances the stimulatory effects of 5-HT1AR
on G-protein-gated inwardly rectifying potassium channels and
mitogen-activated protein kinases, respectively. Interestingly,
the heterodimer enhances the internalization of 5-HT1AR (160).
Considering that the highest affinity for complex formation was
obtained for the 5-HT7R/5-HT7R homodimers, followed by

the 5-HT7R/5-HT1AR heterodimers and 5-HT1AR/5-HT1AR
homodimers, determination of the effects of vortioxetine
and lurasidone on the functional interactions between the
heterodimer, homodimers, and monomers of 5-HT1AR and
5-HT7R could possibly clarify the complicated action of
subchronic administration of these agents.

Effects of 5-HT7R on Transmission
Associated With Neuronal Plasticity
5-HT7R knockout mice displayed impaired long-term
potentiation (LTP) in the hippocampus, and impairments
in contextual learning, seeking behavior, and allocentric
spatial memory (161, 162). Functionally, 5-HT7R activates
neuronal excitability and LTP in the hippocampus of juvenile
rodents without affecting those of adult individuals (163).
Notably, 5-HT7R enhanced population spike amplitude
and bursting frequency in the hippocampal CA1 and CA3
regions, respectively (164, 165). 5-HT7R-induced activation
of cAMP/PKA signaling enhanced NMDA-evoked currents,
resulting in the enhancement of the population spike amplitude
and bursting frequency in hippocampal CA1 and CA3
regions, respectively (164–166). Furthermore, 5-HT7R activates
hippocampal transmission postsynaptically owing to enhanced
phosphorylation of the GluA1 AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid)/glutamate receptor, induced
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TABLE 2 | Summary of effects of the systemic administration of therapeutic-relevant dose of antipsychotics and 5-HT7R antagonist on transmitter release in the

frontal cortex.

LUR BNS APZ CLZ QTP RIS ZTP SB269970

Norepinephrine ↑ ↑ → ↑ ↑ ↑ ↑ ↑

Dopamine ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

5-HT → → → → → ↑ → ↑

Glutamate ↑ → → ↑ ↑ → ↑ →

GABA → → ↓ ↓ → → ↑

References (18, 38, 172) (172, 173) (116, 174, 175) (117, 175–177) (178) (173, 179, 180) (181) (182, 183)

(2R)-1-[(3-Hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine (SB269970). ↑, increase; ↓, decrease; → , no change.

via cAMP/cAMP response element-binding protein (CREB)
signaling (167, 168). Reportedly, 5-HT7R reverses long-term
depression (LTD) associated with metabotropic glutamate
receptors (20). These electrophysiological findings describe the
molecular mechanisms underlying the positive effects of 5-HT7R
on cognition and memory.

Activation of 5-HT7R during adolescence induces
persistent upregulation of 5-HT7R (17). Chronic exposure
to methylphenidate during postnatal and adolescence
probably provides persistent structural rearrangements of
the brain reward pathways associated with 5-HT7R (103). The
molecular mechanism underlying 5-HT7R-induced remodeling
increases neurite and dendritic spine elongation via matrix
metalloproteinase (MMP)-9/CD44 and Cdc42 in reversal
learning and neuronal regeneration (150). Therefore, the effects
of 5-HT7R on neuronal plasticity during early development are
not limited to embryonic and early postnatal development but
can also persist in adolescence and adulthood.

Pathologically, activation of 5-HT7R during adolescence leads
to increased dendritic arborization in the nucleus accumbens,
which is one of themost important neural circuits associated with
the pathophysiology of schizophrenia (169–171).

Effects of 5-HT7R on Transmission After
Maturation of the Nervous System
Microdialysis studies demonstrated that acute administration
of a therapeutically relevant lurasidone dose increased
the extracellular levels of dopamine, L-glutamate, and
norepinephrine without affecting those of 5-HT or γ-
aminobutyric acid (GABA) in the frontal cortex (Table 2)
(18, 38, 172, 184). The effects of systemic administration
of therapeutically relevant doses of conventional atypical
antipsychotics on transmitter release are summarized
in Table 2. The profile of lurasidone on transmitter
release in the frontal cortex is similar to quetiapine but
not to aripiprazole, blonanserin, clozapine, risperidone,
or zotepine (18, 38, 116, 117, 172–181). D2R blockade
with enhanced dopamine release in the frontal cortex
produces the fundamental psychopharmacological effects
of atypical antipsychotics (29). The combination of D2R
inhibition with 5-HT2AR inhibition or 5-HT1AR activation
contributes to enhanced dopamine release in the frontal
cortex (185). Additionally, GABAergic disinhibition in the
frontal cortex probably provides enhanced dopamine release

induced by aripiprazole and clozapine (174, 176); however,
lurasidone-induced dopamine release is not modulated by
regional GABAergic disinhibition, similar to blonanserin,
quetiapine, risperidone, and zotepine. These discrepancies
in the frontal transmitter release profiles among 5-HT7R
antagonistic antipsychotics (lurasidone, aripiprazole, clozapine,
quetiapine, risperidone, and zotepine) suggest that 5-HT7R
antagonism probably does not play an important role in
enhanced dopamine release in the frontal cortex mediated
by these antipsychotics. Therefore, 5-HT7R antagonism is
possibly more effective in cognitive impairment and mood
disturbances than against core (positive and negative) symptoms
of schizophrenia.

