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ABSTRACT

Reverse engineering metabolome data to infer metabolic interactions is a challenging
research topic. Here we introduce JacLy, a Jacobian-based method to infer metabolic
interactions of small networks (<20 metabolites) from the covariance of steady-state
metabolome data. The approach was applied to two different in silico small-scale
metabolome datasets. The power of JacLy lies on the use of steady-state metabolome
data to predict the Jacobian matrix of the system, which is a source of information on
structure and dynamic characteristics of the system. Besides its advantage of inferring
directed interactions, its superiority over correlation-based network inference was
especially clear in terms of the required number of replicates and the effect of the use of
priori knowledge in the inference. Additionally, we showed the use of standard deviation
of the replicate data as a suitable approximation for the magnitudes of metabolite
fluctuations inherent in the system.

Subjects Bioengineering, Bioinformatics, Biotechnology, Computational Biology, Computational
Science

Keywords Metabolic network inference, Jacobian matrix, Lyapunov equation, Stochastic
dynamical system, Intrinsic fluctuations, Reverse engineering of metabolome data

INTRODUCTION

Inference of cellular interactions by processing biomolecular data is a widely-used
approach to investigate functional properties of cellular systems. Perturbations due to
genetic/environmental alterations and diseases lead to changes in functionality due to
change in cellular network structure, and network inference using the biomolecular data
of the perturbation states uncovers the changes in network structure. When applied to the
data of metabolite levels, the approach infers metabolic interaction (Srividhya et al., 2007;
Cakar et al., 2009; Hendriks et al., 2011; Cakir ¢ Khatibipour, 2014). The general trend is
to use dynamic data to infer directed metabolic networks, and steady-state data to infer
undirected networks. On the other hand, there are approaches that infer directed metabolic
interactions from steady-state metabolome data by utilizing inherent intrinsic variability
in such data (Steuer et al., 2003; Oksiiz, Sadikoglu & Cakir, 2013).
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While the principles of conservation of mass and conservation of energy set the
boundaries for deterministic behavior of the metabolic network, the inherent randomness
in this network, as it exists in other biological networks, leads to small variability in
the steady-states of the system at equivalent macroscopic conditions (Wu et al., 2005;
Kresnowati et al., 2006). From a microscopic point of view, the inherent randomness is
believed to be the result of existence of discrete particles in the system, and molecular
fluctuations are inherent in the mechanism by which the system evolves (Kampen, 1992).
Continuous change in micro-environment as well as multilevel complex regulatory
mechanisms in the metabolic network are also the causes of observed variability in
the steady-states of the system (Steuer et al., 2003). Although this intrinsic randomness
introduces a great obstacle and difficulty in modeling and simulation of metabolic networks,
at the same time it provides an opportunity to infer and estimate the active metabolic
network at a specific condition/context just by reverse engineering the corresponding
replicates of metabolome data. Considering the fact that information on interactions
between metabolites and hence the structure of the active metabolic network is implicit
in these data, the main questions are (i) how much information on the structure of the
network is hidden in the data, and (ii) how we can extract as much as possible of that
information.

