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Fate and seasonal variations of α-hexachlorocyclohexane (α-HCH) were simulated using a dynamic fugacity model in Lake
Chaohu, China. Sensitivity analyses were performed to identify influential parameters and Monte Carlo simulation was conducted
to assess model uncertainty. The calculated and measured values of the model were in good agreement except for suspended
solids, which might be due to disregarding the plankton in water. The major source of α-HCH was an input from atmospheric
advection, while the major environmental outputs were atmospheric advection and sediment degradation. The net annual input
and output of α-HCH were approximately 0.294 t and 0.412 t, respectively. Sediment was an important sink for α-HCH. Seasonal
patterns in various media were successfully modeled and factors leading to this seasonality were discussed. Sensitivity analysis
found that parameters of source and degradation were more important than the other parameters. The sediment was influenced
more by various parameters than air and water were. Temperature variation had a greater impact on the dynamics of the model
output than other dynamic parameters. Uncertainty analysis showed that the model uncertainty was relatively low but significantly
increased in the second half of the simulation period due to the increase in the gas-water diffusion flux variability.

1. Introduction

Organochlorine pesticides (OCPs) have been under increas-
ing scrutiny due to their refractory qualities and high eco-
toxicity. Hexachlorocyclohexanes (HCHs), a type of OCPs,
have already been listed by the Stockholm Convention on
Persistent Organic Pollutants in the first batch of control
compounds [1]. During the 1960s and 1970s, there was
a substantial amount of production and usage of HCH
pesticides in China, resulting in high level of residues in
the soil [2]. Through surface runoff, undercurrent, osmosis,
leaching, and other transport mechanisms from the soil
into the surface water, the water bodies, such as lakes, have
also been severely polluted by HCH pesticides. According
to historical data, the quantity of emitted OCPs in the Lake
Chaohu water bodies amounted to 1.16 tons in 1984. Among

the isomers of HCHs, α-HCH can cause human neurological
disorders and gastrointestinal discomfort, resulting in liver
and kidney damage, human endocrine system disorders and
immune system abnormalities [1]. Therefore, an under-
standing of the distribution and dynamics of α-HCH in lake
environments is extremely crucial.

The multimedia model is a mathematical model devel-
oped in the 1980s based on the concept that the physical and
chemical properties of environmental systems and pollutants
synergistically determine the concentration, distribution,
and migration of contaminants throughout the transfor-
mation process between environmental compartments [3].
Mackay [4] and Mackay and Paterson [5, 6] proposed a
fugacity model to simplify the structure of the multi-media
model and the calculation process. This model has been
widely used in describing the environmental behaviors of
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Figure 1: Transport fluxes of α-HCH in and out of the Lake Chaohu area and between the adjacent compartments. D12d , D21d , D24d , and
D42d represent the diffusion processes between air/water and water/sediment. D12p and D12w represent the dry and wet deposition from air to
water, respectively. D12r represents scavenging by precipitation. Q01t , Q02t , and Q02h represent the input from air advection, water inflows, and
waste water discharge, respectively. Q10t , Q20t , and Q23h represent the output from air advection, water outflows and water reuse by industry,
and agriculture, respectively. D10m, D20m, and D40m represent the degradation occurring in the air, water, and sediment, respectively.

Table 1: Volume and properties of the phases and sub-phases.

Main phase Area (m2) Depth (m) Organic carbon (%)
Subphases and volume fraction (Xij)

Air (1) Water (2) Solid particles (3)

Air (1) 7.5810E + 08 1.0000E + 02 — 1.0000E + 00 — 7.6278E − 11a

Water (2) 7.5810E + 08 3.0124E + 00a 1.6700E − 01 — 1.0000E + 00 1.2631E − 05a

Sediment (3) 7.5810E + 08 1.0000E − 01 4.6077E − 03 — 7.0000E − 01 3.0000E − 01

a: annually average value; seasonal data were available in simulation.

pollutants in global, regional, and local environments [7–
9]. There are four levels in the fugacity model. A level IV
fugacity model is appropriate when continuous changes in
the concentrations of particular pollutants are studied over a
period of time [8, 10].

