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Abstract: Studies of recent decades have repeatedly demonstrated the cytotoxic effect of selenium-
containing compounds on cancer cells of various origins. Particular attention in these studies is
paid to methylseleninic acid, a widespread selenium-containing compound of organic nature, for
several reasons: it has a selective cytotoxic effect on cancer cells, it is cytotoxic in small doses, it is
able to generate methylselenol, excluding the action of the enzyme β-lyase. All these qualities make
methylseleninic acid an attractive substrate for the production of anticancer drugs on its basis with
a well-pronounced selective effect. However, the studies available to date indicate that there is no
strictly specific molecular mechanism of its cytotoxic effect in relation to different cancer cell lines
and cancer models. This review contains generalized information on the dose- and time-dependent
regulation of the toxic effect of methylseleninic acid on the proliferative properties of a number of
cancer cell lines. In addition, special attention in this review is paid to the influence of this selenium-
containing compound on the regulation of endoplasmic reticulum stress and on the expression of
seven selenoproteins, which are localized in the endoplasmic reticulum.

Keywords: methylseleninic acid; cytotoxicity; cancer; selenoproteins

1. Introduction

It is well known that the toxicity of selenium and its compounds largely depends on
their chemical form and dose. It is believed that inorganic selenium species are more toxic,
and the concentration range between insufficient and excess intake is quite narrow [1].
Studies of recent decades have repeatedly demonstrated the antitumor activity of selenium-
containing compounds of various natures [2–10]. All selenium drugs exhibiting antitumor
activity can be divided into two groups: generators of hydrogen selenide and methylselenol,
which have pronounced toxic properties. For this reason, the study of existing and new
selenium-containing drugs with antitumor activity should be directed to those molecules
that can generate hydrogen selenide or methylselenol. Methylselenol (CH3SeH) is a
key metabolite in the anticancer activity of selenium compounds; however, the in situ
production or, alternatively, the use of precursors is required due to the high reactivity
and volatility of this molecule. Methylselenol is more biologically active than its analogs:
selenol, etanselenol, 2-propanselenol [11,12]. Selenols are organic compounds that contain
a functional group (CSeH) and are often called selenothiols. They play an important role in
biological processes, being part of the active centers of a number of enzymes: glutathione
peroxidases, thioredoxin reductases, iodothyronine deiodinases. Selenols are obtained by
the reaction of organic lithium reagents and Grignard reagents with elemental selenium [13].
Because selenols are readily oxidized to diselenides, they are rarely used as metabolites in
cancer prevention studies.

The most studied precursors of methylselenol are methylselenocysteine (MSC), se-
lenomethionine (SM), and methylselenic acid (MSA). So SM is metabolized through a
multistage transsulfurization pathway to selenocysteine (Sec), which is first degraded
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to hydrogen selenide. Further, the reaction of methylation of hydrogen selenide by the
enzyme methyltransferase to methylselenol occurs [14].

MSC, as a methylselenol generator, has several advantages over SM. First, MSC is
cleaved in one step to methylselenol by the enzyme β-lyase. Second, MSC accumulates in
tissues to a lesser extent and is eliminated from the body faster than SM [15,16], which can
be nonspecifically incorporated into selenoproteins instead of selenomethionine, which
makes it less available for further metabolism [17]. A significant disadvantage of using
MSC as a precursor of methylselenol is that in some cancer cells, the activity of the β-
lyase is quite low, which leads to an increase in the amount of MSC in the medium, the
concentration of which significantly exceeds its physiological concentration in plasma
(3–5 µM). This, in turn, leads to the nonspecific effects of MSC, which are by no means
always antitumor [14].

It is believed that MSA is a reagent for endogenous formation of methylselenol in a
simple stoichiometric manner immediately after entering cells, where it is easily reduced
to methylselenol through non-enzymatic and enzymatic reactions involving glutathione
(GSH) and NADPH [18]. In addition, using yeast as an example, it was shown that
methylselenol, in addition to MSA, can be efficiently produced from methylselenoglu-
tathione (MSSG) and dimethyldiselenide (DMDS), provided that the ratio GSH/GSSG
in cells is sufficiently high [19]. Interestingly, the inhibitory concentration of MSA with
respect to the BY4742 strain of Saccharomyces cerevisiae decreased by an order of magnitude
when the cells were exposed to complex MSA/GSH or MSA/DMDS, compared to the
treatment of cells with MSA alone. The authors suggest that this effect may be associ-
ated with an increase in total selenium in cells (approximately 15 times) compared to
the effect on cells only of MSA. According to the authors, methylselenol is toxic to yeast
since it is metabolized to SM, which causes the aggregation of toxic proteins [19]. They
showed this in a mutant form of Saccharomyces cerevisiae (met17) that lacked the enzyme
O-acetylhomoserine, which catalyzes the conversion of methylselenol to selenomethionine.
However, this enzyme is absent in higher eukaryotes; therefore, the authors used this
mutant strain to search for alternative targets for methylselenol [20]. It has been shown
that DMDS prevents the formation of a disulfide bond in carboxypeptidase Y, contributing
to the retention of the proenzyme in the ER. Thus, the authors hypothesized that DMDS,
which is an oxidized compound, contributes to the reductive stress in the ER. Most likely,
most of DMDS is converted to methylselenol in the cytosol, and the subsequent diffusion
of methylselenol into the ER can increase the ratio GSH/GSSG in the ER and lead to
reductive stress in this compartment. Figure 1 schematically shows the main mechanisms
for obtaining methylselenol from its precursors.
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This review focuses on one of the important recursors of methylselenol-MSA. Here
we describe the experimental data of recent years devoted to the study of the cytotoxic
mechanisms of MSA in various mammalian cancer cells, its role in the regulation of
carcinogenesis and ER stress. Among all known organic selenium-containing compounds,
MSA occupies a special place. Firstly, it is an organic and low-toxic compound, which is a
generator of methylselenol. Even small concentrations of MSA in the nutrient medium are
capable of causing adaptive ER stress, which does not lead to cell death. Secondly, due to
the selective cytotoxicity of its action, it is possible to select such concentrations of MSA
that lead to prolonged ER stress and death of cancer cells but do not affect the viability of
normal cells, which is very important in cancer therapy. However, until now, the growth,
modulating, and cytotoxic mechanisms of MSA influence are poorly understood. In order
to get closer to understanding the causes of the cytotoxic effect of MSA on cancer cells, it
is necessary to consider this problem in a multifaceted manner. A special role should be
given to the mechanisms of regulation of endoplasmic reticulum (ER) stress (ER stress),
activation of signaling pathways of adaptive and pro-apoptotic stress, as well as the effect
on the expression and activity of seven selenoproteins localized in the ER and taking an
active part in the processes of carcinogenesis and ER stress [21–25].