One common approach that utilizes inherent variability in steady-state data is correlation
based inference methods, especially the Gaussian Graphical Model (GGM) approach (Cakir
et al., 2009; Montastier et al., 2015; Wang et al., 2016). Correlation based approaches are
capable of detecting strong interactions in the metabolic network to some extent. However,
they infer interactions only in undirected manner, and they have limited power in the
detection of weak interactions (Cakir et al., 2009). A directed network inference approach
from steady-state metabolome data is also available in the literature (Steuer et al., 2003;
Oksiiz, Sadikoglu & Cakir, 2013; Cakir ¢ Khatibipour, 2014). The approach is based on the
prediction of interaction strengths from the covariance of the data. The network structure
information stored in the inherent variability of the data is reflected on the covariance of
the data, and later used in the prediction of interaction strengths in the form of a Jacobian
matrix. The Jacobian matrix of a cellular interaction system contains a significantly
high amount of valuable information both on the structure and dynamic characteristics
of the system. Numbers in this matrix easily provide us with detailed information on
the underlying interactions in the network, such as direction of interactions, nature of
interactions (positive or negative effects), and strengths of interactions (Steuer et al., 2003;
Oksiiz, Sadikoglu ¢ Cakir, 2013). The Lyapunov equation provides a link between the
Jacobian matrix of a cellular system and the covariance matrix of the replicates of steady-
state data. This equation is the result of a Langevin type approach for the description
of stochastic processes at macroscopic level (Scott, 2013). The Lyapunov equation was
also used previously to infer differential changes in a Jacobian matrix rather than the
inference of the network structure itself (Sun & Weckwerth, 2012; Kiigler ¢~ Yang, 2014).
In another work (Sun, Linger ¢» Weckwerth, 2015), a comparison of several least square
and regularization methods in solving the Lyapunov equation for the Jacobian matrix
is provided. However, in that work, the structure of the Jacobian (zero and non-zero
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elements) is specified a priori by the stoichiometric matrix of the metabolic network.
Therefore, the problem is reduced to the estimation of magnitudes for non-zero elements
in the Jacobian matrix, which might not be considered as a network inference.

In our previous work, we focused on a theoretical analysis on the applicability of
Jacobian-based inference of directed metabolic interactions from steady-state data (Oksiiz,
Sadikoglu & Cakir, 2013). In silico covariance data were used to predict a Jacobian matrix
with an optimization framework based on dual objective function. The objective function
was simultaneous maximization of the sparse structure, as observed in cellular networks
(Yeung, Tegnér & Collins, 2002; Tegnér ¢ Bjorkegren, 2007; Bordbar et al., 2014; Shao et
al., 2015; Mangan et al., 2016), and minimization of the residual norm of the Lyapunov
equation (see ‘methods’). The theoretical analyses proved the potential usefulness of the
approach. Here, we improve the algorithm used in that work considerably in terms of
speed and optimality, and apply it successfully to in silico metabolome data.

METHODS

Problem definition

Provided that replicates of metabolome data are available for an organism in a specific
condition, and considering the fact that information on interactions between metabolites
and hence the structure of the metabolic network is implicit in these data, the problem is to
extract from the data as much knowledge as possible to infer the active metabolic network
in that condition. A metabolic reaction network can be mathematically represented by
writing mole-balance equations around its metabolites. This leads to a system of differential
equations that can be summarized as in the following equation, where C is a vector of
metabolite concentrations:

dcC

Z—f(C 1

= =f(©) (1)
For a system around steady-state, a linear approximation can be made to express the

equations in terms of a Jacobian matrix, J (Steuer et al., 2003; Jamshidi ¢ Palsson, 2008):

dax

- ~JX (2)

with X = C — C;, and C shows concentrations fluctuating around steady-state values, Cs.
Equation (2) can further be expressed as a Langevin-type equation to explicitly account for
small fluctuations (Steuer et al., 2003):

ax;
— =2 JiXj+/2Dsi(t) (3)
j
PG 2
TAG

where D; shows the extent of fluctuation and §; is a random number from unit normal

(4)

distribution. As demonstrated in the literature (Kamipen, 1992), Eq. (3) can be written as
follows at steady-state:

JC+cCJT=-2D (5)
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Equation (5) is known as the Lyapunov equation, and it provides a link between the
Jacobian matrix of the network and the covariance matrix of the replicate metabolome
data (Steuer et al., 2003; Oksiiz, Sadikoglu & Cakur, 2013).

