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Diagnostic accuracy of circulating-free DNA for the
determination of MYCN amplification status in advanced-
stage neuroblastoma: a systematic review and meta-analysis
Ricky M. Trigg1,4, Suzanne D. Turner1, Jacqueline A. Shaw2 and Leila Jahangiri1,3

BACKGROUND: MYCN amplification (MNA) is the strongest indicator of poor prognosis in neuroblastoma (NB). This meta-analysis
aims to determine the diagnostic accuracy of MNA analysis in circulating-free DNA (cfDNA) from advanced-stage NB patients.
METHODS: A systematic review of electronic databases was conducted to identify studies exploring the detection of MNA in
plasma/serum cfDNA from NB patients at diagnosis using PCR methodology. Pooled estimates for sensitivity, specificity and
diagnostic odds ratio (DOR) were calculated by conducting a bivariate/HSROC random-effects meta-analysis.
RESULTS: Seven studies, with a total of 529 advanced-stage patients, were eligible. The pooled sensitivity of cfDNA-based MNA
analysis was 0.908 (95% CI, 0.818–0.956), the pooled specificity was 0.976 (0.940–0.991) and the DOR was 410.0 (−103.6 to 923.7).
Sub-grouped by INSS stage, the sensitivity for stage 3 and 4 patients was 0.832 (0.677–0.921) and 0.930 (0.834–0.972), respectively.
The specificity was 0.999 (0.109–1.000) and 0.974 (0.937–0.990), respectively, and the DOR was 7855.2 (−66267.0 to 81977.4) and
508.7 (−85.8 to 1103.2), respectively.
CONCLUSIONS: MNA analysis in cfDNA using PCR methodology represents a non-invasive approach to rapidly and accurately
determine MNA status in patients with advanced-stage NB. Standardised methodology must be developed before this diagnostic
test can enter the clinic.

British Journal of Cancer (2020) 122:1077–1084; https://doi.org/10.1038/s41416-020-0740-y

BACKGROUND
MYCN amplification (MNA) is detected in around 20% of
neuroblastoma (NB) patients.1 MNA is associated with advanced
tumour stage and rapid disease progression, and it is the strongest
indicator of poor prognosis for NB.2 Methods currently used to
determine MNA status include interphase fluorescence in situ
hybridisation (FISH), polymerase chain reaction (PCR), multiplex
ligation-dependent probe amplification (MLPA) and array com-
parative genomic hybridisation (aCGH) on tumour material
obtained via biopsy.3 While FISH has been the gold standard
technique for analysis of gene dosage in cancer specimens over
the past few decades, it involves subjective evaluation of images
by experienced diagnosticians and requires a fluorescent micro-
scope to assess large cell populations.4

The biopsy process required for tissue analysis is invasive, and
tumours are not always accessible for genetic analysis. Moreover,
analysis of biopsy material can be confounded in tumours with an
abundance of non-malignant cells5 and with heterogeneous
patterns of MNA;6,7 in recent studies, intratumoural heterogeneity
with respect to MNA has been estimated to occur at a frequency
of 9.7–10.3%.8,9 An alternative approach to tissue-based MNA
analysis involves PCR-based analysis of MYCN copy number in
circulating-free DNA (cfDNA) isolated from plasma or serum.10

This “liquid biopsy” is minimally invasive and may overcome
genetic heterogeneity as the method surveys aggregate tumour
DNA shed into blood.11 In addition, the rapidity of blood
processing and PCR analysis enables fast determination of MNA
status and assignment of the appropriate therapy for critically ill
patients, with a potential sample-to-result turnaround time of less
than a day.12

The detection of MNA in cfDNA of NB patients was first
demonstrated by Combaret et al. in 2002 using a simple qPCR
assay targeting MYCN and a reference gene (RPPH1).13 The authors
reported high concordance of the MNA status between tumour
and serum samples across all disease stages. Subsequent studies
have used (q)PCR assays targeting MYCN and NAGK (also on
chromosome 2p) and have consistently reported high sensitivity
and specificity for MNA analysis in cfDNA of patients with
advanced disease.14–19 For example, Yagyu et al. recently reported
a sensitivity and specificity of 0.87 (95% CI, 0.72–0.96) and 0.97
(95% CI, 0.84–1.0) among 71 patients with stage 4 NB.17 While no
clinical trials of NB have formally incorporated cfDNA-based MNA
analysis, the aforementioned studies have recruited several
hundred patients across multiple disease stages and used similar
PCR methodology to measure MYCN copy number.14–19 Here, we
perform a meta-analysis to determine the diagnostic accuracy of
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MNA analysis in cfDNA from patients with advanced-stage (INSS
stages 3 and 4) NB.