Few studies have been conducted that focus on the
seasonal variation in α-HCH using the level IV fugacity
model. In this study, the fate and seasonal variation of
α-HCH in the air, water, and sediment of Lake Chaohu
were examined. Since the usage of industrial HCHs was
banned in 1983 and lindane was applied instead [10], the
α-HCH emissions can be assumed to be zero. The results
of this model can reveal the main source, the migration
and transformation processes, and the most influential
parameters on the fate and seasonal variations of α-HCH
in the of Lake Chaohu environment. The uncertainty of the
model was also assessed using a Monte Carlo simulation.

2. Materials and Methods

2.1. Model Development. The framework of the model in
this study was based on the quantitative water, air, sediment
interaction (QWASI) fugacity model [11], with the major
difference being the inclusion of atmospheric advection
input and output of the system. This model included
three main compartments: atmosphere, water, and sediment,
which were represented by the subscripts 1, 2, and 4,

respectively. The atmospheric phase was comprised of two
subphases: gaseous and particulate matter. The aqueous
phase also comprised two sub-phases: water and suspended
solids. The sediment phase consisted of porewater and a solid
phase. The model framework is shown in Figure 1. The basic
characteristics of the model for Lake Chaohu are shown in
Table 1.

Model parameter symbols, units, values and data sources
are shown in Tables S1 and S2 in supplementary materials
available online at doi:10.1100/2012/691539. The model had
a total of 46 parameters, including 23 environmental param-
eters, 12 interface mass transfer parameters, and 11 physic-
ochemical parameters for the pollutant. The environmental
parameters included temperature, lake area, height and
sub-phase volume fraction determined by the literature or
laboratory measurements. The physicochemical parameters,
such as the gas constant, Henry’s constant, and saturated
vapor pressure, were obtained from the literature. The
environmental kinetics of the process parameters, including
the rate of degradation, the rate of diffusion, migration
constant, molecular diffusion path length, atmospheric wet
and dry deposition rates, deposition rate, and cleaning
coefficients, were obtained from the relevant literature.
Fifteen parameters had annually changing values, including
the environmental parameters (h2, X13, Q01tQ10t, Q02t, Q20t,
Q23h, Q02h, T , C1, and X23) and the mass transfer parameters
(K12, K21, K42r , and Kw). The parameter h2 included hourly
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data; T , K12, K21, K42r , and Kw had daily data, and X13,
Q01t(Q10t), Q02t, Q20t, Q23h, Q02h, C1, and X23 had monthly
data. Ot her parameters were used in terms of annual average
values, and they remained constant during the simulation. In
addition, Henry’s constant, saturated vapor pressure, and the
fugacity rate of the pollutant were primarily obtained using
a temperature of 25◦C. The temperature correction required
for these parameters and the correction equation are shown
in (1) [12]:

log10PT = log10P25 + A×
(

1
298

− 1
T + 273

)
, (1)

where PT is the physical and chemical parameter values at
T (◦C) (Henry’s constant, the saturation vapor pressure, or
fugacity rate); P25 is the physical and chemical parameters
at 25◦C; A is the temperature correction coefficient (for
Henry’s constant, saturated vapor pressure, and fugacity
rate). To obtain the total river inflows of Lake Chaohu
from May 2010 to February 2011, monthly data from
May 1987 to April 1988 were collected [13] along with
the corresponding daily precipitation data from the China
Meteorological Data Sharing Service System [14]. There was
a significant linear relationship between the river inflow and
the precipitation data. Using this linear relationship and the
monthly precipitation data from May 2010 to February 2011
for Lake Chaohu, the river inflow (Q02t) for the simulation
period was easily calculated. This calculation was based on
the assumption that there were no significant landscape
level changes which largely modifies fate of precipitation
at catchment area since 1980s. In addition, the values
of water inflow were not important to the fate of α-
HCH in the lake, which will be revealed in the sensitive
analysis (Section 3.3). The average monthly river outflow
(Q02t) of Lake Chaohu was based on the water balance
calculation of inflow and water level in addition to the
rates of industrial and agricultural water consumption (Q23h)
[13].

