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Transcriptomics technologies such as next-generation sequencing and microarray
platforms provide exciting opportunities for improving diagnosis and treatment of
complex diseases. Transcriptomics studies often share similar hypotheses, but are
carried out on different platforms, in different conditions, and with different analysis
approaches. These factors, in addition to small sample sizes, can result in a lack of
reproducibility. A clear understanding and unified picture of many complex diseases are
still elusive, highlighting an urgent need to effectively integrate multiple transcriptomic
studies for disease signatures. We have integrated more than 3,000 high-quality
transcriptomic datasets in oncology, immunology, neuroscience, cardiovascular and
metabolic disease, and from both public and internal sources (DiseaseLand database).
We established a systematic data integration and meta-analysis approach, which
can be applied in multiple disease areas to create a unified picture of the disease
signature and prioritize drug targets, pathways, and compounds. In this bipolar
case study, we provided an illustrative example using our approach to combine a
total of 30 genome-wide gene expression studies using postmortem human brain
samples. First, the studies were integrated by extracting raw FASTQ or CEL files,
then undergoing the same procedures for preprocessing, normalization, and statistical
inference. Second, both p-value and effect size based meta-analysis algorithms were
used to identify a total of 204 differentially expressed (DE) genes (FDR < 0.05) genes in
the prefrontal cortex. Among these were BDNF, VGF, WFS1, DUSP6, CRHBP, MAOA,
and RELN, which have previously been implicated in bipolar disorder. Finally, pathway
enrichment analysis revealed a role for GPCR, MAPK, immune, and Reelin pathways.
Compound profiling analysis revealed MAPK and other inhibitors may modulate the DE
genes. The ability to robustly combine and synthesize the information from multiple
studies enables a more powerful understanding of this complex disease.
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INTRODUCTION

Transcriptomics technologies such as next-generation
sequencing (NGS) based RNA-Sequencing (RNA-Seq) and
DNA chip based gene expression microarray provide a high-
throughput and cost-effective solution to evaluate whole-genome
gene expression signatures (Ramasamy et al., 2008; Wu et al.,
2017a). These platforms enable researchers to measure tens of
thousands of genes simultaneously and have become one of the
most widely used approaches in biological research. Detecting
differentially expressed (DE) genes or predictive biomarkers is
the most common goal in transcriptomics studies. In addition,
using large-scale perturbation databases such as Connectivity
Map (CMAP) or Library of Integrated Network-based Cellular
Signatures (LINCS) (Duan et al., 2016), transcriptomics
studies can facilitate the development of pharmacotherapies
that modulate disease-associated gene expression signatures
(Subramanian et al., 2017). Numerous omics studies on human
diseases and animal models are published each year. Despite their
great promise, individual studies sharing similar hypotheses may
generate results that are not reproducible due to a small number
of samples, potential confounding factors, disease heterogeneity,
and differences in platforms or bioinformatics methods (Walsh
et al., 2015). There is a clear need to effectively manage, integrate,
and synthesize the information from related transcriptomics
studies to improve our understanding and generate a unified
picture of complex diseases.

There are two conceptual frameworks for the integration
of information from multiple gene expression studies: cross-
platform normalization (merging) and meta-analysis (Taminau
et al., 2014). Merging refers to concatenating multiple datasets
prior to statistical analysis, while meta-analysis is considered
a late stage integration combining statistical results from each
individual study (Hamid et al., 2009). The vast quantity of and
diverse platforms represented in both NGS- and microarray-
based datasets present many challenges for compatibility of
data and removal of batch effects, and make meta-analysis a
more appealing approach at large-scale (Ramasamy et al., 2008).
In the present study, we developed a meta-analysis workflow
and applied it to the bipolar disorder. Chang et al. (2013)
systematically compared the performance of current meta-
analysis methods, including six p-value combination methods
(Fisher, Stouffer, adaptively weighted Fisher, minimum p-value,
maximum p-value, and rth ordered p-value), two combined effect
size methods (fixed effects model and random effects model) and
four combined ranks methods (RankProd, RankSum, product of
ranks and sum of ranks). These methods were categorized into
three hypothesis settings (candidate DE genes in “all” [HSA], “one
or more” [HSB], or “most” [HSr] studies) based on their strengths
for detecting DE genes (Tseng et al., 2012).

We applied our method to extract insights from existing
studies of human postmortem brain tissues in bipolar
disorder, which are very heterogeneous and often individually
underpowered. Also referred to as manic-depressive disorder,
bipolar disorder is a serious mental illness that causes changes in
mood, energy, and activity levels (Grande et al., 2016). Based on
data from National Comorbidity Survey Replication (NCS-R),

the bipolar disorder affects 2.8% of United States adult and
2.9% of United States adolescents (Merikangas et al., 2010).
Despite multiple transcriptomics studies of bipolar disorder,
a clear understanding of the genomic basis of the disease has
not yet emerged. These studies typically use postmortem brain
tissues, which is the most relevant for bipolar. However, due to
the relative instability of RNA, these gene expression studies are
often influenced by factors such as postmortem interval (PMI)
(Li et al., 2003), freezer interval and cause of death (Tomita et al.,
2004; Wu et al., 2017a). As a result, the genes and pathways
identified from individual studies have largely been inconsistent.
To address the above issues, we developed a systematic meta-
analysis framework and applied it to the largest gene expression
datasets in brain tissues from bipolar patients to date.