METHODS
This meta-analysis was designed and executed in accordance with
PRISMA-DTA reporting guidelines.20

Literature search
A comprehensive literature search was undertaken to identify all
published studies reporting the sensitivity and specificity of
cfDNA-based MYCN analysis using PCR methodology. The follow-
ing electronic databases were searched from inception to August
2019: the Cochrane Central Register of Controlled Trials (CEN-
TRAL), EMBASE, PubMed/MEDLINE and Web of Science Con-
ference Proceedings Citation Index-Science (CPCI-S). The search
strategy comprised the terms “neuroblastoma”, “MYCN”, “circulat-
ing-free DNA” and terms synonymous with “circulating-free DNA”,
including “ccfDNA”, “cfDNA”, “ctDNA”, “cell-free DNA”, “cell free
DNA”, “circulating DNA”, “circulating free DNA”, “circulating
tumour DNA”, “free DNA”, “free tumour DNA”, “plasma” and
“serum”. Keywords were combined using Boolean operators,
translated into database-specific syntax, and searched for in the
title and abstract only. The search was limited to the English
language. Supplementary Information 1 details the search strings
used for each database. Additional studies were identified through
a manual search of bibliographies in included studies and relevant
narrative reviews. Authors of the following publications were
contacted by email for further information: Combaret et al.12,15

and Yagyu et al.17

Selection criteria
Studies investigating the detection of MNA in plasma or serum
cfDNA of NB patients at diagnosis using PCR methodology
proceeded to full-text review. The criteria for inclusion were as
follows: (1) diagnosis of neuroblastoma confirmed by tumour
histology; and (2) matched cfDNA and tumour biopsy material;
and (3) use of PCR methodology to detect MNA. The criteria for
exclusion were as follows: (1) insufficient data available to
determine diagnostic accuracy using 2 × 2 tables (after author
contact); (2) absence of disease stage data; and (3) duplicate
publication. All included and excluded studies were verified for
eligibility by two independent reviewers (R.M.T. and L.J.).

Data extraction
The following data were independently extracted into an
electronic table and assessed by R.M.T. and L.J.: first author name,
journal, year of publication, number of patients, baseline patient
characteristics (age, gender and INSS tumour stage), blood
specimen type (plasma or serum), cfDNA isolation method, MYCN
PCR method, true positive (TP), false negative (FN), true negative
(TN) and false positive (FP) rates.

Quality assessment
The overall quality of the included studies was determined by two
independent reviewers (R.M.T. and L.J.) using QUADAS-2,21 a tool
developed for the quality assessment of diagnostic accuracy
studies. This tool comprises four domains: patient selection, index
test, reference standard, and flow and timing, and each domain is
assessed for risk of bias and applicability.

Statistical analysis
MNA status in biopsy tissue as determined by FISH or Southern
blot was considered the reference standard. For each study and
each INSS tumour stage, 2 × 2 contingency tables were populated
with TP (MNA detected in both cfDNA and tumour tissue), FN
(MNA detected in tumour tissue but not cfDNA), TN (MNA