2. Reasons and Molecular Mechanisms of the Cytotoxic Effect of MSA on Cancer Cells

The mechanism of action of selenium-containing compounds, including MSA, on the
proliferative properties of cancer cells, is explained by a number of factors. First, it is known
that the cell membranes of cancer cells contain a large number of sulfhydryl groups that
form disulfide bonds with fibrinogen polypeptide chains, which leads to the formation of a
high molecular weight polymer similar to fibrin-parafibrin [26–28]. Parafibrin is resistant
to proteolytic degradation, forms a “shell” on the surface of cancer cells, protecting them
from destruction by phagocytic cells. The decrease in the proliferative properties of cancer
cells can be explained by the action of selenium-containing compounds as inhibitors of
sulfhydryl groups.

On the other hand, MSA enhances the generation of reactive oxygen species (ROS) by
cancer cells [29], also leads to depletion of intracellular glutathione and, thus, the cellular
environment becomes more oxidized, which can cause cell death. It has been repeatedly
shown that glutathione promotes the resistance of cancer cells to various anticancer drugs
by covalent binding and subsequent inactivation of these drugs [18]. On the example of
human lung cancer cells (line A549), it was shown that glutathione was crucial for the
metabolism of MSA [30]. MSA nonenzymatically metabolized glutathione, which was
ubiquitous in cancer cells. Lui et al. suggested that MSA is converted by glutathione into
methylselenol, which is then demethylated to hydrogen selenide, which is an important
ROS generator [31].

It has been suggested that intracellular glutathione may play a key role in cell cycle
arrest and MSA-induced apoptosis [32]. It is assumed that MSA induced G1 arrest by down-
regulating cyclin E1 and up-regulating p27Kip1 (cyclin-dependent kinase 1B inhibitor).
It has also been shown that human hepatoma HepG2 cells with a high concentration of
glutathione are more sensitive to MSA [33]. In addition, it was found that MSA makes
cancer cells more sensitive to radiation and causes their toxicity through glutathione-
dependent induction of lipid peroxidation, which was demonstrated by the example of
head and neck squamous carcinoma cell lines [34]. Possibly, the selective cytotoxicity
of MSA against cancer cells can be explained by the higher lipid content in cancer cells
compared to normal cells [35–39]. On the example of a line of human monocytic cells
obtained in acute monocytic leukemia (THP-1 line), it was shown that the concentration
of glutathione in them is 40 times higher than that in mononuclear cells of peripheral
blood. When these cells were treated with MSA at concentrations from 2.5 to 15 µM
for 6 h, a significant decrease in glutathione levels in THP-1 cancer cells and a dose-
dependent increase in its concentration in normal PBMS cells were observed [40]. Thus, the
simultaneous increase in glutathione in normal cells and its depletion in cancer cells can
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contribute to the improvement of cancer therapy by reducing the toxicity of normal tissues
and enhancing the antitumor effect of the drug on a malignant tumor. The molecular
mechanisms of MSA cytotoxicity mediated by intracellular glutathione in cancer cells are
schematically shown in Figure 2.
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It has been shown that MSA effectively inhibited angiogenesis. Thus, it was shown on
the model of human umbilical vein endothelial cells (HUVEC) that exogenous MSA was
not only able to maintain the level of nutrient selenium but also effectively inhibited cell
migration and neoangiogenesis by suppressing β3-integrin and interrupting its clustering,
as well as by inhibiting phosphorylation of AKT, IkBα and NF-kB [41]. Integrins are known
to play an important role in cell adhesion, migration, and signal transduction; however,
MSA suppressed the expression of only β3-subunit of integrin and did not affect the
expression of αv, α1, α5, β1, and β5. It is known that β3-subunits of integrin are largely
expressed in endothelial cells, during angiogenesis conformational changes and clustering
of β3-integrin is observed, which initiates intracellular signal transduction through the
phosphorylation cascade of FAK, AKT, IKKβ, IκBα, and NF-κB [42,43]. In addition, β3-
integrin during angiogenesis regulates the expression of cytokines (TNFα, IL-1β, IL-6),
adhesion molecules (VCAM-1, ICAM-1, E-selectin), enzymes (iNOS, COX-2) [44–47], and
also regulates cell polarity and their directional migration [48,49].

One of the important effects of MSA on cancer cells is the activation of FOXO proteins
by phosphorylation, which ultimately triggers the signaling PI3K/AKT/mTOR (phos-
phoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin) pathway-is an
intracellular signaling pathway important in regulating the cell cycle [50–54]. For example,
using A549 cancer cell line as an example, it was shown that 5 µM MSA already 1.5 h after
the start of cell treatment promoted dephosphorylation of FOXO 3a and its translocation
into the nucleus, and, consequently, induction of apoptosis, suppression of the viability
of cancer cells and G-1 arrest of the cell cycle. Thus, it was shown that FOXO 3a is an
important mediator of the antitumor action of MSA [54]. In addition, 5 µM MSA increased
the expression of the pro-apoptotic Bax gene and cytosolic cytochrome C, decreased the
level of procaspase-3, and promoted the PARP release. It was also shown that MSA in
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A549 cells blocked glycolysis, the tricarboxylic acid cycle, and nucleotide biosynthesis since
the levels of lactate, malate, aspartate, glutamate, citrate, as well as adenine and uracil,
decreased in the treated cells [54].