Taking into consideration that industrial HCHs were
banned in 1983 and lindane (γ-HCH) was applied instead
[10], emissions of α-HCH in the vicinity of Lake Chaohu
were assumed to be zero during the simulation. Atmospheric
α-HCH input originated from atmospheric advection. The
α-HCH concentration in the advection within the study area
(C1) was determined according to the sampled values on
the lake side (four samples in total). The daily average wind
speed and direction during the simulation period in Lake
Chaohu area were obtained from the China Meteorological
Data Sharing Service System [14]. The volumes of atmo-
spheric advections (Q01t, Q10t) were calculated according
to the corresponding atmospheric height, the area of Lake
Chaohu, and the wind speed. α-HCH input originated
from water inflows was determined by the summation
of the input amount from all the rivers around the
lake [15].

The mass transfer coefficients of both sides of the gas-
water interface (K12 and K21) were calculated according to
the method proposed by Southworth [16]. The resuspension

coefficient (K42r) was calculated according to the formula
from Tu et al. [13]. The specific equations are as follows:

K12 = 11.375 · (WS + RS) ·
(

18
MW

)0.5

, (2)

K21 = 0.2351 · RS0.969 ·
(

32
MW

)0.5 a

h0.673
W(

if WS ≤ 1.9 m/s, a = 1; else a = exp[0.529(WS− 1.9)]
)
,

(3)

K42r = 3× 10−8 · WS
hW

, (4)

where WS is the average wind speed (m/s); RS is the surface
flow velocity (m/s); MW is the molecular weight (g/mol);
and hW is the water depth (m).

The transfer and transformation processes defined in
the model are shown in Table S3 (Supplementary Material).
Details can be found in Mackay and Paterson [17]. The level
IV fugacity model can be expressed by (5), where fugacity is
symbolized by f (Pa). The processes considered in the model
included the advection of the air and water phases, diffusion
and dry/wet deposition between the air and water, diffusion,
sedimentation, and resuspension between the water and
sediment, and the degradation process during the main
phase. In this study, the fourth-order Runge-Kutta method
was applied to solve the differential equations by simulating
step of 1-hour. The time period of the dynamic simulation
was from May 1, 2010 to February 28, 2011. The seasonal
variation of the α-HCH concentration for each compartment
of the environment was simulated and compared to the
measured values. Validation data were obtained from the
monthly samples of atmospheric aerosols on an island in the
lake, water and suspended solids (four sample sites in total)
collected from May 2010 to February 2011 [18, 19] and from
the 14 sediment samples collected in August 2008 from Lake
Chaohu [20].

V1Z1df1
dt

= T01t −
(
D12d + D12p + D12r + D12w + D10m −D10t

)
f1

+ D21d f2,

V2Z2df2
dt

= T02t +
(
D12d + D12p + D12g + D12w

)
f1

− (D21d + D24d + D24s + D20m + D20t + D23h) f2

+ (D42d + D42r) f4,

V4Z4df4
dt

= (D24d + D24s) f2 − (D42d + D42r + D40m) f4.
(5)
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2.2. Sensitive Analysis. When a system error of the model
cannot be eliminated, the accuracy of the parameters is
the most important factor in model accuracy, particularly
regarding some sensitive parameters [2]. Therefore, a sen-
sitivity analysis was conducted for all parameters involved
in the model (except the gas constant, R). For constant
parameters, a local sensitivity analysis was applied which
implemented a “perturbation” near the best estimate value
of a parameter, and the variation of model outputs was
studied under the condition that other parameters remained
unchanged. The Morris classification screening method, a
widely applied local sensitivity analysis method, was used
[21]. A variable was selected, and the value changed to the
fixed step size, while the other parameters remained the
same. The sensitivity index of the parameter was the average
of the multiple disturbance calculated Morris coefficient:

S =
n−1∑
i=0

(Yi+1 − Yi)/Y0

(Pi+1 − Pi)/100
/(n− 1), (6)

where S is the Morris coefficient; Yi is the model output value
in the ith simulation; Y0 is the model calculation result when
the parameter is set at the initial value; Pi is the percentage
change of the parameter value the for ith simulation ; and n
is the number of runs.

