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New insights into the pathogenicity 
of non-synonymous variants 
through multi-level analysis
Hong Sun & Guangjun Yu

Precise classification of non-synonymous single nucleotide variants (SNVs) is a fundamental goal of 
clinical genetics. Next-generation sequencing technology is effective for establishing the basis of 
genetic diseases. However, identification of variants that are causal for genetic diseases remains a 
challenge. We analyzed human non-synonymous SNVs from a multilevel perspective to characterize 
pathogenicity. We showed that computational tools, though each having its own strength and 
weakness, tend to be overly dependent on the degree of conservation. For the mutations at non-
degenerate sites, the amino acid sites of pathogenic substitutions show a distinct distribution in 
the classes of protein domains compared with the sites of benign substitutions. Overlooked disease 
susceptibility of genes explains in part the failures of computational tools. The more pathogenic sites 
observed, the more likely the gene is expressed in a high abundance or in a high tissue-specific manner, 
and have a high node degree of protein-protein interaction. The destroyed functions due to some false-
negative mutations may arise because of a reprieve from the epigenetic repressed state which shouldn’t 
happen in multiple biological conditions, instead of the defective protein. Our work adds more to our 
knowledge of non-synonymous SNVs’ pathogenicity, thus will benefit the field of clinical genetics.

Single nucleotide variants (SNVs) are among the most frequent and widespread changes in the genome1. Most 
of these changes are functionally neutral, however, some variants produce dramatic phenotype and may lead to 
various diseases as a consequence2. Approximately half of the known inherited disease mutations stems from 
non-synonymous SNVs3, which may destroy the function of the encoded proteins, thereby causing diseases. 
Precise identification of non-synonymous SNVs causing human diseases will provide crucial insights directly 
affecting the clinical diagnosis and management of affected individuals.

Next-generation sequencing technology is a powerful and efficient means to comprehensively delineate the 
map of genetic variations4. In particular, exome sequencing has been demonstrated as an effective way to detect 
pathogenic non-synonymous SNVs underlying both Mendelian diseases3 as well as complex traits5. Clinical 
sequencing has been put into medical practice6, and it has been proven to be an effective alternative for identify-
ing the genetic basis of diseases7,8. However, elucidating the associations between mutations and disease, though 
vastly important, is restricted by the difficulty in distinguishing pathogenic mutations from those that are func-
tionally neutral. Therefore, computational prediction tools became preferred for prioritizing causal mutations.

Multiple computational methods have been developed for predicting pathogenicity, such as SIFT9, 
PROVEAN10, MutationTaster11, FATHMM-MKL12, FATHMM-XF13, FATHMM14, MetaSVM15, MetaLR15, 
PolyPhen-216, MutationAssessor17, CADD18 and DANN19 etc. While these tools are commonly used to predict 
pathogenicity, these programs vary widely in their original purposes and the methods utilized. Some tools meas-
ure sequence conservation (e.g., SIFT), some assess the impact of variants on protein structure or function (e.g., 
PolyPhen-2), some try to quantify the overall pathogenic potential of a variant based on diverse types of genomic 
information (e.g., CADD) etc. Some tools integrate multiple scoring values for classification utilizing support 
vector machine (e.g., MetaSVM) or logistic regression (e.g., MetaLR), some other methods classify variants 
according to Bayesian methods (e.g., PolyPhen2), or mathematical operations (SIFT) etc. The dbNSFP algorithm 
integrates the output of different prediction tools so as to yield a single consensus prediction to facilitate compar-
ison between scores20.

Despite the constant emergence of new computational methods to catalog human genetic variations, identifi-
cation of variants that are causal for diseases remains a difficult task. Predictions made by different computational 
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tools differ greatly when applied to the same variant21. It has been reported that around 73% of functional 
predictions are not effectively differentiated from neutral mutations, suggesting the high rate of false positive 
predictions22. Low specificity of characteristics will inevitably return many false predictions22. High accuracy 
is insufficient to indicate a good classifier as both false-positive and false-negative results can lead to serious 
consequences23. It is vital to better understand accuracies and limitations of the computational methods because 
published performance is confounded by serious problems, especially for some variants which are unlikely to 
cause monogenic diseases but are relevant to diseases in a more complex basis. In this work, we present some new 
insights to the pathogenicity of non-synonymous SNVs that would benefit the research community.