The fluctuation matrix (D) accounts for the inherent randomness in the system. The
diagonal elements of D reflect the magnitude of fluctuations observed on each metabolite,
and the nondiagonal elements can be assumed as zero (Steuer et al., 2003). The equation is
determined in terms of calculating the covariance matrix (C) while the Jacobian matrix (J)
is provided, however, it is underdetermined in the case of calculating J while C is available.
This is because there are n(n+ 1)/2 independent entries in C for an n-metabolite system
due to the symmetric nature of the covariance matrix, whereas the Jacobian matrix has
n* independent entries. This equation can be rearranged to a standard linear system of
equations (Oksiiz, Sadikoglu ¢ Cakir, 2013) and be represented as follows:

Aj+2d=0 (6)

2 x n* derived from the covariance matrix,

In this equation, A is a square matrix of size n
j is the vectorized form of the Jacobian matrix with size n? x 1, and d is the vectorized
form of fluctuation matrix with size #n% x 1, where n is the number of metabolites. Oksiiz,
Sadikoglu & Cakir (2013) used Eq. (6) to solve for Jacobian matrix in an optimization
platform using Genetic Algorithm. Beside the minimization of the residual of Lyapunov
equation, they used sparsity as a rational objective function to select Jacobians from the
solution space such that they have a high number of zeros and satisfy Eq. (6) as well. The
multi-objective function that simultaneously maximizes the number of zeros (sparsity)
in the Jacobian matrix to be determined and minimizes the residual of Eq. (6) can be
represented as follows:

f = (number of zeros) x A —log10(|| Aj+24d ||) (7)

The first term in the equation counts for the number of zeros in the Jacobian matrix that
needs to be maximized, the second term counts for the residual of Lyapunov equation that
needs to be minimized, and in total the objective function f is to be maximized. Lambda
(M) is a scaling factor discussed in detail in a section below. In order to balance between the
two goals in the objective function, and also to refrain the solution from going to a very
high number of zeros, the scaling factor was introduced in the objective function.

Using the exact covariance and predefined fluctuation vector as inputs to the algorithm,
Oksiiz, Sadikoglu & Cakir (2013) validated the theoretical applicability of this approach.
Here, we used the same objective function, but after careful examination of the problem
we came up with an extensively modified algorithm that is highly robust and could be
applied to the replicates of in-silico metabolome data generated by simulating stochastic
dynamic models of metabolism using stochastic differential equation (SDE) solvers. The
MATLAB function file of the SDE model that was simulated to generate SDE data for yeast
is available in Data S1.

Simulations and optimizations were performed in MATLAB (R2017a) on a desktop
computer equipped with a 3.2 GHz CPU and 4GB RAM. SDE simulations were performed
using the SDE toolbox that is freely available as an external MATLAB toolbox (Picchini,

Khatibipour et al. (2018), PeerJ, DOI 10.7717/peerj.6034 4/18


https://peerj.com
http://dx.doi.org/10.7717/peerj.6034#supp-1
http://dx.doi.org/10.7717/peerj.6034

Peer

2007). Genetic algorithm (GA) was implemented using the ga function in MATLAB’s
global optimization toolbox. A built-in parallelized version of ga was used with the help
of MATLAB’s parallel computing toolbox. Custom MATLAB functions were written for
creation, crossover and mutation fields of GA. Maximum number of generations was set to
800 and a mutation rate of 5% was selected after careful examination of GA’s behavior.
The MATLAB codes for JacLy is available in Data S2.

Optimization pipeline

Genetic Algorithm (GA) was used to solve Eq. (6) for j while A and d are settled. At each
generation of GA, bit string vectors are generated for j as individuals. With a candidate bit
string for the structure of the Jacobian vector (zero and nonzero elements in j), Eq. (6) can
be reduced to a lower dimensional system of equations by removing the zeros in the j and

also removing the corresponding columns in A.
Arjr+ 2d =0 (8)

Since the Jacobian vector is sparse in structure (r << n), this leads to considerable
reduction in the number of unknowns to be determined, and increases the speed of the
inference algorithm compared to the original algorithm in (Oksiiz, Sadikoglu ¢ Cakir,
2013). In Eq. (8), j, is the reduced form of Jacobian vector, obtained by removing those
elements corresponding to zeros in the suggested individual, and A, is formed by removing
the corresponding columns in A. Equation (8) can be easily treated and solved as a line
fitting problem, in which the elements of j, are factors of the line equation and are estimated
to make the best fit to the data. Minimizing the Euclidean norm of this fitting is one of the
terms in the optimization objective function defined in Eq. (7). The other objective is to
maximize the number of zeros in the Jacobian matrix, considering the fact that metabolic
networks are sparse networks (discussed in a section below).