In the example of MC38 murine intestinal cancer cells and colorectal cancer xenograft
models, it was shown that MSA suppressed the growth of tumor cells by activating caspase-
3 but did not affect the level of active p53 protein. In addition, MSA increased the selenium
content in the liver, kidneys, muscles, stomach, and plasma, and also increased the activity
of glutathione peroxidases in the blood of model animals, without affecting the muscle and
fat composition of the body, the level of leptin and adinopectin in plasma. MSA (3 mg/kg
body weight) inhibited tumor growth by up to 61% compared with the control group,
which was associated with a decrease in the levels of tumor necrosis factor TNFα and
interleukin 6 (IL6) [55]. In addition, MSA, especially at concentrations of 5 and 15 µM,
was capable of activating caspase-8 in THP-1 cancer cells and, conversely, inhibiting them
in healthy PBMS cells, which is consistent with previously obtained data that selenium
compounds in a dose-dependent manner were able to induce apoptosis in cancer cells
while protecting normal tissues [56–58].

Using 4T1 mouse malignant breast cancer cells as an example, it was shown that MSA
significantly induced apoptosis of these cancer cells by activating Bax, caspase-3, PARP [59].
In addition, MSA was able to inhibit tumor angiogenesis by reducing the expression of
vascular endothelial growth factors VEGF and Ang-2 in mammary cells of dogs and mouse
models. This series of experiments showed that MSA inhibited the JAK2/STAT3 signaling
pathway [60].

It has been shown that MSA also activated the Keap1/Nrf2 pathway in ESCC cell
lines: KYSE 150, KYSE 410, KYSE 180, and KYSE 510 [32]. The Keap1-Nrf2 (kelch-like
ECH-associated protein 1/nuclear factor E2-related factor) pathway is known to be one
of the main protective responses of the cell to oxidative and electrophilic voltages. Under
homeostatic conditions, Keap1 is part of E3-ubiquitin ligase, which regulates the activity
of the transcription factor Nrf2, directing it to ubiquitination and proteasome-dependent
degradation. A complex molecular mechanism is triggered under stress conditions, in
which sensory cysteines inside Keap1 allow to avoid ubiquitination of Nrf2, and promote
its accumulation in the cell and transfer to the nucleus, where it can start its antioxidant
transcription program [61]. The treatment of ESCC cell lines with MSA has been shown to
significantly suppress Keap1 both in the nucleus and in the cytoplasm and enhance the
expression of Nrf2 and its concentration in the cell nucleus. In addition, MSA activated the
Keap1/Nrf2 pathway via upregulation of miR-200a. Thus, when ESCC cells were treated
with 5 µM MYF for 24 h, a significant induction of miR-200a expression was observed.
Thus, Keap1 is a direct target of miR-200a in ESCC cells [32].

WM1552c, UKRV, Colo875 (human melanoma cell lines), SK-BR-3, BT-474 (human
mammary carcinoma cell lines), B16F10 (mouse skin melanoma cells) treatment with MSA
increased the MHC class I (major histocompatibility complex surface) expression levels in
all the tested tumor cell lines [62]. The human MHC class I molecules present antigenic
peptides on the surface of cells, which are predominantly generated by proteasomal
degradation of intracellular proteins. MSA partially modulates IFNγ (interferon gamma)
signaling, such as the upregulation of STAT1 (Stat1 signal transducer and activator of
transcription 1), JAK1 (Janus kinase 1), IRF1, IRF5, IRF7, and IRF9 (Interferon-regulated
factor1, 5, 7 and 9) on the mRNA and/or protein expression levels. In addition, MSA
treatment resulted in activation of the transcription factor Nrf2 (nuclear factor erythroid
2-related factor 2).

MSA can be the cause of another variant of cell death, entosis. Entosis is a type of
programmed cell death in which one epithelial cell is absorbed by another epithelial cell
and subsequently dies in the vacuole or lysosome of the absorbed cell. Entosis was first
described under anchorage-independent conditions and the loss of β1-integrin (CD29)
signaling [63]. For example, on Panc-1 (human pancreatic ductal adenocarcinoma) cells,
it was shown that MSA induced entosis by cell detachment through downregulation of
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cell division control protein 42 homologs (CDC42) and its downstream effector β1-integrin
(CD29) [64]. Treatment with MSA led to a unique phenotype, characterized by changes in
morphology and cell detachment from the culture plate prior to cell death. Detached cells
were alive at 24 h, but their reattachment capability and colony-forming ability had been
dramatically compromised.

Treatment of Eca109 cells (human esophageal carcinoma cell line) with 20 and 40 µM
MSA for 72 h reduced cell viability by only approximately 50% and with 20 µM MSA for
48 h cell cycle was arrested in G0/G1 phase, and cell population was increased in S phase.
It was found that MSA significantly reduced the expression of FAL1 (focally amplified
lncRNA on chromosome 1), and thus, the level of PTEN (phosphatase and tensin homolog
deleted on chromosome 10) was increased; therefore, PTEN is a target for FAL1 [65]. It is
known that PTEN-phosphatase has dual substrate specificity, which catalyzes the cleavage
of the phosphate group at the position of the 3D inositol ring of phosphatidylinositol-
3-phosphates, thus depriving them of the functions of secondary messengers in signal
transduction in the cell. This phosphatase is one of the few negative regulators of the
PI3K/AKT/mTOR signaling pathway.

Special attention should be paid to another important effect of selenium on the preven-
tion of cancer development-epigenetic modification of the genome, in particular, deacetyla-
tion of histones, as was shown in the example of human breast adenocarcinoma (MCF7 cell
line) [66], and also contributes to DNA methylation [67]. It was shown that MSA was
able to inhibit the activity of histone deacetylase, which plays an important role in the
regulation of the expression of important genes, promoting the modification of histones and
changing the chromatin conformation [68]. In MCF7 cells, MSA inhibited the expression of
DNA methyltransferase 1 (DNMT1) and also influenced certain histone labels, increasing
H4K16ac and decreasing the level of H3K9me3 [66].