MATERIALS AND METHODS

Integrate Transcriptomic Studies in the
DiseaseLand Database
We adopted Omicsoft methods and used its service to integrate
transcriptomics data into the DiseaseLand database1. Briefly,
we first selected microarray and RNA-Seq platform-based
studies in four therapeutic areas: Oncology, Immunology,
Cardiovascular and Metabolism, and Neuroscience. Raw data
were extracted from public sources such as the Gene Expression
Omnibus (GEO2) and ArrayExpress3, as well as from Janssen
internal, collaborators and consortia. These studies were further
filtered based on sample size, disease relevance, case and control
composition, gene coverage and other factors. Common sample
ontologies were applied to name and categorize samples, diseases
and treatments. Common gene ontologies were also applied
to all platforms to name the same genes in a species and the
same ortholog genes across species. Consistent preprocessing,
QC, normalization and statistical inference procedures were
applied to all studies on the same platforms. This application
of common ontologies and consistent data processing enabled
searching all studies in the database and retrieving comparable
results among studies.

Identify Suitable Transcriptomics
Datasets in Bipolar Disorder
A detailed review protocol was established, which made minor
changes to the meta-analysis guidelines suggested in Ramasamy
et al. (2008). We searched our database for studies conducted
in postmortem human brain tissues using RNA-Seq or genome-
wide microarray-based technologies. The resulting study titles,
abstracts, and full texts were manually reviewed for potential
duplicates. We performed a further literature search on public
repositories including ArrayExpress, GEO, Sequence Read
Archive (SRA), and Stanley Medical Research Institute to identify
any other studies that were potentially missed by the DiseaseLand
database, and further identified other unpublished internal data

1https://www.omicsoft.com/diseaseland/
2https://www.ncbi.nlm.nih.gov/geo/
3https://www.ebi.ac.uk/arrayexpress/
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sources for inclusion. In total, 30 RNA-Seq or microarray-based
datasets on bipolar disorder were included (Table 1).

Raw Data Acquisition and Preprocessing
To remove bias introduced by different bioinformatics pipelines
used in the original studies, we integrated the raw data by
applying a consistent systematic approach to each individual
study. For studies carried out with Affymetrix Gene Chip, raw
CEL files were extracted from the DiseaseLand database. We
applied the RMA method (Irizarry et al., 2003) in Omicsoft,
which not only extracts expression data from Affymetrix
microarrays, but also carries out background correction,
normalization, and summarization. Customized CDF files were
used to directly get gene level expression for improving the
interpretation and accuracy of the data (Dai et al., 2005). For
datasets generated on RNA-Seq platforms, raw fastq files were
extracted from DiseaseLand. Bam files were generated using
the Omicsoft OSA aligner with human Genome B37 as the
reference genome (Hu et al., 2012). We then used the RSEM
algorithm (Li and Dewey, 2011) to derive read count values
for each gene in UCSC gene model. Genes that have more
than 1 cpm (counts per million) in at least 50% of samples

were kept. Limma/voom transformation (Law et al., 2014) as
applied to generate normalized gene expression matrices. To
remove surrogate variables for unknown sources of variation, we
performed Surrogate Variable Analysis (SVA) (Leek and Storey,
2007). The top surrogate variables were identified using “leek”
method (Leek and Storey, 2007), which were then regressed out
to obtain residuals with sources of confounding factors removed.

Quality Control Process at the
Sample- and Study-Level
We applied systematic quality control (QC) processes to all
datasets. At the sample level, inter-array correlation (IAC)
based QC was performed for each study to identify outlier
samples (Oldham et al., 2008). IAC was defined as the Pearson
correlation coefficient of the expression levels for a given
pair of samples, which provides an unbiased approach to
remove samples with divergent gene expression levels. We
removed outlier samples that fell below the −3 standard
deviation (SD) cutoff. At the study level, any RNA-Seq datasets
with median sample alignment rates less than 40% were
excluded from the meta-analysis. Also, an unbiased systematic

TABLE 1 | Human brain transcriptomic datasets of bipolar.