Results
Identifying the genetic variants responsible for diseases is a major challenge of clinical whole exome sequencing. 
Multiple algorithms have been developed to distinguish pathogenic mutations from a large number of back-
ground variations based on different information of the variants. However, predictions made by different com-
putational tools differ greatly when applied to the same variant21 and their relative merits and limitations are still 
unclear in practical applications.

To identify possible limitations in computational methods, we considered twelve computational tools because 
of their demonstrated fine performances, namely SIFT9, PROVEAN10, MutationTaster11, FATHMM-MKL12, 
FATHMM-XF13, FATHMM14, MetaSVM15, MetaLR15, PolyPhen-216, MutationAssessor17, CADD18, and DANN19. 
To facilitate comparison between scores, we downloaded rank scores from dbNSFP v3.020, which is an integrated 
database of functional predictions from multiple algorithms.

Based on the ClinVar24 annotation terms, we classified the genomic sites into four groups: pathogenic sites if 
pathogenic evidence was presented to the change(s) at the site but no evidence of benign effect from an authori-
tative source, and for the benign sites vice versa; a site is called as ‘both’ (pathogenic or benign) if both pathogenic 
and benign variants were found, and a site is called as ‘other’ if neither pathogenic nor benign variants were found. 
Based on the HGMD25 annotation terms, we called pathologic variants if there is cogent evidence to support their 
disease causing effect as DM variants (i.e., Disease causing mutation).

Predictions should be evaluated thoroughly.  We first evaluate the agreement between computational 
tools. The performance of individual computational tools differ in the quality of predictions based on the ClinVar 
annotations (Figure S1 and Table S1), and this observation is consistent with previously reported results26. The 
proportion of non-synonymous SNVs that have consensus predicted results between algorithms varied from 35% 
to 96%. The data indicate that the differences in feature sets and algorithms used by the different computational 
tools are major factors that lead to inconsistent predictions (Figure S2).

It is intuitively appealing that combination of prediction tools may enhance the predictive accuracy. We, there-
fore, calculated the performance of combinations of computational tools to determine whether the accuracy 
was improved. The criterion to categorize a variant as pathogenic or non-pathogenic was that all the algorithms 
combined agree on the prediction. We next evaluated the performance of combined predictions corresponding to 
the number of algorithms combined. The predictive accuracy increased and reached optimal performance when 
two or three tools were combined, and then decrease as sensitivity decrease fast when more tools were added 
(Figure S3).

There are meta-predictors, such as MetaLR and MetaSVM15, which integrate multiple results from different 
tools using machine learning approaches, i.e. support vector machine and logistic regression. Though MetaSVM 
and MetaLR have high accuracy compared to the other tools analyzed in this study, their sensitivity is lower 
(Figure S1). We also found that MetaSVM and MetaLR show poor agreement with other predictors, despite that 
the two predictors themselves share the highest predictive consistency (Figure S2). Combination of several pre-
dictors using machine learning approach also has problems27.

The intuitive explanation for the poor degree of agreement is that computational tools make predictive errors, 
or they do a good job in predicting pathogenesis, for different variants. As each method has its own strength and 
weakness, we assume that for each method their competition superiority is associated with the specific features 
of the studied variants or genes. We, therefore, evaluate merits and limitations in computational predictions and 
analyze in a broader view the evidence that may implicate possible roles for the variants in pathogenesis.

The evidence from conservation analysis needs to be treated with caution.  Most computational 
methods review the degree of conservation at the affected genomic loci to estimate deleteriousness. Comparative 
sequence analysis is a powerful source of information regarding deleteriousness, however, ancestral sequences 
that have evolved slowly by chance are indistinguishable and that functional divergence will lessen the correlation 
between past constraint and present-day deleteriousness28,29.

To evaluate possible impacts of evolutionary constraint on the computational predictions, we first used the 
phastCons score as a measurement of evolutionary conservation and investigated the correlation between del-
eteriousness and phastCons scores derived with the parameters for the three species set (vertebrates, placental 
mammals, and primates). We found that some benign variants are located at positions highly conserved across 
vertebrate but less conserved among mammals or primates, and some are located at positions conserved among 
primates but not conserved when compared to non-primate vertebrates (Figure S4a,b). The same observation was 
found for pathogenic variants and DM variants (Figure S4e,f,i,j).