In addition, it has been shown that the target for MSA is the hypoxia-inducible tran-
scription factor 1α (HIF-1α) in cancer cells under hypoxic conditions [69]. It is known
that hypoxic tumor cells, such as human head and neck squamous cell carcinoma (HN-
SCC), overexpress the HIF-1α. This makes cancer cells resistant to chemotherapy and
radiation therapy [70,71]. The factor is stabilized under hypoxia, which occurs due to the
inhibition of prolylhydroxylases (PHDs) that hydroxylate proline molecules of HIF-1α,
leading to ubiquitylation by von Hippel-Lindau protein (VHL) and degradation by proteo-
somes [72]. Under normoxia, the ubiquitin protease-mediated pathway rapidly destroys
factor molecules. It was shown that MSA effectively inhibits the HIF-1α in hypoxic cells,
while PHD 2 and PHD 3, on the contrary, were activated, which was demonstrated in
HNSCC cells [73]. In addition, a decrease in the ROS level was observed, comparable to the
nomoxic controls, which was also accompanied by the stabilization of prolylhydroxylases.
The resistance of these cancer cells, overexpressing the HIF-1α under hypoxia, to SN38-the
active metabolite of irinotecan, was reduced after MSA treatment. Similar synergistic
activity of MSA in combination with docetaxel was shown in a model of prostate cancer
cells [74], which can also be explained by the inhibition of HIF-1α by the activation of
PHDs [75–77].

Treatment of clear cell renal cell carcinoma (RC2 and 786-0) with a pharmacological
dose of MSA (10 µM) promoted inhibition of constitutively expressed transcription factors
HIF-1α and HIF-2α in RC2 and 786-0 cells, respectively [78]. In RC2 cells, this was caused
by suppression of activity VHL, but not in 786-0 cells. However, under hypoxia, when the
secretion of VHL is increased in comparison with normoxia, MSA is able to inhibit this
secretion. It was also shown that the degradation of HIF-1α after MSA treatment does not
depend on VHL but depends on PHD2. Thus, MSA cannot degrade HIF-1α stabilized by a
DMOG (dimethyloxallyl glycine)-inhibitor of PHD activity.

It has been shown that MSA inhibits the expression and activity of HIF-1α in invasive
rat and human prostate cancer cells [79]. Thus, the treatment of highly aggressive human
prostate cancer cell lines (PC-3 and PC-3M) with MSA led to significant inhibition of growth
and induction of apoptosis, and MSA has a stronger effect on cells under hypoxia than
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under normoxia, especially at a physiological dose of MSA (5 µM). These data suggest
that MSA-induced apoptosis under hypoxia is not unique to PTEN-mutant (PC-3 and
PC-3M) or PTEN-positive cells (PAIII and DU145). At the same time, a decrease in the
expression of the HIF-1α protein in PAIII and PC-3M cells was also observed in a dose-
dependent manner. However, PC-3M cells in the presence of serum appeared to be more
resistant to MSA treatment under hypoxia, suggesting that growth factor (serum)-induced
signals such as PI3K (phosphoinositide 3-kinase), IGF-1 (insulin-like growth factor-1), or
EGFR (epidermal growth factor receptor) may impart partial resistance. DNA binding
of HIF-1α was significantly reduced by MSA in PAIII and PC-3 cells in both normoxia
and hypoxia. In addition, HRE (hypoxia-response element) activity during hypoxia in
PC-3M cells was reduced after MSA treatment. Other selenium compounds, including
SM, MSC, and selenite, showed no significant changes in HRE activity, suggesting that
MSA, possibly acting as a precursor of methylselenol, exhibits specificity for redox proteins,
especially under conditions of hypoxia. Treatment of prostate cancer cells with MSA also
reduced the expression of the VEGF and GLUT 1 genes. Both VEGF (vascular endothelial
growth factor) and GLUT 1 (glucose transporter 1) are downstream targets of HIF-1α
and play an important role in HIF-1α-induced cancer invasion [80]. It is known that
CoCl 2 (cobalt chloride) mimics hypoxia under normoxia and thus induces HIF-1α [81].
When prostate cancer cells were either pretreated with MSA followed by CoCl 2 or co-
treated with MSA and CoCl 2, there was a marked decrease in HIF-1α binding or protein
expression, respectively. These observations collectively indicate the efficacy of MSA
against invasive prostate cancer growth that occurs under hypoxia. These results can be
applied to clinical therapies since the hypoxic microenvironment in solid tumors correlates
with tumor invasiveness, metastasis, and drug and radiation resistance.

3. The Role of MSA in the Regulation of ER-Stress

ER is an extensive membrane organelle that plays an essential role in the viability
of a eukaryotic cell. The main function of granular ER is participation in the synthesis
and folding of proteins intended for secretion or exposure on the surface of the cell mem-
brane. For proper folding of a protein molecule, including glycosylation, phosphorylation,
hydroxylation, and other modifications, conditions close to the characteristics of the ex-
tracellular environment are necessary. A situation in which the intermediate form turns
out to be so unfortunate that it leads to unintended interactions with cellular components
is called misfolding or folding error, which poses a significant threat to the cell and the
body as a whole and is the cause of ER stress. ER stress is a molecular pathophysiological
process underlying many human diseases, and impaired protein folding is important for its
development. To prevent this situation, eukaryotes have developed a complex homeostatic
mechanism known as the unfolded protein response (UPR). In the event that the UPR
efforts are unsuccessful and ER-stress deepens, the main UPR regulators are incorporated
into the apoptosis signaling cascade.

Many studies have repeatedly demonstrated that MSA is one of the main selenium
nature sources of ER stress, and the mechanisms of ER stress regulation are rather ambigu-
ous for different cell lines and tumor models [3,4,8,10,82]. When analyzing a large number
of works devoted to this topic, it becomes clear that MSA in low concentrations can only
lead to an adaptive response of cells to ER-stress, without causing apoptosis, while higher
concentrations of MSA (0.1–1 µM and higher) becomes destructive for a number of cancer
cell lines, causing acute ER-stress and apoptosis [3,4,8]. In response to the treatment of cells
with MSA, various UPR signaling pathways are triggered, which indicates the absence
of a specific mechanism for the regulation of ER stress. Most likely, MSA disrupts redox
homeostasis in cells, but depending on the sensitivity of a particular cell line to this inducer
and the general toxic effect caused by it, one or another signaling cascade is triggered, and
sometimes several at once.