detected in neither cfDNA nor tumour tissue), and FP (MNA
detected in cfDNA but not tumour tissue) data. Diagnostic odds
ratio (DOR), sensitivity, specificity, positive likelihood ratio (PLR)
and negative likelihood ratio (NLR) were calculated along with
corresponding 95% confidence intervals (95% CI) for each study
in Meta-DiSc v1.4 statistical software.22 Haldane–Anscombe
correction23,24 was used to avoid errors when dividing by zero
in contingency table data, where appropriate. In all, 2 × 2
contingency data were imported into MetaDTA25 (https://crsu.
shinyapps.io/dta_ma_1_43/), a web-based application for fitting
the binomial model of Chu and Cole.26 In MetaDTA, the model is
fitted as a generalised linear mixed-effect model using the glmer
function from the R package lme4.27 Percentage study weights
were calculated in MetaDTA based on a decomposition of Fisher’s
information matrix, according to the recent methodology of Burke
et al.28 Deeks’ funnel plots were generated by plotting, for each
study, the natural logarithm of the DOR against the inverse root of
the effective sample size (ESS).29 The ESS is calculated from
the number of diseased (nd) and healthy (nh) subjects: (4 × nd ×
nh)/(nd+ nh). Deeks’ asymmetry test was conducted by linear
regression analysis.

RESULTS
Studies assessed
A comprehensive search of electronic databases identified a total
of 167 studies, with twelve studies reaching the initial criteria for
inclusion. Studies were subsequently excluded due to the absence
of data required to determine diagnostic accuracy (n= 4), absence
of INSS stage data (n= 4), and duplicate publication (n= 1),
leaving a total of seven studies for meta-analysis (Fig. 1). These
studies, published between 2002 and 2016, recruited a total of 844
NB patients, most of whom were assessed for MNA status at
diagnosis by FISH and/or Southern blot of biopsy tissue. All of the
studies included employed qPCR (n= 6) and/or conventional PCR
(n= 2) to analyse MNA in cfDNA isolated from plasma (n= 2)
or serum (n= 6) using the QIAamp DNA Blood Kit (Qiagen). In
4/5 studies that reported a cut-off for MYCN copy number in
cfDNA, a stringent MYCN-to-reference ratio of 5.0 could discrimi-
nate MNA+ and MNA− patients. The main characteristics of the
studies included are summarised in Table 1.

Diagnostic accuracy of cfDNA-based MNA analysis
An initial analysis was conducted across all tumour stages
(Supplementary Table 1). Since very few patients with localised
(stage 1 and 2) or stage 4S disease were recruited to the seven
studies, and MNA is uncommon, these patient sub-groups could
not be reliably meta-analysed and were therefore excluded.
Sensitivity, specificity and likelihood ratios for the remaining 529
patients with advanced-stage (stage 3 and 4) disease are reported
for each study in Table 2.
Further, we calculated estimated pooled data and performed

sub-group analysis (Figs. 2 and 3; Tables 3 and 4). Specifically,
using a bivariate random-effects model, the estimated pooled
sensitivity of cfDNA was 0.908 (95% CI, 0.818–0.956) and the
estimated pooled specificity was 0.976 (0.940–0.991) (Fig. 2a;
Table 4). Estimates of the pooled positive and negative likelihood
ratios (PLR, NLR) were 38.6 (1.8–75.5) and 0.094 (0.027–0.161),
respectively. The pooled diagnostic odds ratio (DOR) was 410.0
(−103.6 to 923.7) (Table 4) and the pooled hierarchical summary
receiver operator characteristic (HSROC) curve was calculated
(Fig. 2b).
To determine whether disease stage could significantly

influence the accuracy of cfDNA-based MNA analysis, stage 3
and stage 4 patients were subjected to sub-group analyses. Per-
study sensitivity, specificity and likelihood ratios for each stage are
shown in Table 3. The estimated pooled sensitivity of cfDNA for
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Table 1. Main characteristics of the included studies.

Study Location Patient n by INSS stage
(MNA+/MNA−)

Reference
standard

Blood
specimen

cfDNA isolation kit MNA cut-off Assay Reference gene

1+ 2 3 4 4S

Combaret et al.13 France 1/24 5/8 25/33 1/5 SB plasma/serum QDB kit NR qPCR RPPH1

Gotoh et al.14 Japan 2/40 2/7 13/18 0/5 SB serum QDB kit (5 to) 10 qPCR NAGK

Combaret et al.12 France, Spain 0/25 4/19 11/19 1/6 SB serum QDB kit NR PCR IL1B

Combaret et al.15 Europe, USA 10/24 16/27 41/83 6/60 SB/FISH serum QDB kit 5 qPCR NAGK