We further used the phyloP score as a measure of evolutional constraint. The phyloP scores represent as 
the log (P-value) under a null hypothesis of neutral evolution and can indicate both accelerated evolution as 
well as evolutionary conservation. As shown in Supplementary Figure S4, some benign variants are located at 
positions with positive phyloP scores, indicating conservation, and some are located at positions with negative 
phyloP scores, indicating fast-evolving. By contrast, most pathogenic variants are located at conserved positions 
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indicated by the high positive phyloP scores (Figure S4g,h,k,l). It’s worth noting that some positions of pathogenic 
variants and DM variants are conserved when taking the vertebrate evolutionary branch into consideration, while 
appearing to be faster-evolving after primate speciation (Figure S4h,l).

For all the twelve computational models analyzed here, high proportion of benign variants at highly conserved 
positions are falsely predicted (Fig. 1a). Meanwhile, pathogenic/DM variants at the less conserved positions are 
more frequently predicted to be benign (Fig. 1b,c). The data indicates that computational tools are generally 
overly dependent on the conservation feature of the variants.

We further integrated the 1000 Genomes Project data4 to check possible pathogenesis of the mutations that 
change back to the ancestral state. Ancestral alleles of the single nucleotide polymorphism sites were inferred 
from a six-way primate alignment4. We found thirty-five mutations, which change back to the ancestral state, 
were assigned to be pathogenic either by ClinVar database or by HGMD database. These thirty-five mutations are 
located in thirty-three genes, and most of these human genes are highly conserved across species, i.e. only one 
copy of orthologues was found in many species based on the Ensembl gene annotation system30 (Table 1). GSEA 
analysis31 shows enrichment of these gene sets in GO_SYSTEM_PROCESS (Figure S5), which is a multicellular 
organismal process carried out by any of the organs or tissues in an organ system. The data suggest that the new 
mutant alleles are favored while the old alleles turn out to be detrimental, therefore it is possible that the corre-
sponding process in human might have already adapted to changing to different environments. Though most 
mutations that change back to the ancestral state have a benign effect (Figure S6a) and they are enriched in the 
categories other than the disease causing category (Figure S6b), the fact that some of them will cause disorders 
calls us the attention that a good knowledge of the evolutionary roles of the associated genes will help in figuring 
out the causal alleles.

Variation between prediction scores of the four alleles at non-degenerate sites.  For the 
non-degenerate sites, we first compared the maximum prediction score of the four different nucleotides to find 
the differences. We observed across all the twelve prediction tools that the maximum prediction score of patho-
genic/DM sites is significantly higher than that of the other three groups of sites (Fig. 2a). We next examined the 
coefficient of variation (CV), which is a relative standard deviation to measure the degree of variation between the 
prediction scores of the four different nucleotides. The data showed that pathogenic/DM sites have much lower 
CVs compared to the other three groups of sites (Fig. 2b), indicating pathogenic/DM sites are more likely to be 
less tolerant to change itself rather than types of change in amino acid.

For the mutations at non-degenerate sites analyzed here, amino acid sites of pathogenic substitutions show a 
distinct distribution in the classes of protein domains compared to the sites of benign substitutions (Figure S7). 
As many computational methods use structural approaches to predict the functional effect of protein allelic var-
iants, for the sites of pathogenic variants, the low CVs may indicate that any amino acid change would lead to 
change in the function of a protein domain.

We next investigated whether there exists any relationship between the degree of conservation and the pre-
dictions. For both sites of pathogenic/DM variants and sites of benign variants, Supplementary Figure S8 shows 
that there is no obvious correlation between conservation scores and the maximum prediction score, as well as 
between conservation scores and the CV score of the four prediction values. The data indicate that the conserva-
tion degree of a non-degenerate site may be less likely to influence the effects of mutations.