We have previously shown [3] that in human prostate adenocarcinoma cells (DU
145), MSA promoted the activation of the PERK signaling pathway since an increase in
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ATF-4 expression was found. In addition, an increased expression of apoptosis genes, as
well as effector caspase-3 and inflammatory caspase-4, was observed in these cancer cells,
which may indicate activation of the pro-apoptotic caspase pathway. According to the
results of real-time PCR and quantitative assessment of proteins in the studied samples, in
human fibrosarcoma cells (line HT-1080), MSA, most likely, promoted the activation of the
ATF-6 signaling pathway.

In MCF 7 cells, MSA simultaneously activated two pro-apoptotic signaling pathways
UPR: IRE1 and ATF-6. Such an interconnection of signaling pathways is well known:
post-translational activation of ATF-6 promotes the activation of post-transcriptional modi-
fication (excision of the 26-nucleotide intron) from the unspliced XBP1u, which may serve
as an additional explanation for the activation of both signaling pathways.

In addition, we previously established that when mouse testicle teratocarcinoma cells
(line F-9) were treated with 1 µM MSA for 24 h, the expression of the spliced XBP1s form
increased significantly, which may indicate activation of the IRE1-signaling pathway [4].

On cells of primary effusion lymphoma (PEL line), it was shown that MSA activated
caspase-4 and genes of pro-apoptotic and apoptotic UPR: GRP78, XBP1s, CHOP, GADD34,
BIM, PUMA [8].

MSA synergistically enhances the growth-inhibitory efficacy of paclitaxel in MDA-
MB-231 cells. MSA enhances paclitaxel-induced apoptosis. MSA could enhance paclitaxel-
mediated G2/M arrest suggests the potential of using MSA to overcome paclitaxel resis-
tance [83].

Figure 3 shows schematically the main effects of MSA on cancer cells. However, in
order to understand the whole picture of the molecular mechanisms of ER-stress and
apoptosis regulation in cancer cells with the active participation of MSA, it is necessary to
pay special attention to the study of the effect of MSA on the expression and activity of
ER-resident selenoproteins. Table 1 shows the main molecular mechanisms of the cytotoxic
action of MSA on the example of various cancer cells.
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Table 1. The main molecular mechanisms of regulations of MSA cytotoxicity on the example of various cancer cell lines.

Cancer Cell Line Name Molecular Mechanisms of Regulations of MSA Cytotoxicity Reference

A-172 (human glioblastoma)

Treatment with 1 µM MSA during 24 h reduces proliferation by 70–80%
and increases the expression of mRNA of the transcription factors

ATF-4 and ATF-6. Silencing of SELENOT under ER-stress induced by 0.1
µM MSA resulted in an increase in the expression of SELENOM and
decreases the expression of AMFR (autocrine motility factor receptor)

and RNF5 (ring finger protein 5), which are E3-ubiquitin ligases,
important enzymes of the ERAD-system.

[3]
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Table 1. Cont.

Cancer Cell Line Name Molecular Mechanisms of Regulations of MSA Cytotoxicity Reference

A549 (human lung cancer cells)

MSA reduced cell growth by 50% when cells were treated with 2.2 ± 0.3,
1.6 ± 0.2, and 1.3 ± 0.1 µM for 24, 48, and 72 h, respectively.

[32,54]

Micromolar concentrations of MSA markedly inhibited the growth of
A549 cells. MSA induces G1 arrest by down-regulating cyclin E1 and
up-regulating p27Kip1. MSA was simultaneously shown to enhance

apoptosis induction in the presence of intracellular GSH. Over 67% of
cells were consecutively inhibited at the G0/G1 phase.

5 µM MSA attenuates the activity of glycolysis, TCA cycle, PPP, and/or
nucleotide biosynthesis. MSA effects are associated with the inhibition of
the Akt pathway, leading to dephosphorylation of FOXO proteins and

their nuclear translocation, which in turn activate the expression of
FOXO target genes. FOXO dephosphorylation and relocalization to the
nucleus are early events that activate the antiproliferative response of

A549 cells to MSA

Cal27 (tongue origin, CRL-2095),
SCC25 (tongue origin, CRL-1628)

(head and neck squamous
carcinoma cells)

Treatment with 10 µM MSA during 24 h appears to be more toxic to
SCC25 compared to Cal27 cells. MSA inhibits cell proliferation by

more than 90%.

[34]
Lipid peroxidation (LPO) is an essential step in the MSA-induced toxicity
of HNSCC cells. MSA sensitizes HNSCC cells to radiation and exhibits
toxicity through a GSH-dependent induction of LPO. Cal27 cells treated

with 10 µM MSA for 72 h were found to have 1.16 fmol lipid
hydroperoxide per cell, nearly 40 times as much as untreated cells

DU145 (human prostate
carcinoma epithelial cells)

At 1 µM MSA, the viability of these cell lines decreases by 70–80%. MSA
promoted the activation of the PERK signaling pathway, increases

expression of apoptosis genes, as well as effector caspase-3 and
inflammatory caspase-4. When DU 145 cells were treated with 1 µM

MSA for 24 h, a significant increase in the expression of the SELENOF
and SELENOM genes was observed.

[3]

Eca109 (human esophageal
carcinoma cell line)

Treatment of cells with 20 and 40 µM MSA for 72 h reduced cell viability
by only approximately 50%.

[65]

After treatment of Eca109 cells with 20 µM MSA for 48 h cell cycle was
arrested in G0/G1 phase, and the cell population was increased in the S

phase. MSA significantly reduces the expression of FAL1 (focally
amplified lncRNA on chromosome 1), and thus, the level of PTEN

(phosphatase and tensin homolog deleted on chromosome
10) is increased.