Kojima et al.16 Japan 0/20 2/7 14/6 0/1 SB/FISH plasma QDB kit 2–5 qPCR NAGK

Yagyu et al.17 Japan, USA 6/38 12/14 38/33 1/6 SB/FISH serum QDB kit 5 qPCR NAGK

Ma et al.18 South Korea 0/31 1/13 9/49 0/2 FISH serum QDB kit 1.6 PCR NAGK

FISH fluorescence in situ hybridisation, NR not reported, SB Southern blot, QDB kit QIAamp DNA Blood kit.

Articles identified through
database search (n = 274)
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Articles after duplicates
removed (n = 167)

Articles screened with title
and abstract (n = 167)

Articles excluded for not meeting
inclusion criteria (n = 155)

Articles excluded (n = 5) for one or
more of the following reasons:

Insufficient data available to
determine diagnostic
accuracy using 2×2 tables (n
= 4);

Absence of disease stage
data (n = 4);

(ii)

(i)

Duplicate publication (n = 1).(iii)

Articles for full-text
review (n = 12)

Articles included in meta-
analysis (n = 7)

Fig. 1 Flow chart for study selection based on PRISMA-DTA guidelines.
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patients with stage 3 and 4 disease was 0.832 (0.677–0.921) and
0.930 (0.838–0.972), respectively, and the pooled specificity was
0.999 (0.109–1.000) and 0.974 (0.937–0.990), respectively (Fig. 3a,
b; Table 4). The pooled PLR for stage 3 and 4 patients was 1321.2
(−11172.2 to 13814.6) and 36.4 (3.6–69.3), respectively, and the
pooled NLR was 0.168 (0.048–0.288) and 0.072 (0.009–0.134),
respectively (Table 4). The pooled DOR was 7855.2 (−66267.0 to
81977.4) and 508.7 (−85.8 to 1103.2), respectively, and the pooled
HSROC curves were generated (Fig. 3c, d).

Assessment of threshold effect and publication bias
A Spearman’s correlation coefficient of −0.126 (p= 0.788)
between sensitivity and 1-specificity indicated the absence of a
threshold effect among the included studies. Furthermore, the
ROC plane did not show a curvilinear pattern characteristic of a
threshold effect (data not shown). Further investigation of DOR
revealed low heterogeneity due to non-threshold effect (data not
shown). The potential for publication bias was visually assessed by
Deeks’ funnel plot and statistically calculated by Deeks’ asymmetry
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Fig. 2 Estimated pooled sensitivity, specificity and hierarchical summary receiver operator characteristic (HSROC) curve in advanced-
stage patients. a Forest plots of sensitivity and specificity of cfDNA-based MNA analysis at diagnosis in NB patients with advanced-stage
disease. b HSROC curve analysis for patients with advanced-stage (stage 3 and 4) disease.

Table 2. DOR, sensitivity, specificity and likelihood ratios with calculated 95% confidence intervals for each study in patients with advanced-stage
(stage 3 and 4) NB.

Study DOR (95% CI) Sens. (95% CI) Spec. (95% CI) PLR (95% CI) NLR (95% CI)

Combaret et al.13 1160.0 (69.7–19320.1) 0.97 (0.83–0.99) 0.98 (0.87–1.00) 39.6 (5.7–275.0) 0.03 (0.01–0.24)

Gotoh et al.14 1581.0 (29.8–83804.6) 1.00 (0.80–1.00) 1.00 (0.87–1.00) 50.4 (3.2–785.2) 0.03 (0.00–0.49)

Combaret et al.12 117.0 (14.9–918.0) 0.87 (0.62–0.96) 0.95 (0.83–0.99) 16.5 (4.2–64.4) 0.14 (0.04–0.51)

Combaret et al.15 999.8 (57.4–17411.0) 0.82 (0.71–0.90) 1.00 (0.97–1.00) 181.8 (11.4–2896.3) 0.18 (0.11–0.31)