We further investigated the difference in conservation degree between the site groups using four conservation 
measurements, i.e. phastCons and phyloP scores derived from vertebrates or placental mammals model. The 
phastCons scores of sites of pathogenic variants are much higher and exhibit a remarkably narrow distribution 
compared to the sites of benign variants (Figure S9a); meanwhile, less conserved sites of pathogenic/DM variants 
(Figure S9f~m) and highly conserved sites of benign variants were also observed (Figure S9b~e). Both phastCons 

Figure 1.  Overreliance on the degree of conservation in pathogenicity predictions. (a) Percentage of highly 
conserved positions of false-positive (FP) variants. (b,c) Percentage of lowly conserved positions of variants 
with false negative (FN) predictions for pathogenic variants annotated by ClinVar (b) and for DM variants 
annotated by HGMD (c). The dashed lines show the proportion of positions with high (a) or low (b,c) 
conservation score over all positions of benign (a) or pathogenic/DM (b,c) variants. The vertebrate phastCons 
score cutoff for high or low level conservation is set at 0.5. The observed excess for the positions are evaluated by 
p-values based on Pearson’s chi-squared test with respect to the proportion of all annotated positions of benign/
pathogenic/DM variants. The significances are indicated as * for p < 0.05, ** for p < 10−5 and *** for p < 10−10.
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and phyloP scores can be used to measure conservation, the most important difference is that the phyloP scores 
reflect individual alignment columns. This property makes phyloP more appropriate than phastCons for eval-
uating signatures of selection at particular bases in the genome32. The difference in phyloP scores derived from 
placental mammals model is significant between sites of pathogenic and benign variants (Figure S9a), while no 
significant difference was observed in phyloP scores derived from vertebrates model (Figure S9a), indicating that 
some types of evolutionary events, occurring along branches of the mammalian phylogenetic tree, may bring 
certain information to the different clinical effects of mutations at some of these non-degenerate sites.

Pathogenicity of variants is subject to disease susceptibility of the gene.  Referring to the 1000 
Genomes Project data33, we observed an obvious positive correlation between the occurrence frequency of nucle-
otide variations and the total length of the exons of a gene (Figure S10a), yet rates of SNV occurrence vary con-
siderably among genes, from 15/Kb to 80/Kb with an average rate of 30/Kb. No obvious correlation was observed 
between the occurrence rate of nucleotide variations and the number of pathogenic/DM variations in genes 
(Figure S10b,c). Some genes contain as much or even more sites of pathogenic variants than the nucleotide varia-
tions detected by the 1000 Genomes Project, while in some other genes pathogenic variations are rarely observed 
relative to a large number of nucleotide variations. This difference between genes indicates that disease suscep-
tibility of genes would be informative for determining the pathogenicity of a mutation occurred in that genes.

Symbol

No. of species

Sequence variant ClinVar annotation
HGMD 
annotation*1:1 orthologue

1:many 
orthologue

ABCA4 112 15 NM_000350.2:c.1268 A>G Benign;Likely benign DM

ABCC6 88 3
NM_001171.5:c.3961 G>A Pathogenic —

NM_001171.5:c.1233 T>C Likely benign DM

ANK1 81 45 NM_000037.3:c.-108T>C Pathogenic DM?