Constraining the solution space by generating sparse individuals
As the number of metabolites and hence size of the network increases, the solution space
expands exponentially and the probability of finding the true candidate for Jacobian vector
through a stochastic algorithm decreases significantly. Moreover, the computational time
and effort increases dramatically with the size of the network (Hendrickx et al., 2011). In
these situations, it is very important to constrain the solution space as much as possible if
we are going to solve the problem (Eq. (8)) in a manageable time. One way to constrain
the solution space meaningfully is to control the generation and reproduction of candidate
individuals in GA such that those individuals with unwanted characteristics are not
produced to be tested at all. Since metabolic networks are naturally sparse networks, setting
a minimum sparsity parameter for the generated individuals can be used as a controlling
parameter. This was another novelty in the algorithm compared to the original algorithm
(Oksiiz, Sadikoglu & Cakar, 2013).

It is known that metabolic networks are highly sparse, meaning that there are much less
interactions (edges) in the network compared to the maximum possible number of edges
(fully connected network). We calculated the natural sparsity in several known metabolic
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networks and we could see that all tested networks have a sparsity larger than 0.55, so a
minimum of 50% was selected as the default value for the minimum sparsity parameter
in our algorithm. Just by definition of such a parameter, the solution space to search
for non-zero values of Jacobian is greatly reduced. Sparsity parameter was defined as the
following:

Total number of possible edges in the network — number of edges in the network

-
sparsity Total number of possible edges in the network

Number of zeros in the Jacobian

" Total number of elements in the Jacobian

Based on this definition, a sparsity value of one will mean a network with not even
a single edge whereas a value of zero will correspond to a complete digraph. It must be
considered that the sparsity calculated from the Jacobian and the one calculated from the
biochemical reaction network are not necessarily the same, since the Jacobian also counts
for the regulatory interactions which are absent in the biochemical reaction network, but
since the number of regulatory interactions is usually insignificant compared to the number
of reactions, the two values are very close.

In order to minimize the computational effort and time, we used the minimum sparsity
parameter as the control parameter in the creation of the initial population in GA, and then
in the production of individuals at subsequent generations. To this goal, custom MATLAB
functions were written and used for creation, crossover and mutation fields of GA in
MATLAB. This was another novelty over the previous algorithm (Oksiiz, Sadikoglu ¢ Cakir,
2013). With this supervised control of individuals, bitstrings with unwanted characteristics
had no chance to appear as the candidates for Jacobian vector, and it provided a significant
contribution in constraining the solution space. The custom functions for GA were written
in such a way that minimum sparsity is intrinsic in the generation of individuals and no
time is consumed for control and filtering of the generated bitstrings.