Kojima et al.16 891.0 (16.6–7940.6) 1.00 (0.81–1.00) 1.00 (0.77–1.00) 27.2 (1.8–413.8) 0.03 (0.00–0.47)

Yagyu et al.17 107.6 (25.3–457.4) 0.88 (0.76–0.94) 0.94 (0.83–0.98) 13.8 (4.6–41.4) 0.13 (0.06–0.27)

Ma et al.18 270.0 (22.2–3291.3) 0.90 (0.60–0.98) 0.97 (0.89–0.99) 27.9 (7.0–110.8) 0.10 (0.02–0.66)

DOR diagnostic odds ratio, NLR negative likelihood ratio, PLR positive likelihood ratio, Sens sensitivity, Spec specificity.
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test.29 No significant bias was found among the studies for stage 3
and 4 combined (p= 0.881), stage 3 alone (p= 0.503) and stage 4
alone (p= 0.465) (Fig. 4).

Assessment of study quality
The overall quality of the studies included in this meta-analysis
was evaluated with QUADAS-221 (Fig. 5). This tool was designed to
evaluate individual studies on the basis of patient selection, index
test, reference standard, and flow and timing. Study quality was
generally high with a low risk of bias and low concerns of
applicability. However, none of the studies determined the MNA
cut-off prior to analysis, and in three studies it was not specified
whether the cfDNA analyses were conducted in a blind manner or
with prior knowledge of tissue MNA status (reference standard).

DISCUSSION
MNA status is a critical factor that informs the prognostic and
therapeutic course of patients with NB.2 To overcome several
limitations of MNA analysis in biopsy tissue at diagnosis, studies
over the past two decades have investigated the utility of cfDNA
in plasma or serum as a tumour surrogate.30 The aim of this meta-
analysis was to determine the diagnostic accuracy of MNA analysis
in cfDNA of patients with NB using FISH or Southern blot as the
reference standard and a PCR method as the index test. The

comprehensive search strategy identified 12 studies, of which 7
were suitable for inclusion, assessing a total of 844 patients of all
INSS stages. Reflecting the very low incidence of MNA in patients
with stage 1, 2 and 4S disease,31–33 the seven included studies
individually recruited few or no MNA-positive patients from these
stage groups. Therefore, to avoid introducing significant bias to
the analysis, this study did not include stage 1, 2 or 4S patients in
the pooled or sub-group analyses, leaving 529 patients with
advanced-stage (stage 3 and 4) disease.
For patients with advanced-stage disease, pooled analysis

showed that MNA status was determined with high sensitivity
and almost perfect specificity (0.908 and 0.976, respectively).
Consequently, the diagnostic accuracy was very high, with a DOR
of 410.042. Given that the tumour-derived fraction of cfDNA
increases with tumour burden in many solid cancers including
NB,34,35 it was considered necessary to perform a sub-group
analysis on patients with stage 3 and stage 4 disease. While the
specificity for both patient sub-groups were 0.999 and 0.974 for
stage 3 and 4, respectively, sensitivity was lower for patients with
stage 3 disease relative to stage 4 (0.832 vs. 0.930, respectively).
This resulted in a higher global performance for metastatic
disease, as expected, given the high tumour burden in these
patients. It is noteworthy that while the rate of false positives
in this meta-analysis was very low among stage 3 and 4 patients
(2/137 and 6/392, respectively), these occurrences may be
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Fig. 3 Estimated pooled sensitivity, specificity and hierarchical summary receiver operator characteristic (HSROC) curve in stage 3 and
stage 4 patients. a, b Forest plots of sensitivity and specificity of cfDNA-based MNA analysis at diagnosis in NB patients with a stage 3 and
b stage 4 disease. c, d HSROC curve analysis for patients with c stage 3 and d stage 4 disease.
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attributable to intratumoural heterogeneity with respect to MNA,
leading to a negative result by FISH analysis of tissue and a
positive result by PCR analysis of cfDNA.
None of the included studies determined the cut-off MYCN/

reference gene ratio to define MNA prior to analysis, and the
implemented cut-off ratios were either wide-ranging or unre-
ported. However, a threshold effect was ruled out by Spearman’s
correlation coefficient and visual ROC plane analysis. Other
aspects of the study design were generally acceptable according

to the QUADAS-2 framework.21 A distinct strength of this meta-
analysis is the consistency in index test methodology between
studies; all studies isolated cfDNA using the same commercial kit,
employed a PCR technique and normalised MYCN to a single
reference gene. A potential source of heterogeneity was in the use
of plasma vs. serum as a source of cfDNA; whereas cfDNA in
plasma is stable for several hours post-venepuncture, a delay in
processing of serum as well as contamination by white blood cells
can result in the release of genomic DNA into the sample, thus