Cao et al. [2] proposed that when the step size is small
enough, the nonlinear effects of the parameters of the model
output are negligible. In this study, it was assumed that
the parameters increased and decreased by 10% on the
basis of the original value. Y0.9, Y0, and Y1.1 are the output
results when the parameter was multiplied by 0.9, 1 and 1.1,
respectively. The sensitivity coefficient (Cs) is as follows:

Cs = Abs
(
Y1.1 − Y0.9

0.2× Y0

)
. (7)

The effect of the parameters on the model output was
not only associated with corresponding Cs values of the
parameters but was also related to the fluctuation range of
the parameters in the environment [2]. With the same Cs

value, those parameters with higher variability have greater
impacts on the model than those with lower variability. In
this study, the sensitivity coefficient after the correction of
the coefficient of variation (Cn) for the parameters was also
calculated by [2], such that Cn = Cs × CV, where CV is the
coefficient of variation of the parameter.

For the dynamic parameters in the model, the dynamic
sensitivity coefficient (SCV) is calculated as follows [22]:

SCVi = ΔCVY
i /CVY

i

ΔCVX
i /CVX

i

, (8)

where CVX
i and CVY

i indicate the corresponding coefficients
of variation of the ith input parameter and the output
parameter, respectively, and ΔCVX

i and ΔCVY
i represent

the variations of the corresponding coefficients of variation
of the ith input parameter and the output parameter,
respectively.

2.3. Uncertainty Analysis. A Monte Carlo simulation was
utilized to study the impact of the simultaneous changes in
the parameters on the model results, that is, the uncertainty
of the model. Based on an analysis of the collected parameter
values, all of the parameters except for temperature (T) were
assumed to follow the lognormal distribution [22].

A total of 2200 Monte Carlo simulation runs were
conducted. Both static and dynamic parameters with higher
sensitivity coefficients were selected and the original values
were retained for the remaining parameters in the simulation
process. The geometric mean and standard deviation could
be calculated for static parameters with multiple values. Con-
versely, if only one value was obtained, the corresponding
coefficients of variation for the parameters were assigned
using values based on the literature [2, 22]. For dynamic
parameters, the monthly geometric mean and standard
deviation were calculated from hourly or daily data. When
only monthly data were available, the coefficients of variation
were manually assigned. Each run was implemented with
values for each parameter that were randomly selected in the
range of the mean ± standard deviation. Semi-interquartile
ranges for the monthly model output were obtained for the
uncertainty analysis.

3. Results and Discussion

3.1. Concentrations of α-HCH in Various Media and Models
Validation. The simulated annually average concentrations
of α-HCH in the air, water, and sediment are shown in
Figure 2 and were found to be in agreement with the
measured data. The differences in the main phases were
0.21, 0.06, and 0.07 logarithmic units for the air, water,
and sediment, respectively, which were all within 0.5 log
units during the simulation. The air concentrations were
underestimated, which might be due to various factors. On
the other hand, in addition to the uncertainty of the model,
the underestimation in the sediment may be due to the fact
that the samples were collected in 2008, while the model
simulation period was 2010-2011. The overestimation of the
concentration in the water may have been due to the absence
of a biological phase. Aquatic organisms, especially plank-
ton, can substantially affect the fate of persistent organic
pollutants (POPs) in the water environment [23]. It can be
observed that the α-HCH concentration in the sediment
particles was much higher than that in the atmosphere or
in the water bodies. It was concluded that sediment is an
important sink of α-HCH [24].