HUVEC (human umbilical vein
endothelial cells)

A total of 10 µM MSA inhibits cell proliferation by 20% during 24 h.

[41]

Effectively increases the adherence to collagen I and inhibits cell
migration of HUVECs; down-regulates Integrin β3 and inhibits

phosphorylation of AKT; disrupts the clustering of integrin β3 surface
localization; inhibits VEGF-induced angiogenesis and the

phosphorylation of IκBα and NF-κB, and the nuclear translocation
of NF-κB

KYSE150, KYSE180, KYSE410,
and KYSE510 (ESCC-human

esophageal squamous cell
carcinoma cells):

MSA treatment significantly down-regulated Keap1 (Kelch-like
ECH-associated protein 1), induced nuclear accumulation of Nrf2

(nuclear factor E2-related factor 2), and enhance the ARE (antioxidant
response element) promoter activity and significantly induce

miR-200a expression.

[31]

MDA-MB-231(human breast
adenocarcinoma cells)

The viability of cells treated with 4 µM MSA for 72 h decreased by more
than 40%, while simultaneously treating cells with 4 µM MSA and 10 nM

paclitaxel for 72 h-by more than 80%.

[83]
MSA synergistically enhances the growth-inhibitory efficacy of paclitaxel
in MDA-MB-231 cells. MSA enhances paclitaxel-induced apoptosis. MSA
could enhance paclitaxel-mediated G2/M arrest suggests the potential of

using MSA to overcome paclitaxel resistance



Int. J. Mol. Sci. 2021, 22, 6614 10 of 18

Table 1. Cont.

Cancer Cell Line Name Molecular Mechanisms of Regulations of MSA Cytotoxicity Reference

PANC-1, PANC-28, Colo357,
Bxpc-3, HPAC (human pancreatic

cancer cell) lines

PANC-1 treatment with 2.6 µM MSA for 5 d, PANC-28 treatment with 1.2
µM MSA for 3 d, Colo357 treatment with 0.6 µM MSA for 48 h,

Bxpc-3 treatment with 1.15 µM MSA for 48 h, HPAC treatment with 3.7
µM MSA for 48 h resulted in a 50% decrease in cells growth.

[64,82]

MSA induced G1 arrest and caspase-mediated apoptosis in most
pancreatic cancer cell lines and manifested a rapid G2 arrest in the

PANC-1 and PANC-28 cell lines. MSA induced G1 arrest in Colo357,
Bxpc-3, HPAC cells at 12, 24, and 48 h. A total of 7.5 µM MSA induced a

modest 2.2-fold of apoptotic fragmentation in PANC-1 cells
compared to control.

When PANC-1 cells were treated with 1 µM MSA for 72 h, a decrease in
cell viability was observed only by 20%, while when treated with 50 µM

MSA, by more than 90%.
MSA induced entosis by cell detachment through downregulation of cell

division control protein 42 homologs (CDC42) and its downstream
effector β1-integrin (CD29). Treatment with MSA led to a unique

phenotype, characterized by changes in morphology and cell detachment
from the culture plate prior to cell death.

PEL (primary effusion lymphoma)

Treatment with 30 µM MSA during 24 h reduces proliferation by 70–80%.

[8]
MSA induces pro-apoptotic UPR through transcriptional activation of

pro-apoptotic genes, CHOP, Bim, and Puma, via the activation of
caspases, induces oxidative stress but not lytic replication

4T1 (mouse malignant breast
cancer cells)

MSA significantly induces apoptosis of these cancer cells by activating
Bax, caspase-3, PARP. In addition, MSA is able to inhibit tumor

angiogenesis by reducing the expression of vascular endothelial growth
factors VEGF and Ang-2 in mammary cells of dogs and mouse models.
In addition, this series of experiments showed that MSA inhibited the

JAK2/STAT3 signaling pathway.

[59,60]

WM1552c, UKRV, Colo875
(human melanoma cell lines),

SK-BR-3, BT-474 (human
mammary carcinoma cell lines),

B16F10 (mouse skin
melanoma cells)

Treatment with MSA increased the MHC class I (major histocompatibility
complex surface) expression levels in all the tested tumor cell lines. MSA

partially mimics IFNγ signaling, such as the upregulation of
STAT1(Stat1 signal transducer and activator of transcription 1), JAK1

(janus kinase 1), IRF1, IRF5, IRF7, and IRF9 (interferon-regulated factor1,
5, 7 and 9) on the mRNA and/or protein expression levels. In addition,

MSA treatment leads to activation of the transcription factor Nrf2.

[62]

HNSCC (human head and neck
squamous cell carcinoma),

MSA effectively inhibits the HIF-1α in hypoxic cells, while PHD 2 and
PHD 3, on the contrary, were activated, which was demonstrated in

HNSCC cells.
[73]

RC2 and 786-0 (clear cell renal
cell carcinoma)

The resistance of these cancer cells, overexpressing the HIF-1α under
hypoxia, to SN38-the active metabolite of irinotecan, was reduced after

MSA treatment. Similar synergistic activity of MSA in combination with
docetaxel was shown in a model of prostate cancer cells, which can also

be explained by the inhibition of HIF-1α by the activation of PHDs.

[74–77]

(PC-3 and PC-3M, PAIII and
DU145 (human prostate

cancer cells)

Treatment of clear cell renal cell carcinoma (RC2 and 786-0) with a
pharmacological dose of MSA (10 µM) promoted inhibition of

constitutively expressed transcription factors HIF-1α and HIF-2α in
RC2 and 786-0 cells, respectively.

[78]

MSA inhibits the expression and activity of HIF-1α in invasive rat and
human prostate cancer cells [79]. Thus, the treatment of highly

aggressive human prostate cancer cell lines (PC-3 and PC-3M) with MSA
led to significant inhibition of growth and induction of apoptosis, and

MSA has a stronger effect on cells under hypoxia than under normoxia,
especially at a physiological dose of MSA (5 µM).