Table 3. DOR, sensitivity, specificity and likelihood ratios with calculated 95% confidence intervals for each study in patients sub-grouped by
INSS stage.

Study DOR (95% CI) Sens (95% CI) Spec (95% CI) PLR (95% CI) NLR (95% CI)

INSS stage 3

Combaret et al.13 51.0 (1.70–1525.8) 0.80 (0.38–0.96) 1.00 (0.68–1.00) 13.5 (0.9–207.6) 0.265 (0.066–1.068)

Gotoh et al.14 75.0 (1.16–4868.6) 1.00 (0.34–1.00) 1.00 (0.65–1.00) 13.3 (0.9–204.7) 0.178 (0.014–2.247)

Combaret et al.12 91.0 (3.05–2718.1) 0.75 (0.30–0.95) 1.00 (0.83–1.00) 28.0 (1.7–458.8) 0.308 (0.081–1.176)

Combaret et al.15 152.8 (7.60–3060.2) 0.75 (0.51–0.90) 1.00 (0.88–1.00) 41.2 (2.6–651.7) 0.270 (0.122–0.596)

Kojima et al.16 75.0 (1.16–4868.6) 1.00 (0.34–1.00) 1.00 (0.65–1.00) 13.3 (0.9–204.7) 0.178 (0.014–2.247)

Yagyu et al.17 66.0 (5.20–833.6) 0.92 (0.65–0.99) 0.86 (0.60–0.96) 6.4 (1.8–23.4) 0.097 (0.015–0.643)

Ma et al.18 81.0 (1.14–5778.7) 1.00 (0.21–1.00) 1.00 (0.77–1.00) 21.0 (1.2–358.4) 0.259 (0.023–2.865)

INSS stage 4

Combaret et al.13 1105.0 (43.2–28280.7) 1.00 (0.87–1.00) 0.97 (0.85–0.99) 22.2 (4.6–106.4) 0.020 (0.001–0.313)

Gotoh et al.14 999.0 (18.63–53582.1) 1.00 (0.77–1.00) 1.00 (0.82–1.00) 36.6 (2.4–565.8) 0.037 (0.002–0.558)

Combaret et al.12 85.0 (6.81–1061.0) 0.91 (0.62–0.98) 0.89 (0.69–0.97) 8.6 (2.3–32.5) 0.102 (0.016–0.663)

Combaret et al.15 912.08 (50.0–16628.0) 0.85 (0.72–0.93) 1.00 (0.96–1.00) 142.0 (8.9–2258.4) 0.156 (0.077–0.316)

Kojima et al.16 377.0 (6.7–21160.0) 1.00 (0.78–1.00) 1.00 (0.61–1.00) 13.5 (0.9–195.9) 0.036 (0.002–0.552)

Yagyu et al.17 211.2 (23.4–1908.8) 0.87 (0.73–0.94) 0.97 (0.85–0.99) 28.7 (4.1–198.2) 0.136 (0.060–0.308)

Ma et al.18 188.0 (15.2–2324.4) 0.89 (0.57–0.98) 0.96 (0.86–0.99) 21.8 (5.5–86.3) 0.116 (0.018–0.736)

DOR diagnostic odds ratio, NLR negative likelihood ratio, PLR positive likelihood ratio, Sens sensitivity, Spec specificity.

Table 4. Summary of the diagnostic accuracy of MNA assessment in cfDNA of patients with INSS stage 3 and/or 4 NB with calculated 95%
confidence intervals.