The simulation results for the atmospheric particulates
and the suspended solids in the water were not satisfactory.
The differences between the measured and simulated data are
0.6 and 1.69 orders of magnitude, respectively. The under-
estimation of the α-HCH concentration in atmospheric
particulates may be associated with the underestimation
of the organic carbon content or the volume ratio of the
atmospheric particulates. It was always acceptable if the
deviations between the simulated and observed data were less
than 0.5 or 0.7 orders of magnitude for multimedia fugacity
model [2]. Thereby, the results in the air particles should be
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Figure 2: Comparison between the simulated and measured α-HCH concentrations in the air, water, and sediment of Lake Chaohu. The
error bars included in this figure represent the standard deviations.
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Figure 3: Seasonal variations of α-HCH concentrations in the various environmental media. Both the simulated (dashed) and measured
(solid) concentrations are presented for model validation.

acceptable. The underestimation of the α-HCH concentra-
tion in the suspended solids in the water may be related to
similar processes as those that caused the overestimation in
the water.

The simulation results regarding the monthly α-HCH
concentration in different compartments are shown in

Figure 3. The model output of the α-HCH concentra-
tions in the atmosphere and the atmospheric particles
was consistent with the measured values. However, the α-
HCH concentration in the atmospheric particles peaked
in November according to the measured values, while the
calculated value peaked in December, which corresponded
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to the peak of gaseous α-HCH concentration but failed to
capture the November peak. This discrepancy may be due
to higher concentrations of α-HCH in the remote input of
atmospheric particulate matter in November. The specific
mechanisms underlying this difference require further study.

Gaseous α-HCH concentrations in the summer and
winter, notably in August and December, were higher than
in other seasons. Ridal et al. [25] also observed relatively high
concentrations of gaseous α-HCH in Lake Ontario in August.
The most likely cause of higher α-HCH concentrations in
the summer may be the higher temperatures in summer
months [26], which favor volatilization. High values in the
winter may be due to remote inputs from the atmosphere
[27]. Haugen et al. [28] suggested that when the regression
coefficient R2 for lnP and 1/T is high, local gaseous α-HCH
is mainly derived from surface volatilization. Otherwise,
remote input is typically the dominant source of gaseous
α-HCH. In this study, the regression coefficient for lnP
and 1/T was 0.004, indicating that the gaseous α-HCH in
Lake Chaohu was influenced to a greater extent by remote
input than by lake volatilization. Agricultural land accounted
for 61.12% of the total land area in the Lake Chaohu
watershed [13]. Consequently, large amounts of α-HCH
residues remain in the soils. After volatilization, the α-HCH
is able to be transported to the lake by air advection. In
addition, there was a slight decline of gaseous α-HCH in
July (Figure 3), which corresponded to a marked increase
in the wet deposition flux (T12r) during this period. The
reason for the slight decline may be increased precipitation.
It can be concluded that both temperature and precipitation
are key factors affecting gaseous α-HCH. This conclusion
was quantitatively verified using the sensitivity analysis. It is
worth noting that wet deposition (T12w) was higher in the
summer, particularly in August, and lower during the other
seasons. In contrast, dry deposition (T12p) was higher in the
winter, notably in December, and lower during the other
seasons.

α-HCH in atmospheric particulate matter was lower in
the summer and higher in the winter. The primary reason
behind this difference may be that as the temperature rises
in the summer, the gas-solid balance of α-HCH in the air
shifts toward the gaseous phase. The situation is opposite
in the winter [15]. In addition, the atmospheric particulate
matter content in the summer is lower due to a decrease in
the remote inputs when compared to winter.