Acute systemic administration of selective 5-HT7R
antagonist, (2R)-1-[(3-hydroxyphenyl) sulfonyl]-2-[2-(4-
methyl-1-piperidinyl)ethyl]pyrrolidine (SB269970) increased
the basal release of norepinephrine and dopamine without
affecting their metabolites in the medial prefrontal cortex
(mPFC) (182). In contrast to catecholamines, acute systemic
administration of SB269970 increased the basal release of
5-HT and 5-hydroxyindole acetic acid (5-HIAA) in the mPFC
(183). Therefore, inhibition of 5-HT7R contributes to increased
monoamine release in the mPFC; however, the mechanisms
of catecholamine and 5-HT release induced by 5-HT7R
inhibition vary, as catecholamine metabolites are not affected by
5-HT7R inhibition.

Serotonergic neurons in the DRN, which are regulated
by inhibitory GABAA receptor and 5-HT1AR, project into
GABAergic interneurons in the DRN, glutamatergic neurons
in the frontal cortex, and the MDTN (18, 38, 39, 186).
GABAergic interneurons in the DRN are regulated by both
excitatory 5-HT7R and NMDA/glutamate receptors (18, 38,
39, 186). In DRN slice patch-clamp investigations, inhibition
of 5-HT7R generated depolarization and increased neuronal
firing frequency via attenuation of spontaneous inhibitory
postsynaptic potential (sIPSP) (183, 186). A multiprobe dialysis
study demonstrated that under 5-HT1AR blockade, inhibition
of 5-HT7R reduced GABA release; however, during 5-HT1AR
activation, the stimulatory effects of SB269970 on 5-HT release
in the DRN could not be observed (18, 39, 186, 187).
Therefore, enhanced 5-HT release in the DRN activates 5-
HT1AR and GABAergic inhibition, resulting in the suppression
of serotonergic neurons in the DRN. Collectively, these findings
indicate that inhibition of 5-HT7R suppresses GABAergic
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negative feedback in the DRN, increasing 5-HT release in the
frontal cortex (186).

In contrast to 5-HT, local administration of SB269970 into
the mPFC weakly but not significantly increased regional basal
release of norepinephrine and dopamine (38). Although local
administration of SB269970 into the frontal cortex has not been
demonstrated to increase regional catecholamine release, the
regulation system in the frontal cortex is probably not the region
responsible for the increased basal region catecholamine release
induced by systemic SB269970 administration. In particular,
the regions responsible for catecholamine release induced by
systemic SB269970 administration might occur outside the
cortex (182).

Clinical and preclinical studies have emphasized that
disturbance of the MDTN is particularly relevant for cognitive
dysfunction characterized by developmental disorders and
psychoses, including autism spectrum disorder, intellectual
disability, ADHD, mood disorder, epileptic psychosis, and
schizophrenia (112, 118, 119, 188–193). MDTN receives several
types of inputs from the cortical and subcortical regions
associated with learning, memory, emotion, and perceptual
integration (194–196). MDTN-lesioned monkeys continued
to respond to stimuli after being satiated with associated food
rewards (191). Thalamocortical glutamatergic transmission is
considered to play a role in maintaining flexible stimulus–reward
associations (120, 122, 197). Therefore, enhancement of the
sensitivity and reliability of MDTN signaling partially regulates
the promotion processes of wide range cognitive functions via
the integration of emotional and sensory information.

Monoaminergic neurons in the DRN, ventral tegmental area
(VTA), and locus coeruleus (LC) project selective terminals
to deeper layers of the frontal cortex, whereas part of the
catecholaminergic neurons in the LC project co-releasing
terminals (dopamine and norepinephrine) to superficial layers
(Figure 2) (178, 181). The co-releasing terminals presynaptically
receive excitatory AMPA/glutamate receptors from MDTN
(Figure 2) (112, 120, 122, 178, 181, 186). Continuously
hyperactivated MDTN glutamatergic transmission results in
the relative deterioration of sensitivity to input signaling from
other regions, similar to the functional disruption of MDTN
activity (193). Recent preclinical studies demonstrated that
several cognitive promoting agents, guanfacine, memantine,
aripiprazole, and clozapine, compensate for the hyperactivation
of thalamocortical glutamatergic transmission due tomodulation
of α2A adrenoceptor, system Xc-, and metabotropic glutamate
receptors (116, 117, 120, 121). MDTN is regulated by excitatory
serotonergic and inhibitory GABAergic inputs via the 5-
HT7R and GABAA receptors, respectively (39, 112, 116–121).
Similarly, lurasidone compensated for hyperactivation of
thalamocortical glutamatergic transmission via inhibition of
5-HT7R (18, 38). The mechanisms of 5-HT7R inhibition on
complicated interactions between thalamocortical glutamatergic
and mesocortical catecholaminergic pathways in the frontal
cortex provided the first glimpses of the pathophysiology
underlying hippocampal-independent cognitive-modulatory
functions associated with 5-HT7R (Figure 2) (25, 126).