Study name Size Access Platform name Region

Internal.caudate 177 Internal Illumina.HiSeq2500 Striatum

Internal.DLPFC 89 Internal Illumina.HiSeq2500 PFC

GSE12649.BA46 67 GSE12649 Affymetrix.HG-U133A PFC

GSE35974.cerebellum 87 GSE35974 Affymetrix.HuGene-1_0-st-v1 Cerebellum

GSE35977.PCX 96 GSE35977 Affymetrix.HuGene-1_0-st-v1 PCX

GSE53239.15433.DLPFC 12 GSE53239 Illumina.HiSeq1000 PFC

GSE53239.9115.DLPFC 10 GSE53239 Illumina.GenomeAnalyzerII PFC

GSE5388.BA9 61 GSE5388 Affymetrix.HG-U133A PFC

GSE5389.BA11 21 GSE5389 Affymetrix.HG-U133A OFC

GSE53987.BA46 36 GSE53987 Affymetrix.HG-U133_Plus_2 PFC

GSE53987.hippocampus 36 GSE53987 Affymetrix.HG-U133_Plus_2 Hippocampus

GSE53987.neostriatum 35 GSE53987 Affymetrix.HG-U133_Plus_2 Striatum

GSE78936.BA11 28 GSE78936 Illumina.HiSeq2000 PFC

GSE78936.BA24 13 GSE78936 Illumina.HiSeq2000 PFC

GSE78936.BA9 13 GSE78936 Illumina.HiSeq2000 PFC

GSE80336.DStriatum 36 GSE80336 Illumina.HiSeq2000 Striatum

GSE80655.ACC 48 GSE80655 Illumina.HiSeq2000 ACC

GSE80655.DLPFC 47 GSE80655 Illumina.HiSeq2000 PFC

GSE80655.NAc 46 GSE80655 Illumina.HiSeq2000 Striatum

GSE81396.caudate 8 GSE81396 Illumina.HiSeq2000 Striatum

GSE81396.putamen 8 GSE81396 Illumina.HiSeq2000 Striatum

NC.hippocampus 29 Neuropathology Consortium Illumina.HiSeq Hippocampus

NC.OFC 29 Neuropathology Consortium Illumina.HiSeq OFC

NC.PFC 30 Neuropathology Consortium Illumina.HiSeq PFC

SAS1.BA46 65 StanleyArrayStudy1 Affymetrix.HG-U133A PFC

SAS16.thalamus 23 StanleyArrayStudy16 Affymetrix.HG-U133_Plus_2 Thalamus

SAS17.hippocampus 41 StanleyArrayStudy17 Affymetrix.HG-U133_Plus_2 Hippocampus

SAS2.BA46.10 40 StanleyArrayStudy2 Affymetrix.HG-U133A PFC

SAS4.BA6 27 StanleyArrayStudy4 Affymetrix.HG-U133_Plus_2 PFC

SAS5.BA46 55 StanleyArrayStudy5 Affymetrix.HG-U133_Plus_2 PFC

Several studies examined tissues from multiple human brain regions.
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study-level QC was applied to assess the quality of the studies
for meta-analysis and determine the final inclusion/exclusion
criteria (Kang et al., 2012). Briefly, six quantitative QC measures
were evaluated, including IQC (evaluating homogeneity of
coexpression structure across studies), EQC (consistency of
coexpression information with pathway database), AQCg
(accuracy of DE gene detection), AQCp (accuracy of enriched
pathway detection), CQCg (consistency of DE gene ranking), and
CQCp (consistency of enriched pathway ranking). A standard
mean rank (SMR) summary score was calculated based on
these six QC measures to identify problematic studies. We then
investigated the metadata manually to determine causes for low
ranks, including the source of the data, sample size, platform, or
other experimental conditions.

Individual Statistics and Meta-Analysis
Approaches
We applied both meta-analysis strategies combining p-values
and effect sizes across studies. We first calculated p-values from
non-parametric permutation analysis of a penalized t-statistic
in each individual study. We randomly permuted the labels
of observations 1,000 times to get adjusted p-values. We then
applied meta-analysis algorithms, including Fisher, Stouffer,
maximum p-value (maxP) and r-th ordered p-value (rOP) to
combine individual p-values across studies and generate meta-
analyzed p-values (Song and Tseng, 2014). The product of ranks
(PR) and the sum of ranks (SR) algorithms were implemented
to apply a naïve product or sum of the DE evidence ranks
across studies. P-value combination usually combine two-sided
p-values, thus a one-sided test correction was also performed
to guarantee identification of DE genes with concordant DE
direction (Song and Tseng, 2014). To combine effect sizes across
studies, the procedure described by Choi et al. (2003) was applied.
A random permutation of 1,000 times was implemented to
estimate individual effect sizes and FDR. We then fitted a fixed-
effect model (FEM) and random-effect model (REM) to combine
effect sizes across studies (Choi et al., 2003). The methods used
for detecting DE genes in most of the studies were the rth
order p-value (rOP) and the REM. Tseng et al. (2012) discussed
the pros and cons of these methods in a recent review article.
In the present study, although multiple methods were tested,
“most” or [HSr] setting was mainly discussed in the example of
bipolar disorder.