[79]



Int. J. Mol. Sci. 2021, 22, 6614 11 of 18

4. Differential Expression of ER-Resident Selenoprotein Genes under ER-Stress
Conditions Caused by the MSA

To date, it is known that in mammals seven selenoproteins are localized in the ER:
selenoprotein M (SELENOM), selenoprotein F (SELENOF), selenoprotein T (SELENOT),
selenoprotein K (SELENOK) S (SELENOS), iodothyronine deiodinase 2 (DIO2), and se-
lenoprotein N (SELENON). The ER-resident selenoproteins, according to their structural
features, are classified into families. Thus, SELENOM, SELENOF, and SELENOT belong
to the family of proteins with thioredoxin-like folding, while SELENOS and SELENOK
belong to the family of type III transmembrane proteins [84–88]. SELENON is a transmem-
brane glycoprotein containing an EF motif in its structure [89]. DIO2 is a dimeric type
1 membrane protein that is inactivated by ubiquitinylation [90,91].

The localization of these selenoproteins in the ER suggests their participation in the
regulation of processes associated with ER stress, which has been repeatedly demonstrated
by a number of works [3,4,8,10,25,92], and the expression of genes encoding these seleno-
proteins, and the activity of the proteins themselves, are largely regulated by various
inducers of ER-stress, especially of selenium nature. However, the nature of the regulation
of ER-resident selenoproteins gene expression is very ambiguous and depends not only on
the nature of the source of ER stress but also on its concentration and time of treatment. This
is quite logically explained by the fact that the concentration and time of treatment with
one or another inducer determine the severity of ER stress, which may differ significantly
not only in normal and cancer cells, but also when comparing cancer cell lines with each
other. This fact has been repeatedly confirmed by tests for the viability and proliferative
properties of various cell lines when cells are treated with different types of ER-stress
inducers [93–95].

Previously, we analyzed the expression of genes of seven ER-resident selenoproteins
depending on the concentration and time of treatment with MSA on cancer cells of three
cell lines: DU 145-prostate carcinoma, HT-1080-fibrosarcoma, MCF7-breast adenocarci-
noma [3]. We carried out a comparative analysis of the mRNA expression of selenoprotein
genes by families into which they are assigned by their structural features. Thus, when
comparing the expression of three selenoproteins, SELENOM, SELENOF, and SELENOT,
we established the synchronous nature of the mRNA expression patterns of the SELENOT
and SELENOF genes and the asynchronous expression pattern for SELENOM. Moreover,
in DU 145 and MCF7 cells, a similar pattern of changes in gene expression of all three
selenoproteins was observed, while for the HT-1080 line, an inverse correlation of gene
expression depending on the MSA concentration compared with two other lines was
established, but a synchronous pattern of SELENOT and SELENOF expression and an
asynchronous one for SELENOM was always observed.

When DU 145 and MCF7 cells were treated with 0.01 µM MSA for 24 h, there was a
slight decrease in the expression of SELENOM mRNA and, at the same time, an increase in
the expression of SELENOT and SELENOF mRNAs; a slight increase in SELENOM mRNA
expression and a decrease in SELENOT and SELENOF mRNAs expression were observed
when these cell lines were treated with a higher concentration of MSA (0.1 µM) for 24 h.
When MCF7 cells were exposed to 1 µM MSCs (the highest studied concentration) for 24 h,
an even greater increase in the expression of SELENOM mRNA and insignificant changes
in the expression of the SELENOT and SELENOF genes were observed as compared to the
treatment of cells with 0.1 µM MSCs. However, when DU 145 cells were treated with 1
µM MSA for 24 h, a significant increase in the expression of the SELENOF and SELENOM
genes was observed. The SELENOM gene is characterized by a direct correlation between
the enhancement of mRNA expression depending on the concentration of MSA in both
cell lines, while an inverse correlation was established for the SELENOF gene. A similar
decrease in expression with an increase in MSA concentration was observed for the SE-
LENOT gene in Caco-2 cells, while in A-172 cells, a twofold increase in the expression of
this gene was found when cells were exposed to 0.1 µM MSA and a subsequent decrease in
expression when cells were treated with 1 µM MSA.
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Thus, using the example of five cancer cell lines DU 145, MCF7, A-172, Caco-2,
and HT-1080, we studied, firstly, the level of SELENOM mRNA expression increases
in proportion to the increase in MSA concentration in all lines. Second, the expression
patterns of SELENOT and SELENOF at low MSA values (0.01 and 0.1 µM) are almost
always synchronous. Third, under conditions of prolonged ER-stress induced by 1 µM
MSA for 24 h, the expression levels of SELENOM and SELENOF tend to close values, as a
rule, the expression is enhanced, which was shown by us on the example of four human
cancer cell lines: DU 145, MCF7, A-172 and HT-1080 [3].

Taking into account the fact that SELENOM and SELENOF have a similar structure
and belong to the same family, they are most likely the most active and interact at the
end stages of cell apoptosis, in particular, in membrane blebbing, as it was proved for
SELENOF [96]. Indirectly, the involvement of SELENOM in this process was shown by
us earlier [92], since the physiological partners of SELENOM in cancer cells MCF7 and
HT-1080 were cytoskeletal actin 1 and 2, which play a key role in cellular processes such
as adhesion, migration, polarization, and mitosis. It is known that pathological changes
in cell motility are observed during tumor transformation caused by dysregulation of the
actin system, which leads to tumor invasion and metastasis.