The measured and simulated values of α-HCH in the
water were also in good agreement. The model captured
the high value in the winter and the variation in the other
seasons, which was also consistent with the data Ridal et al.
[25] observed in Lake Ontario. The peak in the winter values
may be attributed to several causes. First, although the winter
temperatures are lower, leading to reduced water fugacity
capacity [15], the precipitation and water inflow are also
lower in the winter, resulting in a significant decrease in water
levels, which may cause a concentration effect. Furthermore,
the gas-to-water diffusion process flux (T12d) is higher
in the winter, which may also be important. Conversely,
lower concentrations were simulated in the summer and
the autumn. A noticeable decline occurred in June, which

may be due to the dilution effect caused by the rising
water levels and elevated water-to-air diffusion (T12d) caused
by increasing temperatures. The α-HCH concentrations
in water begin to be overestimated from August through
December, which coincides with an observed increase in the
seasonal distribution of cyanobacteria in Lake Chaohu [29].
In addition, the calculated value of the α-HCH concentration
in the suspended solids was much less than the measured
value by a factor of more than one order of magnitude
every month. It can be speculated that disregarding aquatic
organisms, particularly the phytoplankton phase, can lead to
a significant deviation between the measured data and sim-
ulation results. Phytoplankton uptake is strongly affecting
the fate of persistent organic pollutants (POPs) in aquatic
environments [23], which was not included in this model.
Only absorption by the organic matter in the suspended
solids was considered in the model. Dachs et al. [23]
proposed a model combining POPs in the air-water exchange
and phytoplankton absorption processes. However, currently
there is no data on the parameters of HCH exchange between
water and phytoplankton [30, 31]. A modification in the
model structure and further research are needed in the
future.

The annual averages of the sampled values of α-HCH
content in the sediment particles were consistent with the
simulated results. Similar seasonal variations in the water
bodies were obtained, showing the trends of higher values
in the summer and lower values in the winter. With smaller
seasonal changes, the α-HCH content in the sediment was
relatively stable compared to that in the water.

3.2. Transfer Fluxes of α-HCH between Compartments. As
shown in Figure 4, the net input of α-HCH into the Lake
Chaohu environment is approximately 0.115 mol/h (approx-
imately 0.294 t/a), while the net output is 0.162 mol/h
(approximately 0.412 t/a). It can be observed that the α-
HCH content in the Lake Chaohu watershed is diminishing.
The atmospheric advection input was found to be the
main source (T01t) (0.278 t/a), which corresponded to the
atmospheric advection output (T10t) (0.277 t/a). By contrast,
the α-HCH input from water inflows was very small (0.016
t/a). An important output was the degradation in the
sediments (0.119 t/a), which accounted for 89.05% of the
total degradation in the environment, while the degradation
in the water was 0.015 t/a, which accounted for 10.86% of the
total degradation.

For interface processes, the atmospheric input to the
water was 0.030 t/a, and the dominant process of atmo-
spheric input to the water was precipitation scavenging
(T12w), which accounted for 57.80% of the gas-to-water flux.
The flux of diffusion from the water to the atmosphere
(T21d) was 0.014 t/a. Therefore, there was an annual net input
from the atmosphere to the water. The seasonal variations
in the air-water exchange were shown in Figure 5. There
was a net volatilization from the water into the atmosphere
in May, which was consistent with the results obtained by
Taihu [32]. During the other seasons, however, there is
a net input from the atmosphere to the water, which is
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Figure 5: α-HCH fluxes over the air-water interface (a) and the water-sediment interface (b). The positive values indicate net inputs from
air to water or from water to sediment.

the converse of the results observed in Lake Taihu. The
main cause of this difference may be that the research in
Lake Taihu did not include deposition from air to water.
It is also worth noting that the α-HCH concentrations in
the Lake Taihu atmosphere and water are 32 ± 28 pg/m3

and 1887 ± 1372 pg/L, respectively, while in Lake Chaohu,
the corresponding concentrations are 16 ± 11 pg/m3 and
423 ± 395 pg/L, which are 50.0% and 22.4% of the values of
Lake Taihu, respectively. The lower α-HCH concentration in
the water of Lake Chaohu may be due to historically lower
HCH pesticide usage. The results are also opposite from the
findings for Lake Ontario [25]. Ridal et al. [25] proposed
that, due to a reduction in the atmospheric concentration,
the α-HCH flux in Lake Ontario has shifted from net
settlement to net volatilization when compared with the
years prior to 1990. For Chaohu, however, due to a reduction
in the water α-HCH concentration, the air-water interface
may have still been net settlement. Therefore, despite the net
volatile flux in the summer, the annual net flux is from the
gas to the water.