Scanning for the scaling factor

The objective function (Eq. (7)) consists of two terms, one is the residual of Eq. (8) to be
minimized and the other is the number of zeros in the Jacobian vector to be maximized. In
order to balance between these two values and also to prevent the optimization algorithm
from converging to the too sparse solutions, a scaling factor (1) is multiplied with the term
for the number of zeros in the Jacobian vector. Since this parameter directly affects the
magnitude of the objective function, it is important to find a range of lambda that leads to
sensible solutions. Selecting very small values for the scaling factor leads to the conditions
in which the optimization will not be very sensitive to the number of zeros in the Jacobian
vector, and minimization of the residual of Eq. (8) would be dominant in the objective
function. On the other hand, large magnitudes of the scaling factor lead to the solutions
with very high number of zeros in the Jacobian vector, with almost no sensitivity to the
residual of Eq. (8). There is always a narrow interval for the scaling factor, in which the
optimization problem can find a Jacobian vector with optimum number of zeros that also
leads to insignificant residual value for Eq. (8). This interval for the scaling factor varies
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from problem to problem (Oksiiz, Sadikoglu ¢ Cakir, 2013), depending on several factors,
among which are the size of the network and the accuracy and number of data replicates
from which covariance matrix is calculated. Constant problem-specific A values were used
in the previous algorithm (Oksiiz, Sadikoglu ¢ Cakir, 2013). In order to circumvent the
obstacles due to selection of a proper value for the scaling factor, instead of estimating

a constant value for each specific problem, we decided to scan a range of values for this
parameter in this work in an unsupervised manner. We scanned a range roughly between
0.01-0.10, with increments of 0.005. Since we repeated the algorithm 10 times due to the
stochastic nature of genetic algorithm, this led to a total of about 200 solutions per network
inference problem. In this way, the optimization algorithm works repeatedly for each value
of the scaling factor, and the optimum solution would have chance to appear among the
candidate solutions. This was another improvement over the previous algorithm.

Fluctuation vector

One of the major obstacles in utilizing the Lyapunov equation is introduced by the
fluctuation matrix D since it may contain non-observable quantities (Kiigler ¢ Yang,
2014). The fluctuation matrix plays a critical role in this equation, and the computed
Jacobian matrices are highly sensitive to the values in the fluctuation matrix. After a
reasonable fluctuation matrix is selected, the problem of solving the underdetermined
equation to find the Jacobian can be formulated as an optimization problem.

The existence of a non-zero fluctuation vector is both physically and mathematically
meaningful. Fluctuation vector represents the intrinsic noise in the molecular interactions,
which are the source of stochasticity in the replicates of data through which we are going
to extract information. A non-zero fluctuation vector also prevents the Eq. (8) to have null
space, that otherwise would be problematic. On the other hand, it is not very clear how
to find and how to set the values for the fluctuation vector in Eq. (8). In a previous work
(Oksiiz, Sadikoglu & Cakir, 2013), a constant problem non-specific small value of 0.005
was used for all metabolites to mimick small fluctuations around metabolites. Here, we
hypothesize that standard deviation of the data replicates would be an acceptable candidate
to be selected as the diagonal elements of the vectorized fluctuation matrix. The use of
data-specific fluctuation vector elements in this manner rather than using a constant
value for all problems is another improvement in this algorithm compared to the original
algorithm (Oksiiz, Sadikoglu & Cakir, 2013).

Using a community of estimated Jacobians instead of only one elite
Jacobian to infer the structure of the network

JacLy scans a range of scaling factors (1) in the objective function (Eq. (7)). For each scaling
factor, optimization is performed 10 times, leading to hundreds of optimizations. The end
result of each optimization is a Jacobian vector that has the maximum objective function
value among thousands of other individuals. We call this Jacobian as the best-found
Jacobian for each optimization. Among all the best-found Jacobians, one can be selected
as the elite Jacobian vector based on both sparsity and residual of Eq. (8). In all the test
studies, we could observe that if, instead of the elite Jacobian, we combine a community
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Figure 1 Use of a community of the best-found Jacobians to infer the structure of the network. (A) se-
lecting a bounded area around the elite Jacobian based on a percentage of the number of zeros in the elite
Jacobian and the residual of Eq. (8). (B) a schematic example of alignment and combination of Jacobian
vectors in the selected community to come up with the final structure.