Pathway Enrichment Analysis
To get a functional overview of the significant meta-analyzed
genes, we performed over-representation tests on shared
significant DE genes by using clusterProfiler in R (Yu et al.,
2012) and Ingenuity Pathway Analysis (IPA, QIAGEN). Shared
significant meta-analyzed DE genes (FDR < 0.05) between
rOP and REM were tested against given pathways from
disease ontology (DO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases and IPA. Over-representation test
was used to estimate the p-values. To correct for multiple
comparisons problem, the q-values were calculated and reported
for FDR control.

Candidate Compounds Prioritization
We prioritized candidate compounds via anti-genomic similarity
between DE genes and compound profiles within LINCS
L1000 (Subramanian et al., 2017). Briefly, the upregulated and
downregulated DE genes from the meta-analysis were com-
pared against gene expression signatures of small-molecule
perturbations from the LINCS L1000 database using Enrichr
(Kuleshov et al., 2016). The mechanism of action, target
and disease indication for significant compounds (adjusted
p-value <0.01) were obtained from DrugBank (Wishart et al.,
2006) and PubChem. Drugs with unclear pharmacological
actions were removed.

Statistical Analysis and Dataset Access
Raw data from RNA-Seq and microarray were pre-processed
by using Omicsoft Array Studio. The statistical computing on
analysis-ready gene expression datasets was performed in the
R language4 (v3.4). The public RNA-Seq and microarray raw
datasets can be downloaded from GEO, SRA, or Stanley Medical
Research Institute.

RESULTS

Integration of Transcriptomic Studies in
the DiseaseLand Database
We integrated a total of 1,885 human and 1,460 animal (mouse
or rat) studies from public and Janssen internal sources into the
Janssen DiseaseLand database. Six hundred and thirty studies are
RNA-Seq based and the remaining are derived using microarray-
based technology. Figure 1A shows the distribution of studies in
various disease areas, including mental disorders, cardiovascular
and metabolic diseases and immune diseases. In our collection
of main nervous system diseases such as Alzheimer’s disease,
Huntington’s disease, and amyotrophic lateral sclerosis, around
50% were conducted in animal models (Figure 1B). In studies of
mental disorders like schizophrenia, major depressive disorder,
and bipolar disorder, however, there are relatively fewer studies
from animal models. This difference may reflect a greater
availability of human samples especially post-mortem human
brain tissues. It may also reflect that modeling psychiatric
disorders in animals is extremely challenging due to the
subjective nature of behavior-based diagnostics, the lack of
biomarkers and the still developing understanding of relevant
neurobiology and genetics (Nestler and Hyman, 2010). Hence
in this study, we only included human datasets generated
from RNA-Seq and Affymetrix microarray-based platforms in
bipolar disorder.

Workflow for Transcriptomics Data
Processing and Meta-Analysis
Using DiseaseLand
Figure 2 lists the analysis framework for integrating transcripto-
mics datasets from the Janssen DiseaseLand database. In this

4https://www.r-project.org/
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FIGURE 1 | Study collections in the Janssen DiseaseLand database. (A) Number of studies in major disease areas. (B) Number of studies in major diseases of the
mental disorder and nervous system disease areas. Segments in the stacked bars represent parts of studies in human (blue), mouse (green), or rat (purple).

case study of bipolar, we identified a total of 30 datasets
after applying the inclusion–exclusion criteria (Table 1). Raw
data were extracted and pre-processed with Omicsoft Array
Studio-based pipelines (Methods). Of these 30 datasets, all
samples (n = 1313) were from post-mortem human brain
tissues including the thalamus, striatum, prefrontal cortex
(PFC), parietal cortex (PCX), hippocampus, cerebellum, anterior
cingulate cortex (ACC) (Table 1 and Figure 3A).

In the sample-level QC step, we calculated the IAC for
each individual study to flag potential outlying samples
(Methods) (Oldham et al., 2008). As an example, the
frequency diagram in Figure 3B shows the distribution
of IACs within the Stanley Array Study 4 (SAS4). The
overall mean IAC across 27 samples in the SAS4 dataset
was 0.979. We removed any samples with mean IACs
falling below 3 standard deviations of overall mean
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FIGURE 2 | An illustrative diagram of the workflow for meta-analysis of DiseaseLand database. Detailed processes were discussed in the “Materials and Methods”
and “Results” sections.

IACs, including the sample “UK08” in the example SAS4
dataset (Figure 3C).