The flux from the water to the sediment was 0.022 t/a,
and sedimentation (T24s) accounted for 65.49% of this flux.

In addition, the flux from the sediment to the water was
0.010 t/a, and diffusion flux (T42d) accounted for 73.28%
of this flux. There was a net input from the water to the
sediment (Figure 5). Although the sediment resuspension
flux was 0.003 t/a, which accounted for 26.72% of the flux
from the sediment to the water, this flux still reflects the
strong resuspension process in Lake Chaohu [13].

In the sensitivity analysis, those parameters related to
relatively important processes will always be observed with
higher sensitivity (see Section 3.3).

3.3. Sensitivity Analysis. For the static parameters, the sensi-
tivity coefficients changed significantly after correction with
the coefficients of variation (Figure 6). Thus, despite the high
sensitivities regarding Koc, r23, r43,Bps,BH , A2, and Sc, the
corrected sensitivity coefficients for those parameters with
lower variability were significantly reduced, such that these
eight parameters were considered to be insensitive. The sen-
sitivity reductions in Koc and A2 were also observed by Cao
et al. [2]. In contrast, due to higher variability, the sensitivity
coefficients of h4, km4, km2, and L4 increased after correction,
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Figure 6: Coefficients of sensitivity of the calculated concentrations of the environmental compartments to the input static parameters with
(Cn) (a) and without (Cs) (b) CV normalization.

and they were found to be important parameters. h4 is related
to sediment volume, and sediment is found as the sink for
α-HCH in lakes; km4 is directly related to the degradation
of α-HCH in the sediments, which has been found to be
the most important degradation process in the environment
(Section 3.2). Thus, the two static parameters exerted con-
siderable influence on the model results. L4 and km2 become
more important parameters due to their high variability.
Other parameters, including C02t,O23,O43,X43, Ps25, and
H25, had relatively similar high sensitivity coefficients before
and after correction. C02t strongly affects the α-HCH content
in the water and suspended matter. O23 and O43 determine
the adsorption capacity of the particles in the suspended
solids and sediments, while X43 is related to the amount

of sediment adsorption. Therefore, these parameters exert
a great influence on the model output. Ps25 determines
the fugacity capacity of the atmospheric particulates [33],
and H25 plays a decisive role in the fate of POPs in the
environment [34]. Although the variability of these two
parameters is negligible, the collected values in this study
are based on the results from different time periods using
different methods. Therefore, the sensitivities of these two
parameters remain high after the correction.

Each of the parameters has a different influence on the
various environmental compartments. For example, km4 has
a higher sensitivity coefficient for the sediment than for the
water or atmosphere, while km2 has the highest sensitivity
coefficient for the water. Overall, the average values of Cn for
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Figure 7: Dynamic coefficients of sensitivity of the calculated concentrations of the environmental compartments to the input dynamic
parameters.

the air, water, and sediment were 1.17%, 2.78%, and 3.42%,
respectively. Although water contains the most parameters
among the three main phases [10], the sediment serves as
an important sink for α-HCH and is influenced by all of the
parameters to a greater extent than either the air or the water.