ARSA 117 11 NM_000487.5:c.1178 C>G Benign;Pathogenic DP

ASPM 123 5 NM_018136.4:c.7787 T>C Benign DM

BCL11A 127 2 NM_018014.3:c.386-24278 G>A Likely pathogenic —

CBS 0 88 NM_000071.2:c.992 C>T Pathogenic —

CLCN7 130 1 NM_001287.5:c.1252 G>A Benign DM

COL4A4 86 12 NM_000092.4:c.3979 G>A Likely pathogenic —

CRYAB 118 8 NM_001885.2:c.166 C>T Pathogenic —

DHCR7 125 4 NM_001360.2:c.438 T>C Benign DM

DPYD 126 6 NM_000110.3:c.85 T>C Pathogenic DFP

DRAM2 116 13 NM_178454.4:c.131 G>A Pathogenic —

EYA1 130 2 NM_000503.5:c.1755T>C Benign DM

FBN1 113 12 NM_000138.4:c.2180 G>A Pathogenic —

FGFR1 88 43 NM_023110.2:c.899 T>C Pathogenic —

GJB2 69 14 NM_004004.5:c.487 A>G Likely benign;Pathogenic —

HEPACAM 81 48 NM_152722.4:c.274 C>T Pathogenic —

KEL 68 2 NM_000420.2:c.1790T>C Pathogenic FP

KRT14 61 0 NM_000526.4:c.369 T>C — DM

MAK 110 21 NM_001242957.1:c.37 G>A Pathogenic —

MYH7 109 9 NM_000257.3:c.5507 C>G Pathogenic —

NPHS1 121 3 NM_004646.3:c.1219 C>T Likely pathogenic —

OTOF 127 3 NM_194248.2:c.2736 G>C Benign DM

RAF1 112 16 NM_002880.3:c.781 C>G Pathogenic —

RARS2 132 0 NM_020320.3:c.953 G>A Likely pathogenic —

SCN5A 68 2 NM_198056.2:c.1673A>G Benign;Pathogenic DFP

SLC17A5 81 2 NM_012434.4:c.983 G>A Likely pathogenic —

SLC45A2 131 2
NM_016180.4:c.1122 C>G Association;Protective DM

NM_016180.4:c.987 A>G Benign DM

SPG11 125 7 NM_025137.3:c.7023 C>T Benign DM

STAT1 117 14 NM_007315.3:c.494 A>G Pathogenic —

TAS2R16 25 1 NM_016945.2:c.516 T>G Pathogenic;risk factor DFP

XDH 128 6 NM_000379.3:c.3276 + 12 A>G Likely pathogenic —

Table 1.  Pathogenic mutations from derived allele to ancestral allele. *Abbreviations for HGMD annotation 
items: DM: Disease causing mutation; DM?: Disease causing mutation?; DP: Disease-associated polymorphism; 
DFP: Disease-associated polymorphism with supporting functional evidence; FP: In vitro/laboratory or in vivo 
functional polymorphism.

https://doi.org/10.1038/s41598-018-38189-9


www.nature.com/scientificreports/

5Scientific Reports |          (2019) 9:1667  | https://doi.org/10.1038/s41598-018-38189-9

When considering all the variations in a gene as a whole, for the computational tools with relatively high 
false-positive rates, the false-negatively predicted variations gathered in certain specific genes, while the 
false-positively predicted variations increased with the increase of benign variations (Figure S11). A similar event 
was observed for the computational tools with relatively high false-negative rates. These observations indicated 
the necessity of gene-level analysis when making predictions.

It was suggested that it is important to know the sensitivity for variations in each gene/protein functional 
category34,35. We, therefore, investigated possible functional enrichment of genes having more or none patho-
genic variations. We found that those genes, where no pathogenic variations were annotated neither by ClinVar 
database nor by HGMD database and more than fifty polymorphic sites were detected by the 1000 Genomes 
Project (disease-tolerant genes for short), are functionally enriched in transcriptional biomarkers of certain kinds 
of diseases etc. (GSEA analysis, FDR adjusted p-value < 0.05). Genes containing a high proportion (>30%) of 
pathogenic variations (disease-sensitive genes for short) are functionally enriched in cardiomyopathy, muscle 
filament sliding and muscle protein etc. (GSEA analysis, FDR adjusted p-value < 0.05). Overviews of GSEA anal-
ysis are illustrated in Supplementary Figure S12 for disease-sensitive genes and in Supplementary Figure S13 for 
disease-tolerant genes.

Computational tools encounter the same question in predictive accuracy when dealing with these two extreme 
types of genes, i.e. disease-tolerant genes and disease-sensitive genes (Figure S14). We further used the online 
server, GAVIN36, which applies gene-specific thresholding for classifications to investigate the gene-specific dis-
ease susceptibility. Most of the disease-sensitive genes are assigned to GAVIN categories which is significantly 
predictive for pathogenicity. The data indicate that gene level analysis, e.g. protein functional analysis and analysis 
on disease susceptibility etc, is an important part of curating nucleotide variants to determine whether they are 
pathogenic.

When looking at the frequency of conserved nucleotide sites where variations were annotated by ClinVar 
database, we found that disease-sensitive genes contain more conserved sites than disease-tolerant genes, which 
is reasonable; however, they contain less conserved nucleotide sites when compared to all the other ClinVar genes 
out of these two extreme types of genes (Figure S15). This observation was yet another reminder that conserva-
tion criteria should be taken carefully when inferring possible pathogenesis of a mutation.

Pathogenicity of nucleotide variations from the gene-level perspective.  It was frequently sug-
gested that candidate-gene prioritization could be developed based on gene-expression data or protein interac-
tome based features37,38. Precise functions of genes are frequently dependent on the presence of their proteins 
expressed in a tissue-specific manner, and germ-line mutations causing the specific spatiotemporal damaged 
function of the genes are more likely to cause heritable diseases39,40.