In the study-level QC step, we applied an unbiased systematic
approach (Kang et al., 2012). Six QC measures and standardized
mean rank score, which evaluate the co-expression structure,
accuracy/consistency of DE genes or enriched pathways across
30 bipolar datasets, were obtained as described in the “Materials
and Methods” section and summarized in Figures 3D,E. The
principal components (PC) biplot (Figure 3D) was used to
assist the decision for inclusion or exclusion of datasets in
the present bipolar meta-analysis. Each study was projected
from 6D QC measures to a 2D PC subspace. The datasets
located in the opposite direction of arrows were candidates
for problematic studies (Kang et al., 2012). Figure 3E lists
the detailed QC measures and ranks based on SMR score,
a quantitative summary score derived by calculating the
ranks of each QC measure. In the present study, 20% of
these studies with relative low-ranking scores were removed
from meta-analysis.

Individual study analyses were performed to obtain p-values
and effect sizes, which were used for multiple meta-analysis
approaches. Pathway enrichment analyses were then conducted
on the genes identified as significantly DE through meta-
analysis. A disease-associated DE gene signature was also used
for prioritization of candidate compounds via comparation
between disease signature and compound profiles within
the LINCS L1000 (Kuleshov et al., 2016). The presented
framework is general and can be applied to datasets from any
complex diseases.

Comparison of Meta-Analysis
Approaches in Bipolar Disorder
There was a total of 9,310 common genes in each individual
dataset after pre-processing. Table 2 shows the number of
significant DE genes with FDR < 0.05 generated by using
multiple meta-analysis methods. Under algorithms that detecting
DE genes with non-zero effect sizes in one or more studies
(HSB), we got a total of 3,133 to 6,552 significant DE genes;
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FIGURE 3 | Quality control process at the sample- and study-level. (A) The total number of datasets in different brain regions. (B,C) Interarray correlations and MDS
plots were used to identify potential outlying samples. The frequency distribution plot shows an overall mean IACs of 0.979 in the example StanlyArray4 study. The
sample UK08 was flagged as an outlier in both IAC analysis and MDS plot. (D) PCA biplot of QC measures in 30 bipolar datasets. The datasets located in the
opposite direction of arrows were candidates for problematic studies. (E) A total of 30 datasets were ranked by standardized mean rank (SMR) summary score.

TABLE 2 | Number of significant meta-analyzed DE genes by using multiple
approaches.

Approaches Targeted HS Combining statistics FDR < 0.05

PR HSA Rank 15

SR HSA Rank 11

maxP HSA P-values 58

maxP.OC HSA P-values 24

rOP HSr P-values 1366

rOP.OC HSr P-values 960

REM HSr Effect sizes 1166

Fisher HSB P-values 6552

Fisher.OC HSB P-values 6151

Stouffer HSB P-values 4514

Stouffer.OC HSB P-values 4402

FEM HSB Effect sizes 3133

HSA, DE genes with non-zero effect sizes in all studies; HSB, DE genes with non-
zero effect sizes in one or more studies; HSr, DE gene with non-zero effect in
“majority” of studies.

while under the HSA hypothesis which detects DE genes with
non-zero effect sizes in all studies, only 11 to 58 genes fall below
the FDR cut-off. For the downstream analysis, we decided to
choose significant meta-analyzed DE genes (FDR < 0.05) under
HSr hypothesis (rOP and REM), which identifies DE genes with

non-zero effect sizes in most studies. Although the number of DE
genes with FDR < 0.05 varies, the p-values generated by these
multiple approaches are highly correlated (Figure 4), suggesting
concordant results are generated by these multiple algorithms.

Based on the available datasets in specific brain regions, we
carried out separate meta-analyses for studies conducted in the
PFC (N = 15) or striatum (N = 6). Common significant DE genes
(FDR < 0.05) under both algorithms of HSr hypothesis (rOP,
REM) were reported. Supplementary Tables S1–S3 lists 327 DE
genes in any regions and 204 in the PFC and 49 in the striatum
regions. We decided to focus on studies of the PFC because this
is arguably the most relevant region for bipolar.

Pathway Enrichment Analysis and
Compounds Prioritization for Bipolar
As shown in Figure 5A, the 204 DE genes have a higher
expression in brain regions compared with all human genes.
Additionally, these genes are generally more expressed in the
brain than non-brain regions (Figure 5B). To obtain a functional
overview of these significant meta-analyzed DE genes in the PFC
of individuals with bipolar, we conducted overrepresentation
tests on pathway databases including the MSigDB, gene ontology
(GO) and DO. As shown in Figure 5C and Supplementary
Table S4, these genes were significantly enriched in a total of
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FIGURE 4 | Comparison of DE results generated from multiple meta-analysis
approaches in bipolar. Correlation matrix shows the Spearman’s correlations
among p-values from Fisher/Fisher.OC, maxP/maxP.OC, Stouffer/Stouffer.OC,
roP/roP.OC, PR, SR, REM, and FEM approach.