Full-size & DOI: 10.7717/peer;j.6034/fig-1

of the best-found Jacobians in a bounded area around the elite Jacobian and use that
community to infer the structure of final Jacobian, the accuracy of inference significantly
increases. To do so, first a bounded area is defined around the elite Jacobian based on
the number of zeros and the residual of Eq. (8). For all of the tests in this study, £5% of
the number of zeros in the elite Jacobian was selected to set the lower and upper vertical
boundaries and —5% of the residual of Eq. (8) for the elite Jacobian was selected to set
the lower horizontal boundary (see Fig. 1A). The Jacobian vectors in the bounded area are
then binarized by setting their non-zero elements to one. The binarized vectors are then
aligned on top of each other to form a binary matrix. Taking average over columns of this
matrix leads to a new vector including fractional numbers between 0 and 1. The structure
of the final Jacobian vector is then determined by setting a threshold of 0.5 to decide for
zero and non-zero values. Those elements that are smaller than the threshold are set to
zero and others to one. A looser threshold of 0.4 increases both TPR and FPR. We observed
that selecting 0.4 as the threshold leads to better g-scores in general, however, there is the
risk of sparsity being dropped to significantly lower values. So, we advise the use of sparsity
check as a caution while selecting a threshold for the combination of best-found Jacobians.
Figure 1B provides a schematic of this procedure.

In this study, we are not providing a mathematical proof of how using a community
of best-found Jacobians around the elite Jacobian can improve the inference results.
However, as far as we tested with different in-silico datasets and noisy covariances, using
such combinatorial approach not only leads to better inference results, but also it stabilizes
the final output of the algorithm when applied to the same problem repeatedly. The use of
a community of best-found Jacobians is another novelty over our previous work (Oksiiz,
Sadikoglu & Cakir, 2013), which reported the results based on only the elite Jacobian.
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Quantification of inference performance

While True Positive Rate (TPR) and False Positive Rate (FPR) are two quantities suitable
for the evaluation and comparison of network inference results, g-score can be used as a
single parameter to quantify performance of any inference method. g-score is calculated
by the following equation:

g—scorez\/TPRx (1—FPR). 9)

RESULTS

Use of in silico Covariance Matrix for metabolic models of

S. cerevisiae and E. coli

The Lyapunov equation (Eq. (5), and Eq. (6) in the rearranged form) is underdetermined
in terms of calculating the Jacobian matrix J given C and D as inputs, meaning that there
is more than one Jacobian matrix satisfying the Lyapunov equation for each pair of C
and D (see ‘Methods’ section). To evaluate the applicability and performance of our
method (JacLy) in predicting the network structure through the prediction of the Jacobian
matrix, first we used two kinetic models that are well known in the literature. The first
model covers 13 metabolites of yeast glycolysis (Teusink et al., 2000), and the second model
covers 18 metabolites of central carbon metabolism in E.coli (Chassagnole et al., 2002).
True Jacobian matrix was calculated for each kinetic model around its corresponding
steady-state by using the detailed rate expressions and parameters in the models. Here we
followed the strategy in our previous work (Oksiiz, Sadikoglu ¢~ Cakir, 2013), where we
tested our genetic-algorithm-based dual objective formulation in terms of the predictability
of the Jacobian matrix by using exact covariance matrices as input rather than deriving
covariance matrices, from in silico data for example. Our goal in this section is solely to
demonstrate the improvements in the current version of our algorithm compared to the
previously published algorithm (Oksiiz, Sadikoglu ¢ Cakir, 2013). Having the true Jacobian
matrix and predefined fluctuation matrices, the exact covariance matrix was calculated
from Eq. (5). We call these covariance matrices as “‘exact” covariances since they hold true
to the Lyapunov equation. Exact covariances and corresponding fluctuation matrices were
then used as inputs to JacLy to evaluate its performance in finding J.