We, therefore, examined the empirical cumulative distributions which present the proportion of genes as a 
function of the maximum expression level and tissue specificity of expression in the 53 distinct types of human 
normal tissues using gene expression data from the Genotype-Tissue Expression (GTEx) Project41. Compared 
to all the genes analyzed, fewer genes containing pathogenic variant(s) (the annotations are based on ClinVar 
database; ClinVar genes for short) show extremely high level of expression abundance and tissue-specificity as 
well (Fig. 3a,b, Kolmogorov-Smirnov test, p < 2 × 10−16), similar results were obtained in HGMD genes (genes 
containing DM variants annotated by HGMD). On account of the positive correlation between maximum level 

Figure 2.  The maximum (a) and coefficient of variation (b) of prediction scores assigned to the four types of 
nucleotides at the non-degenerated sites corresponding to the four groups of variants annotated by ClinVar and 
DM variants annotated by HGMD. Wilcoxon tests were used to test the significance of the differences between 
groups of variants. Significant differences were observed between pathogenic variants and benign variants for 
all the computational tools.
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and tissue specificity of gene expression (Pearson’s product moment correlation coefficient, cor = 0.97 and 
p < 2 × 10−16), a straightforward explanation for this observation is that variations in genes, which are expressed 
with extremely high tissue specificity, are less likely disrupt the normal function of a cell; however, the possibility 
of damage to specific tissues which has not yet been found can neither be entirely excluded.

We further used the ranked node degree to characterize the importance of ClinVar/HGMD gene products 
in the overall protein-protein interaction network topology. Compare to all the genes analyzed, node degree of 
protein products from ClinVar/HGMD genes are generally much higher (Fig. 3c, Kolmogorov-Smirnov test, 
p < 2 × 10−16), indicating the importance for ClinVar/HGMD genes in network communication and information 
transfer.

We observed significant differences in gene activity between groups of genes which are classified by the num-
ber of pathogenic/DM variants detected in the exonic regions. The more sites of pathogenic variants are observed 
in a gene, there is more possibility that the gene is expressed in high abundance or in a high tissue-specific man-
ner (Fig. 3d,e,g,h). Genes contain high number of pathogenic variants, their products tend to have high degree 
in protein-protein interaction network (Fig. 3f,i). No significant differences were observed when classifying the 
genes based on the density of pathogenic variants over the total exons’ length of the gene (data not shown). The 
data indicate that the occurrences of the pathogenic variations are non-randomly distributed in genes.

Pathogenicity of nucleotide variations due to involvement in the regulatory process.  Control 
of gene expression programs has an important impact on the misregulation of gene expression in disease. Many 
diseases and syndromes can be caused by mutations in DNA regulatory sequences42 as well as the regulators43. 
PolyComb group proteins modify histones and silence target genes by binding PolyComb-responsive elements44. 
As Polycomb binds to large domains that span entire gene sequence45, some mutations occurred in the coding 
region may affect the binding without disrupting the protein function. Unfortunately, most models look at the 

Figure 3.  Characterization of pathogenicity at the gene level. Cumulative probability distributions of the 
maximum expression level (a) and the tissue specificity of expression (b) among the 53 human normal tissues 
examined, and the ranked protein-protein interaction network degree (c) for all genes, ClinVar genes and 
HGMD genes. (d,e,f,g,h,i) Analysis on ClinVar genes and HGMD genes corresponding to the number of 
pathogenic variants found in the gene. Cumulative probability distributions of the maximum expression level 
(d,g), the tissue specificity of expression (e,h) and the ranked protein-protein interaction network degree (f,i) 
for genes carrying at least one sites of pathogenic variants (n > 0) and genes carrying more than 20 sites of 
pathogenic variants. ClinVar genes are defined as genes that contain pathogenic variant(s) annotated by ClinVar 
database, and HGMD genes are defined as genes that contain DM variant(s) annotated by HGMD database. 
Kolmogorov-Smirnov tests were used to test the significance of the differences between gene groups. P-values 
from pairwise comparisons are shown.
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effects of DNA mutations on the shape of the protein fragment but not on the intermediate steps of transcription 
and translation.

We, therefore, studied the preference of nucleotide sites for repressed PolyComb state taking variants path-
ogenicity into account. We found that more sites of pathogenic/DM variants tend to be in repressed or weak 
repressed PolyComb state in multiple types of cells compared to the sites of benign variants (Fig. 4a,b). One pos-
sible explanation would be, that mutation at some sites would lead to a gain-of-function due to a reprieve from 
the repressed state which shouldn’t happen in multiple biological conditions, consequently, the activated allele 
would bring a detrimental effect even though it does not destroy the protein function or not to a serious extent.