15 pathways from MSigDB (FDR < 0.05), including MAPK
signaling related pathways and the reelin signaling pathway.
Using the GO database (biological process), we identified 33
significantly enriched categories (Supplementary Table S5).
Among them, brain development, MAPK signaling, and
angiogenesis processes were dysregulated in bipolar. Although
not significant after multiple test correction, these DE genes
showed an enrichment in mental depression (DOID:1596,
p-value = 0.004), mood disorder (DOID:3324, p-value = 0.005),
and schizoaffective disorder (DOID:5418, p-value = 0.01)
(Supplementary Table S6).

Compounds significantly associated with an increase or
decrease in bipolar-associated gene expression changes were
listed in Supplementary Tables S7, S8 (adjusted P-value <0.01).
Table 3 summarizes the top compounds that appear more
than five times in multiple cell lines and compound doses.
Interestingly, many of them are targets of the MAPK signaling
related pathway, the most significant hit in the pathway
enrichment analysis. These results not only confirmed previous
findings but also revealed novel biological mechanisms in
bipolar disorder.

Consistent Results With Independent
Datasets in Bipolar Disorder
To validate the significant bipolar-related gene expression
changes, we compared our findings with Seifuddin’s mega-
analysis study in bipolar, published in 2013 (Seifuddin et al.,
2013), and a recently published study (Gandal et al., 2018). The
first study considers 10 microarray-based studies with data on
211 bipolar and 229 control samples. However, only 11 genes
survived correction for multiple testing with q-value <0.05 in
the PFC. Supplementary Table S9 shows that nine of these
genes were also significantly dysregulated in our analyses by

using either the rOP.oc or REM models. Importantly, in all
cases, the direction of gene expression changes was identical.
In the most recently published study by Gandal et al. (2018),
a meta-analysis of CommonMind and BrainGVEX RNA-Seq
datasets for bipolar was performed. As shown in Figure 6, the
DGE summary statistics from Gandal’s study are consistent with
our meta-analysis results. In particular, the logFC or Z-value
from Gandal’s study was highly correlated with our Z-value with
Spearman’s rho equals 0.41. These results suggested a consistency
of meta-analyzed bipolar-related gene expression changes among
the three integrative studies.

DISCUSSION

We presented here an integrative analysis framework of the
Janssen DiseaseLand transcriptomics database, which currently
includes 1,885 human and 1,460 animal (mouse or rat) studies
from public and Janssen internal sources, and is constantly
growing. By applying standardized re-processing to raw datasets,
removing outlying samples and problematic datasets, and
comparing multiple meta-analysis approaches, we were able to
generate a unified gene expression signature for a disease.

We demonstrated our approach on a meta-analysis of 30
gene expression datasets from human brain tissues in bipolar.
Bipolar is a serious mental illness with considerable public
health implications. However, our understanding of biological
mechanisms of bipolar remain frustratingly limited in part due
to difficulty in accessing human brain samples (Wu et al., 2017a).
Many individual bipolar transcriptomics studies contain only
tens of samples (Table 1), which may contribute to a lack of
reproducibility in genes and pathways identified from each study.
By combining these smaller studies through meta-analysis, we
can additionally reduce the effects of heterogeneity in platforms
and pipelines among studies. By applying our proposed meta-
analysis framework to a total of 30 existing studies of bipolar in
the human brain, we generated a highly reliable gene signature
that is associated with bipolar.

While our studies encompassed tissue from several brain
regions, we saw little pathway enrichment in regions outside
of the PFC due to the smaller number of studies from these
tissues. The PFC plays crucial roles in cognitive functions and
has been implicated in many psychiatry disorders, and indeed
we found 204 significant DE genes (Supplementary Table S2).
Interestingly, these genes were enriched not only in bipolar, but
also in mood disorders generally (Supplementary Table S5).
Of these (Supplementary Table S2), PDE4B (Z-value = −3.04),
RELN (Z-value = −4.59), WFS1 (Z-value = 2.83), DUSP6
(Z-value = −3.63), MAOA (Z-value = 5.14), CRH (Z-value =
−4.46), FKBP5 (Z-value = 5.55), EDN1 (Z-value = 5.64),
CRHBP (Z-value = −2.99) were significantly DE in bipolar.
The phosphodiesterase 4B (PDE4B) was found to be involved
in cognitive function in animal models and serves as a
susceptibility gene for bipolar disorder and schizophrenia
(Kahler et al., 2010). Reelin (RELN) plays a significant role
in the development of the brain, and connections have been
seen between RELN dysfunction and psychiatric disorders

Frontiers in Genetics | www.frontiersin.org 8 April 2019 | Volume 10 | Article 396

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00396 April 30, 2019 Time: 15:7 # 9

Wu et al. Meta-Analysis of Janssen Omics Database

FIGURE 5 | Functional analysis of significant DE genes in the PFC of bipolar. (A) The frequency distribution plots of gene expression in brain shows that the
significant DE genes identified in PFC are more abundant in brain, and (B) more specific to brain compared to all other genes. (C) Pathway enrichment analysis using
MSigDB (Canonical pathways) shows a total of 15 pathways are significantly enriched in bipolar (FDR q-value <0.05).