REMAINING CHALLENGES AND
CONCLUSION

Despite the advantages of 5-HT7R antagonism, the following
challenges need to be resolved to develop effective clinical
applications of 5-HT7R modulation for the treatment of
numerous disorders involving cognitive impairments.

1) Although 5-HT7R antagonism possibly improves cognitive
impairments, the 5-HT7R expression in the frontal cortex
of patients with schizophrenia is lower than that in healthy
controls (129, 130). Subchronic administration of the 5-HT7R
agonist (LP211) and antagonists (SB269970) upregulated
and downregulated 5-HT7R expression, respectively (17, 98).
Therefore, reduced 5-HT7R expression in patients with
schizophrenia cannot be determined to be directly involved in
the pathogenesis of schizophrenia; these findings might have
been induced by 5-HT7R antagonism of several antipsychotics.
In particular, the inhibition of 5-HT7R is a candidate for the
treatment of schizophrenia.

2) Although sleep disturbance (reduced duration and
frequency of rapid-eye-movement sleep phase) was observed
in 5-HT7R knockout mice (21), a clinical study failed
to detect any sleep disturbance (sleep onset, rapid-eye-
movement, or slow-wave sleep) in individuals receiving
lurasidone (198). Additionally, another clinical study reported
that lurasidone did not affect the sleep phase, whereas 5-
HT7R knockout mice exhibited sleep phase disruption
(21). Along with 5-HT7R downregulation induced by
long-term administration of lurasidone, sleep disturbance
caused by lurasidone remains one of the side effects
necessitating attention.

3) Cognitive impairment in the elderly positively is known to
correlate with an age-dependent reduction of 5-HT7R expression
(104); however, both vortioxetine and lurasidone can improve
cognitive decline and in the elderly (94, 105). Preclinical findings
support the clinical advantages of these 5-HT7R antagonistic
agents owing to their inhibitory action on active polymerization
and neurite retraction. We speculated the clinical advantage of
5-HT7R antagonism in elderly individuals; however, long-term
exposure to 5-HT7R antagonists could facilitate the fragility of
transmission associated with 5-HT7R in elderly individuals.

4) Reportedly, approved agents for the treatment of
behavioral manifestations of autism spectrum disorder,
including pimozide, aripiprazole, and risperidone, exhibit a
5-HT7R antagonistic profile (28); however, the effectiveness
of 5-HT7R agonists for the treatment of autism spectrum
disorder and fragile-X syndrome was demonstrated in
experimental models (20, 25). These discrepancies suggest
the fundamental pathomechanisms of neurodevelopmental
disorders, as these have been considered a dysfunction of both
development and/or collapse of the neural circuit system.
Neurodevelopmental dysfunction can be compensated by
5-HT7R-induced enhancement of the remodeling of neuronal
connectivity (possibly collapse and branching). In contrast,
after the maturation of neural circuits, the disruption of
neuronal connectivity can be prevented by 5-HT7R inhibition.
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FIGURE 2 | Proposed hypothesis for the extended complicated neural circuit connectivities involved in thalamocortical glutamatergic pathway, from the reticular

thalamic nucleus (RTN), mediodorsal thalamic nucleus (MDTN) to the frontal cortex, mesothalamic serotonergic pathway, from the dorsal raphe nucleus (DRN) to the

MDTN, mesocortical noradrenergic pathway, from the locus coeruleus (LC), dopaminergic pathway, from the ventral tegmental area (VTA), and serotonergic pathway

from the DRN to the frontal cortex.

In particular, a possible crucial therapeutic time-window
exists based on the pathomechanism of each disorder for
the 5-HT7R modulating agent. In this review, we postulate
that 5-HT7R inhibition might contribute to the stability of
neuronal connectivity and transmission; however, rational
enhancement of remodeling through 5-HT7R modulation
may provide us with a novel strategy for various other
neuropsychiatric disorders.

5) In this review, we hypothesized that the clinical efficacy of
the approved lurasidone dose (80mg) is mediated predominantly
via D2R and 5-HT7R antagonism, rather than 5-HT2AR
antagonism with 5-HT1AR partial agonism according to the PET
and receptor binding studies. It is unlikely that our assumptions
will be surpassed as the positive relationship between receptor
occupancy and the binding affinity of most antipsychotics has

been well-demonstrated. The 5-HT7R occupancy level of the
approved lurasidone dosage should be clarified.
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