In addition, we observed that sites of false-negative variants are more frequently found in repressed or weak 
repressed PolyComb state compared to the sites with true-positive predictions (Fig. 4c,d). Epigenetics can affect 
the penetrance of genes through genomic imprinting by the paternal or maternal allele or through epigenetic reg-
ulation resulting from environmental or other personal factors. Specific DNA sequences contribute to the fidelity 
of epigenetic propagation and reducing spurious epigenetic inactivation events46. It has been reported that DNA 
sequence motif is required for the PolyComb proteins silencing47. Considering most computational tools take 
effects on protein function as a major criterion for classification, the data suggest that the destroyed functions due 
to some false-negative variants may be involved in the epigenetic process rather than in the aberrant activity of 
the protein product.

Figure 4.  Percentage of cell types in PolyComb state for the non-synonymous sites. Sites of pathogenic variants 
annotated by ClinVar and DM variants annotated by HGMD are frequently found in repressed PolyComb state 
(a) as well as in weak repressed PolyComb state. (b) For most computational models analyzed in this study, 
sites of variants with false-negative predictions (red) are more frequently found in repressed or weak repressed 
PolyComb state compared to the sites of variants with true-positive predictions (blue) for pathogenic variants 
annotated by ClinVar (c) and DM variants annotated by HGMD. (d) Wilcoxon tests were used to test the 
significance of the differences. P-values are shown.
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Discussion
Although there have been advances in our knowledge of disease alleles, we are still far from having a complete 
understanding of the pathogenicity of a mutation. Our analysis adds more to our knowledge of non-synonymous 
SNVs’ pathogenicity, thus will benefit the field of clinical genetics.

The data suggest that existing prediction models rely too heavily on conservation scores, resulting in alarming 
numbers of Type I and Type II errors. We found that genomic sites show distinct levels of conservation inferred 
over different phylogenetic trees. Understanding this difference has important implications for the interpretation 
of sequencing data. Different functional elements may be constrained over different phylogenetic spans, and the 
depth of constraint may also vary. Nucleotides at certain genomic positions may be different along divergent 
branches of the vertebrate tree of life, nonetheless, show some constraint within some subset of the mammalian 
phylogeny, and vice versa. We suggested that conservation criteria should be taken carefully when inferring pos-
sible pathogenesis of mutations, and that a good knowledge about the evolution of the candidate genes’ function 
will help guide us in choosing the appropriate conservation measures to improve variant assessment.

We found that many genomic sites of false-negative variants tend to be in repressed PolyComb state in mul-
tiple types of cells. The data indicate that some pathogenic mutations may not alter the protein function, or not 
to a serious extent as to destroy the protein function, but lead to a defect in the epigenetic modification; the 
mutated allele is thus activated in multiple biological conditions resulting in disorder. Abnormal methylation, 
affecting multiple loci, has been identified in the genomes of patients with genetic disorders, such as a subset of 
Beckwith–Wiedemann syndrome and Silver–Russell syndrome patients48,49. It is necessary to recheck the pos-
sibility of pathogenicity of a non-synonymous SNVs which is predicted to be benign, e.g., the possibility of its 
involvement in the regulatory process that may destroy the protein function rather than the protein structure. 
Integrative analysis across multiple omics data along with the whole genome/exome sequencing data could help 
us gain a systematic perspective to identify disease-associated mutations, and it also could help generating robust 
and testable hypotheses.

Our work suggests a joint recommendation for the interpretation of non-synonymous variants. To implicate 
a variant as pathogenic requires multiple levels of evidence i.e. variant-level, gene-level and case-level (phenotype 
match). The fact that phenotype from a non-synonymous alteration of the coding gene may not constitute an 
adequate cause for the disease limits the accuracy of the variant-effect oriented prediction. An analysis combin-
ing variant-level features with gene-level stratification as well as combing predictions with experimental data is 
crucial to improve the pathogenesis interpretation of both the variant and the affected protein. Multiple classes 
of evidence, obtained through assays of patient-derived tissue or well-established cell or animal models of gene 
function, will contribute to pathogenic inferences. Such methods may not yet be applicable to every rare disease 
scenario, yet researchers should at the very least evaluate the variants taking advantage of public resources includ-
ing genetic, informatics and experimental data.