(Ovadia and Shifman, 2011). Wolfram syndrome gene (WFS1)
has been indicated to play a role in the susceptibility for
mood disorders. Koido et al. (2005) suggested a possible
relation between polymorphisms in WFS1 and increased risk
for mood disorders. Dual specificity phosphatase 6 gene
(DUSP6), also known as mitogen-activated protein kinase
phosphatase 3 (MKP3), plays a key role in regulating members
of mitogen-activated protein (MAPK) kinase superfamily. Lee
et al. (2006) showed a genetic association of DUSP6 with
bipolar and its effect on ERK activity. Monoamine oxidase
A (MAOA) catalyzes the oxidative degradation of amines,
such as dopamine, norepinephrine, and serotonin (Wu et al.,
2017b). An association between MAOA polymorphic markers
and bipolar disorder was also reported (Rubinsztein et al., 1996).
Upregulation of MAOA in the present study suggested an
impaired neurotransmission in bipolar. Corticotropin-releasing
hormone (CRH) and corticotropin-releasing hormone binding
protein (CRHBP) are peptides involved in the stress response and
hypothalamic-pituitary axis regulation. Abnormalities in CRH
secretion have been documented in bipolar disorder (Stratakis
et al., 1997). FK506-binding protein 51 (FKBP5), an important

modulator of stress responses, is another gene having genetic
association and other evidence for bipolar and other psychiatric
diseases (Willour et al., 2009; O’Leary et al., 2013). All these
results confirmed previous results regarding bipolar disorder,
demonstrating the robustness of our meta-analysis workflow.

Several significantly implicated signaling pathways (Supple-
mentary Table S4) are related to responses to inflammation and
immune insults. IL17RB (encoding interleukin 17 receptor B)
ranked number two in expression increase in disease (Supple-
mentary Table S2). Expression of IRAK1 (encoding interleukin
1 receptor associated kinase 1) is significantly downregulated
(Supplementary Table S2). These data support the role of
immune dysfunction as a contributor of bipolar disorder
pathology and targeting immune dysregulation for developing
bipolar treatment as suggested in the literature (Goldsmith et al.,
2016; Mechawar and Savitz, 2016; Rosenblat, 2019).

The meta-analysis also provided evidence for dysfunction
of neurotrophic signaling pathways in bipolar disorder
(Supplementary Table S4). The data (Supplementary Table S2)
also showed expression dysregulation of FGFR3 (encoding
fibroblast growth factor receptor 3) and FGF2 (fibroblast growth
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TABLE 3 | List of significant compounds that could modify the expression of bipolar signature genes.

Compounds SigDown0L1000Up SigUp0L1000Down Sum Mechanism

CGP-60474 19 1 20 cdk1/cdk2 inhibitor

Dasatinib 8 11 19 Bcr-Abl tyrosine-kinase inhibitor

WH-4-025 4 11 15 Lck and Src inhibitor; also inhibits SIK

KIN001-043 2 13 15 GSK3/WNT inhibitor

Mitoxantrone 10 1 11 Topoisomerase II inhibitor

Crizotinib 6 3 9 c-MET/ALK inhibitor

Radicicol 7 2 9 Hsp90 inhibitor

PI-103 8 1 9 PI3K, mTOR and DNA-PK inhibitor

GSK-1059615 6 3 9 PI3K inhibitor

MK-2206 8 1 9 AKT inhibitor

JW-7-24 7 2 9 LCK inhibitor

Geldanamycin 5 3 8 Hsp90 inhibitor

JNK-9L 8 0 8 JNK inhibitor

A443654 8 0 8 AKT inhibitor

AT-7519 7 0 7 CDK inhibitor

BMS-387032 7 0 7 CDK inhibitor

Alvocidib 7 0 7 CDK9 inhibitor

Vorinostat 6 1 7 HDAC inhibitor

GSK-2126458 6 1 7 mTOR/PI3K inhibitor

AZD-7762 5 1 6 CHK inhibitor

NVP-TAE684 2 4 6 ALK inhibitor

AKT-inhibitor 5 1 6 AKT inhibitor

Torin-2 2 4 6 mTOR inhibitor

Saracatinib 6 0 6 Bcr-Abl tyrosine-kinase inhibitor

Canertinib 2 4 6 pan-erbB tyrosine kinase inhibitor

FIGURE 6 | A significant correlation of bipolar-associated gene expression
changes between the present meta-analysis study and an independent
dataset. Correlation matrix shows the Spearman’s correlations between each
pair of p-values from the current meta-analysis (REM and roP.OC) and
Gandal’s study, as well as correlations between Z-values of the meta-analysis
and logFC/Z-values of Gandal’s study. Among these, a high Spearman’s
correlations (rho = 0.41) was observed between Z-values from the
meta-analysis and logFC/Z-values from Gandal’s study.