Most likely, the high expression of SELENOT at the early stages of ER stress may
indicate the participation of this selenoprotein in the degradation of misfolded proteins
under ER-stress conditions. In support of this hypothesis, there is a study that shows that
SELENOT is a subunit of the A-type oligosaccharyltransferase complex (OST). Despite the
fact that the sequences of the two selenoproteins SELENOK and SELENOS do not have
homology, the proteins have a similar domain organization and belong to the third type
of transmembrane proteins [97,98]. We have previously shown that mRNA expression
patterns of genes of these proteins and the quantitative content of selenoproteins in DU
145, MCF7, A-172, and HT-1080 cells change synchronously, depending on the MSA
concentration. A high level of mRNA expression of both proteins, as a rule, was observed
when cells were treated with 0.01 µM and 1 µM MSA, while when cells were treated
with 0.1 µM MSA, their expression changed insignificantly from the control [3]. The
high degree of mRNA expression and the activity of SELK and SELS proteins under
conditions of adaptive UPR can be explained by the fact that both proteins interact with the
components of the oligosaccharyltransferase complex (OST): Derlin-1, Derlin-2, riboforins
I and II, OST48, STT3A [99,100]. In addition, both selenoproteins control the transfer of
the vasolin-containing protein p97 (VCP) to the ER membrane [101–106]. These protein-
protein interactions SELENOK and SELENOS indicate their involvement in the regulation
of the ERAD-system, such as SELENOT, causing the degradation of proteins with incorrect
folding. The high expression and activity of these selenoproteins during prolonged stress
is most likely due to their antioxidant function, which is aimed at maintaining redox
homeostasis in cells.

SELENON is a type II transmembrane protein whose activity largely depends on
fluctuations of calcium ions with the EF-hand domain (helix-loop-helix structural do-
main) of selenoprotein, which consists of two alpha helices linked by a short loop region
(usually about 12 amino acids) that usually binds calcium ions. [89]. It is believed that
SELENON is a kind of sensor for the concentration of calcium ions in the ER lumen,
which changes its oligomeric state upon ion depletion [85]. In addition, it has been shown
that SELENON can play an important role in protecting cells from oxidative stress and
maintaining Ca2+ homeostasis, interacts with the ryanodine receptor RYR1, and can neu-
tralize hydrogen peroxide-induced inhibition (SERCA2b) [107,108]. Another ER-resident
selenoprotein is DIO2, which is a dimeric type 1 membrane protein that is inactivated
by ubiquitinylation [91,109,110]. DIO2 activity is regulated at different levels. This se-
lenoprotein undergoes the reaction of ubiquitination of E3-ubiquitin ligase WSB-1 and
TEB4, after which it can interact with VCP and is transferred to the cytosol for proteasome
degradation [111–113]. When studying the changes in the mRNA expression of these two
selenoproteins from the concentration of MSA, it was difficult for us to trace any regularity,
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as it was established for the other five ER-resident selenoproteins. In different cancer cell
lines, their expression changed in different ways; for example, the expression of SELENON
mRNA increased in proportion to the concentration of MSA in DU 145 and A-172 cells and
decreased in Caco-2 and HT-1080 cells. In addition, in cells, MCF7 practically did not differ
from control. Whereas the expression of DIO2 mRNA decreased in A-172 and MCF7 cells
in proportion to the increase in MSA concentration and increased in the other three cell
lines [114].

5. Discussion

Currently, there are many known ER-stress inducers of various nature; among them,
special attention is paid to selenium-containing agents since we and other authors have
repeatedly shown that even insignificant concentrations of some of them can cause not
only adaptive but also prolonged ER stress leading to cell death [2–10]. The special interest
in selenium compounds, which affect the redox processes of tumor cells, is explained by
the fact that drugs based on them induce complex cascades of redox reactions, which
ultimately lead to apoptosis and are multisite drugs. The development of resistance to
such drugs is difficult because they have a targeted effect on highly specialized molecular
targets. Thus, the antioxidant defense mechanisms of cancer cells are overloaded both by
their own generation of ROS and their generation from redox-active selenium compounds,
which leads to the loss of structural and functional integrity and the subsequent death of
cancer cells. Such a treatment strategy can be very effective, especially when combined
with monosite drugs, ROS generators, used in oncology.

This review is devoted to the study of the cytotoxic effect of a selenium-containing
organic compound, methylselenic acid (MSA), on various cancer cells, on the regulation
of the expression of seven ER-resident genes, and on the activation of various signaling
pathways of both adaptive and prolonged ER stress caused by various concentrations of
MSA. The analysis of a large number of works indicates that there is no strictly specific
molecular mechanism of the cytotoxic action of this selenium-containing compound in
relation to various cancer cell lines and cancer models.

Among the well-known mechanisms and regulatory pathways of the antitumor activ-
ity of MCA, the following can be distinguished: glutathione-dependent induction of lipid
peroxidation [34], the inhibition PI3K/AKT/mTOR pathway and activation of FOXO pro-
teins [54], the inhibition of the activity of deacetylases and DNA-methyltransferases [114],
the activation of the Keap1/Nrf2 pathway via upregulation of miR-200a [32], the activation
signaling pathways of adaptive and pro-apoptotic UPR, the down- and up-regulation
of the ER-resident selenoprotein genes expression [3], the inhibitions of angiogenesis by
suppressing β3-integrin and interrupting its clustering [41] and other cytotoxic effects.

In addition, using the example of various cancer cell lines, a pattern in the regulation
of the expression of selenoprotein genes localized in the ER was revealed, especially three
of them: SELENOM, SELENOF, and SELENOT [3]. Firstly, the level of SELENOM mRNA
expression increases in proportion to the increase in MSA concentration in all lines. Second,
the expression patterns of SELENOT and SELENOF at low MSA values (0.01 and 0.1 µM)
are almost always synchronous. Third, under conditions of prolonged ER-stress induced
by 1 µM MSA for 24 h, the expression levels of SELENOM and SELENOF tend to close
values, as a rule, the expression is enhanced, which was shown by us on the example of
four human cancer cell lines: DU 145, MCF7, A-172, and HT-1080. mRNA expression
patterns of SELENOK and SELENOS genes of these proteins and the quantitative content
of selenoproteins in DU 145, MCF7, A-172, and HT-1080 cells change synchronously,
depending on the MSA concentration [3].

6. Conclusions

This review provides a comprehensive understanding of the complex and controver-
sial mechanisms of the cytotoxic action of the well-known antitumor agent of selenium
nature, which has a number of significant advantages over other MSA. All these qualities
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make methylseleninic acid an attractive substrate for the production of anticancer drugs
on its basis with a well-pronounced selective effect.
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