The dynamic sensitivity coefficients (SCV) are shown
in Figure 7. The model output was much more sensitive
to temperature (T) than to the other parameters because
temperature had very strong effects on Ps and H , the
two important parameters in the model. Consequently,
temperature played a decisive role in the distribution of α-
HCH between the gaseous and particulate phases as well as
between the air and water [24]. In addition, h2, Q01t, Q10t,
C01t, X13, K12, K21, and Kw also had strong influences on the
dynamic changes of the model output. h2 strongly affected
the variation of α-HCH concentrations in the water and
suspended solids; Q01t, Q10t, and C01t were associated with
the atmospheric advection, which was the main source of
the α-HCH in Lake Chaohu. Thus, the seasonal variations
in these three parameters also had significant impacts. Cao
et al. [2] found that the parameters related to source and
degradation in the fugacity model were relatively more
important, which was consistent with the relatively high
sensitivities of Q01t, Q10t, C01t, km4, and km2. X13 had a
relatively strong influence on the seasonal changes in the
concentration in the atmosphere and the water bodies as well
as the particulate and suspended matter content, which is in
agreement with the conclusion of the Pearl River Delta study
[22]; K12, K21, and Kw were the main parameters influencing
the air-water interface flux due to their direct impacts and
significant seasonal variations, and these three parameters
are also important parameters generally. In addition, due
to the insignificant effect of water inflows on the model,
parameters such as Q02t, Q20t, and Q23h had little effect on
the variability of the model output. Without considering

the biological phase, the importance of X23 was also reduced.
The low sensitivity coefficient of K42r was due to the
corresponding low resuspension flux.

3.4. Uncertainty Analysis. The results of the uncertainty
analysis for each phase are shown in Figure 8. It was
found that the uncertainty of the model was relatively
small from May to September, as represented by the small
semi-interquartile ranges of the Monte Carlo simulation
results. The uncertainty of the model output began to
increase in October and peaked in December or January.
This increase was attributed to our finding that from October
to December, the coefficients of variation in the gas-water
diffusion rate (K12 andK21) significantly increased, leading to
an increase of variation in the air-water diffusion flux. This
also contributed to a significant increase in the uncertainty
of the other phases. Lang et al. [22] similarly found that
the coefficient of variability of diffusion is associated with
wide variability in the gaseous PAHs concentrations. The
rates of diffusion across the gas-water interface (K12 and
K21) were related to wind speed and water depth, and
the coefficient of variation of water depth (h2) did not
increase during October–December. It can be speculated that
elevated variation in the wind speed in this period causes the
increasing uncertainty.

4. Conclusions

A dynamic quantitative water, air, and sediment interaction
(QWASI) fugacity model was utilized to simulate the fate
and seasonal variations of α-HCH in the air, water, and
sediment, as well as various environmental fluxes in Lake
Chaohu. The calculated and measured values of the model
were in good agreement. However, disregarding the effects
of aquatic organisms resulted in large deviations between
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Figure 8: Uncertainties of the predicted seasonal variations of α-HCH concentrations in various environmental media. The results are
presented as median values (lines with dots) and semi-interquartile ranges (solid lines).

the simulated and measured values of α-HCH in suspended
solids in water. The major source of α-HCH in Lake Chaohu
was an input from atmospheric advection, while the major
environmental outputs were atmospheric advection and
sediment degradation. The net annual input of α-HCH into
the lake area was approximately 0.294 t, while the net output
was approximately 0.412 t. The factors leading to the seasonal
variations of α-HCH in various compartments were revealed.
For the fluxes at the air-water interface, atmospheric inputs
into the water were dominant for most of the year with the
deposition processes included, while the water and sediment
interface was mainly influenced by the net input from the
water to the sediment. Thus, sediment is an important
sink for α-HCH. Sensitivity analysis found that parameters
of source and degradation were more important than the
other parameters. The sediment was influenced more by the
combined effects of the various parameters than air and
water were. In addition, temperature variation had a much
greater impact on the dynamics of the model output than

other dynamic parameters. Uncertainty analysis showed that
the model uncertainty was relatively low, especially in the
first half of the simulation period. Due to the increase in the
gas-water diffusion flux variability, uncertainty of the model
significantly increased for all of the compartments.
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