factor 2). These data support the dysregulation of neurotrophic
MAPK signaling in mood disorders (Kyosseva et al., 1999; Einat
et al., 2003a,b; Lee et al., 2006). Neurotrophic signaling MAPK

pathways are involved in the regulation of neurodevelopmental
abnormalities of the brain in psychiatric diseases. It has been
suggested that lithium and valproate (VPA), at therapeutically
relevant concentrations, robustly activate the ERK MAPK
cascade in cultured cells and in the PFC and hippocampus
(Hao et al., 2004; Chen and Manji, 2006; Schloesser et al., 2008).
Ketamine produces rapid, robust and sustained antidepressant
action in patients with treatment-resistant-depression (TRD)
and bipolar TRD (Zarate et al., 2006; Diazgranados et al., 2010).
Preclinical study showed single ketamine activated neurotrophic
signaling including ERK, and promoted synaptic growth, genesis
and function (Li et al., 2010, 2011). Given the results that the
neurotrophic MAPK pathway is among the most significant
finding from our pathway analyses, this may represent a
novel target for the development of improved therapeutics for
bipolar disorder.

Also implicated in the pathway analysis was the reelin
pathway. Among these, both RELN (Z-value = −4.59) and its
receptorApoER2 (LRP8, Z-value = −2.89) were downregulated in
the PFC of bipolar patients. It was known that reelin was involved
in neuronal migration, cell aggregation, and dendrite formation.
Genetics studies have also reported that the RELN is associated
with multiple neurological diseases including bipolar disorder,
schizophrenia, autism spectrum disorder, and Alzheimer’s disease
(Ovadia and Shifman, 2011; Wang et al., 2014; Bufill et al.,
2015; Li et al., 2015). Moreover, ApoER2 was confirmed as a risk
gene for psychosis (Li et al., 2016). These findings suggest that
reelin and molecules in its downstream signaling pathway could
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be potentially useful as targets of therapeutical intervention for
bipolar disorder.

Another group of pathways implicated in current meta-
analysis is those involved in cellular structure formation
(Supplementary Table S4). The data (Supplementary Table S5)
also showed further supports for the involvement of neuronal
developmental genes in bipolar disorders. It is noteworthy
that lithium promotes hippocampal neurogenesis (Chen et al.,
2000). Neurons derived from induced pluripotent stem cells
(iPSC) originated from bipolar patients showed molecular and
cellular changes and the changes are differentially revered
by lithium in neurons from lithium responding and non-
responding bipolar patients (Mertens et al., 2015; Tobe
et al., 2017; Stern et al., 2018). The role of neuronal deve-
lopment in bipolar disorder is an emerging field to be
further investigated.

A growing body of studies supports the use of large-scale
perturbation databases, such as the LINCS for developing novel
therapeutic intervention strategies (Hurle et al., 2013). A high-
reliability disease gene expression signature is essential for
implementing the systems biology approaches. Using the unified
bipolar disorder signature and LINCS or Janssen L1000 database,
we identified a list of small molecules that could modulate bipolar
gene signature (Table 3 and Supplementary Tables S8, S9),
which could be further evaluated for disorder modeling and
intervention evaluation, and ultimately drug development. It is
noteworthy that whether the modulation of bipolar disease genes
in the LINCS cellular perturbation assay can be translated to
human, including compounds passing the blood–brain barrier,
should be evaluated before using the experiments.

While our analyses revealed a unified gene expression
signature for the bipolar disorder, there are several limitations to
this study. The primary limitation to the generalization of these
results is a lack of replication. In the case study of bipolar disorder,
individual studies do not have large sample sizes due to lack of
accessibility to healthy and diseased human brain tissues. Limited
overlaps of DE genes were observed across individual studies,
and the same would be expected if trying to replicate meta-
analysis results in individual studies. An alternative approach
of dividing the datasets into discovery and replication meta-
analysis might decrease the power of the analysis. Furthermore,
although we applied a systematic study-level QC to exclude low
quality datasets, we acknowledge the heterogeneity of the studies
and the potential bias associated with the different platforms or
brain regions. Despite these limitations, to our knowledge this

is the largest gene expression meta-analysis of bipolar disorder
using postmortem human brain tissues. As more disease datasets
are published and integrated into our database, an incremental
refinement by adding new datasets into the meta-analysis will
further improve our results (Brown and Peirson, 2018).

In summary, we have collected comprehensive transcrip-
tomics datasets across neuroscience, immunology, oncology and
cardiovascular and metabolism disease areas. We established
systematic meta-analysis approaches, which can be applied
in multiple disease areas to create a unified picture of the
disease signature and prioritize drug targets, pathways, and
compounds. To illustrate the proposed workflow, we have
generated a highly reliable gene signature in bipolar disorder,
which confirmed previous theories in bipolar and revealed
novel targets that could be potentially useful as new therapeutic
treatment strategies.
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