INSS stage Sens (95% CI) Spec (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI)

3 and 4 0.908 (0.818–0.956) 0.976 (0.940–0.991) 38.6 (1.8–75.5) 0.094 (0.027–0.161) 410.0 (−103.6–923.7)

3 0.832 (0.677–0.921) 0.999 (0.109–1.000) 1321.2 (−11172.2–13814.6) 0.168 (0.048–0.288) 7855.2 (−66267.0–81977.4)

4 0.930 (0.838–0.972) 0.974 (0.937–0.990) 36.4 (3.6–69.3) 0.072 (0.009–0.134) 508.7 (−85.8–1103.2)

DOR diagnostic odds ratio, NLR negative likelihood ratio, PLR positive likelihood ratio, Sens sensitivity, Spec specificity.
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potentially masking detection of MYCN gene amplification by high
levels of DNA from normal cells.36

The high diagnostic accuracy of cfDNA in advanced-stage
patients, as demonstrated in this study, has promising implications
for several clinical scenarios. In patients with surgically inacces-
sible tumours, or in patients who are critically unwell, a biopsy
may not be possible,12 whereas blood collection is less invasive
and repeatable if insufficient material is obtained at first
attempt.37 Moreover, the rapidity of blood collection, automated
cfDNA extraction and simple analysis enables fast determination
of MNA status in patients who require immediate assignment to
appropriate treatment. Analysis of cfDNA is also advantageous
over tissue analysis in tumours exhibiting heterogeneous patterns
of MNA;6,7 cfDNA may also have the potential to reveal MNA in
patients with heterogeneity between their primary tumour and
metastases38 and provide a critical opportunity for additional
therapeutic intervention. As with all technologies, there are
limitations to this approach, as it requires that sufficient molecules
are present in the plasma or serum at the time of collection, which
may not be the case in patients with intratumoural heterogeneity
and small, early-stage tumours.
While stage 4S disease was excluded from this meta-analysis,

MNA is relativity uncommon in these patients and its prognostic
significance is disputed.33,39–41 In contrast, MNA is firmly estab-
lished as a poor prognostic indicator in patients with stage 1 and 2
disease, albeit occurring at a frequency of only 3–4%.31,32 Of the
seven included studies, only four patients with MNA-positive stage
1 and 2 disease were reported. Combaret et al.15 reported a very
low sensitivity of cfDNA analysis in stage 1 and 2 patients, with
only one patient showing evidence of MNA in cfDNA among 10
patients with MNA-positive tumours.15 This observation is not
unexpected, given evidence from other early-stage solid cancers to
indicate that low tumour burden limits the detectability of tumour-
specific alterations in cfDNA,42,43 particularly copy number altera-
tions due to the dilution effect of cfDNA derived from apoptosis of
healthy blood cells. It is also noteworthy that genomic DNA
contamination arising from lysed white blood cells with the
delayed processing of serum is likely to disproportionately
influence the sensitivity of MNA analysis in early-stage NB patients.
Hence, future studies recruiting patients with stage 1 and 2 disease
should consider plasma as the preferred specimen type.
Molecular diagnostic laboratories are increasingly becoming

equipped with next-generation sequencing platforms, and in the
future, it may be possible to employ sequencing-based methods
for analysis of MNA along with other prognostic or actionable

genomic alterations in cfDNA. To this end, it has recently been
shown that MNA among other alterations can be detected in the
cfDNA of NB patients using shallow whole-genome/exome
sequencing44,45 and microarray methods.46 However, these
studies must be replicated with larger patient cohorts in a
diagnostic setting before a meta-analysis can be undertaken.

CONCLUSION
In conclusion, this is the first systematic review and meta-analysis
of the diagnostic performance of cfDNA for the determination of
MNA status in patients with advanced-stage NB. The studies
assessed used simple and widely available tests (PCR or qPCR),
highlighting the potential of implementing a straightforward and
inexpensive blood-based diagnostic test for use in patients who
are too unwell for surgery or where biopsy is not possible.
Standardised methodology for cfDNA analysis should be devel-
oped and incorporated into future large-scale prospective trials for
clinical validation and to determine the effects of therapy on
plasma/serum MNA status.
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