Materials and Methods
Data.  The annotated human (hg19) reference genome was downloaded from the UCSC Genome Browser50. 
From the UCSC Genome Browser50, we retrieved phyloP32 and phastCons51 conservation scores representing 
three different alignment types: vertebrate, primate and placental mammal for each position of variants. We 
collected single nucleotide variations from the 1000 Genomes Project data (phase 1)4, and characterized the 
derived allele and ancestral allele inferred from a six-way primate alignment4. Annotations of clinically significant 
variants were downloaded from ClinVar database24. Allele information for HGMD variants was obtained from 
HGMD database25. Epigenomic maps of histones modified by PolyComb group proteins across 127 human cells 
were downloaded from Roadmap Epigenomics52.

Variant filtering and prioritization.  Since all the prediction scores had different output scales and thus 
couldn’t be directly compared, we used the rank-transformed values, provided by dbNSFP20 to make compari-
sons. For each computational methods, the rankscore for a variant is the ratio of the rank of the score predicted 
by the method over the total number of scores in dbNSFP20. The FATHMM-XF13 predictions are fetched from the 
web server. Variants are predicted to be pathogenic by CADD (ranked CADD score >0.5) and DANN (ranked 
DANN score >0.5). The pathogenic thresholds for the rest computational methods are taken as suggested by 
dbNSFP20.

Performance of combined tools.  For the combination analysis, the criterion to categorize a variant as 
pathogenic or non-pathogenic is that all the algorithms tested (for each combination) agree on the prediction. 
We used the pathogenic thresholds for each computational tools as described above, the total number of true 
positives and the total number of true negatives are thus counted. The performances of all possible combinations 
(4095 different combinations) of the twelve tools are calculated.

Inference of orthologous genes.  Orthologues inferred from gene trees are determined based on Ensembl 
Genomes30. Orthologues are defined in Ensembl as genes for which the most common ancestor node is a spe-
ciation event. The data used in this study is based on the comparison of 137 species, including invertebrates, in 
Ensembl database. 1:1 orthologue means only one copy is found in each species, and 1:many orthologue means 
one gene in one species is orthologous to multiple genes in another species.

Ancestral alleles of SNP sites.  Ancestral alleles of SNP sites are extracted from 1000 Genomes Project 
data4. Ancestral states are inferred from the Pecan alignments. The confidence in the ancestral call is determined 
by comparing the call to the ancestor of the ancestral sequence as well as the ‘sister’ sequence of the query species4.
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Disease sensitivity genes.  Disease-sensitive genes are defined as genes containing high proportion 
(>30%) of pathogenic variations annotated by ClinVar or HGMD. Disease-tolerant genes are defined as genes 
where no pathogenic variations was annotated neither by ClinVar database nor by HGMD database so far, while 
more than fifty polymorphic sites were detected by the 1000 Genomes Project.

Abundance and tissue-specificity of gene expression.  We downloaded normalized gene expression 
data for 53 distinct types of human normal tissues from the Genotype-Tissue Expression (GTEx) Project41. To 
avoid variability in gene expression patterns between different experimental or biological conditions, the maxi-
mum abundance among the tissues is used to measure gene expression level. We calculated the expression speci-
ficity of a gene according to the information content53, + ∑ =n p plog logi

n
i x i2 1 , where n is the number of tissues, and 

pi is the percentage of expression abundance in tissue i.

Functional enrichment of genes.  Gene Ontology (GO) enrichment analysis was performed using DAVID 
(http://david.abcc.ncifcrf.gov)54 using Ensembl Gene IDs and the entire human genome as a background model. 
Gene set enrichment analysis (GSEA) was performed using preexisting human gene set annotations from the 
Broad Institute31. P-values were adjusted by FDR.

Maximum and coefficient of variation of prediction scores for the non-degenerate sites.  We 
chose the maximum of the prediction scores assigned to the four different nucleotides, i.e. A/T/G/C, to evaluate 
prediction performance on the non-degenerate sites. The coefficient of variation (CV) of the prediction scores 
assigned to the four different nucleotides at a non-degenerate site is calculated as CV /σ µ= 55, 

,(S )
3

S
4

i i i i
2

µσ = =∑ − µ ∑ , where Si is the prediction score of nucleotide i, and ∈i (A, T, G, C).
All statistical analysis were performed using the computing environment R56.
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