JacLy uses genetic algorithm for optimization, which is a stochastic optimization
algorithm. Therefore, it is important to solve for the equation for enough number of
times until a constant reproducibility parameter is achieved. For both models, a constant
reproducibility is obtained after 20 runs. Out of 20 repetitive runs for each model, 19
and 18 of them could find Jacobian matrices that are in complete agreement (100%
TPR and 0% FPR) with the true networks of yeast and E.coli models, respectively. These
results show a great improvement over the previous work (Oksiiz, Sadikoglu ¢ Cakir,
2013), which had a reproducibility parameter of 50% and 5% for yeast and E.coli models,
respectively. On our desktop computer, each run takes around two minutes for the yeast
model and six minutes for E.coli, showing a 10 fold increase in computational speed
over the previous work (Oksiiz, Sadikoglu ¢ Cakir, 2013). Such significant improvements

Khatibipour et al. (2018), PeerJ, DOI 10.7717/peerj.6034 9/18


https://peerj.com
http://dx.doi.org/10.7717/peerj.6034

Peer

in reproducibility and computational speed have been achieved solely by modifying the

algorithm and corresponding functions (see ‘Methods’ section). One should note that since
JacLy incorporates a A scan with 10 replicate solutions, the whole process of generating 200
solutions for S. cerevisiae took one hour while the time in the case of E.coli was two hours.

We also evaluated the performance of JacLy on noisy covariances. To this goal, we
used the exact covariance of the yeast model and followed the same procedure as the
previous work (Oksiiz, Sadikoglu ¢ Cakir, 2013) to make noisy data. Random numbers
were sampled from a normal distribution with a mean of 1 and a standard deviation of
0.005. This corresponds to a dataset with 50% noise (De la Fuente et al., 2004). The random
numbers were then symmetrically multiplied with the elements of the exact covariance
to generate a noisy covariance matrix. This was repeated to generate ten different noisy
covariances and JacLy was applied on each. The average TPR and FPR are 74% and 5%,
respectively. These numbers were 73% TPR and 11% FPR in the previous work (Oksiiz,
Sadikoglu & Cakir, 2013). These results show a considerable increase in the performance of
JacLy compared to its ancestor in terms of the FPR value since exactly the same problem
was solved with only improvements in the algorithm based on (i) the use of reduced form
of the Lyapunov equation, (ii) the use of sparsity constraint, (iii) scanning the scaling
factor and (iv) the use of a community of candidate Jacobian vectors, as discussed in detail
in the ‘Methods’ section. Additionally, note that a threshold of 0.4 in the combination of
Jacobian vectors rather than 0.5 leads to a TPR of 84% and an FPR of 8%.

It was reported in the literature that statistical methods such as LASSO and Tikhonov
regularization fail to solve Eq. (6) whenever the condition number of matrix A is
significantly large (Sun, Linger ¢» Weckwerth, 2015). In order to evaluate the sensitivity
of our method to the condition number of A, we used different fluctuation matrices along
with the true Jacobians of yeast and E.coli models as inputs to Eq. (5), and different exact
covariances were calculated leading to different A matrices covering a range of condition
numbers from 10° to 10%°. JacLy was applied to each of those covariance matrices along
with their corresponding fluctuation matrices. We could see that the condition number of
A doesn’t have any influence on the performance of our algorithm. Even for the largest
condition numbers, JacLy was able to find the true Jacobian with similar computational
time and reproducibility parameters. It should be kept in mind that not being sensitive to
the condition number of A in solving Eq. (6) doesn’t mean that the calculated Jacobian
matrix is not sensitive to the changes in the fluctuation matrix. Indeed, Eq. (6) is frequently
ill-conditioned as it is also reported in other studies (Sun, Linger & Weckwerth, 2015).
Small changes in the fluctuation matrix D lead to big changes in the calculated Jacobian
matrix.

Use of in silico metabolome data for metabolic models of

S. cerevisiae and E. coli

At this stage we applied JacLy to the replicates of in silico metabolome data. Stochastic
versions of yeast (Teusink et al., 2000) and E.coli (Chassagnole et al., 2002) models were
used to generate 1,000 replicates of steady-state metabolome data in silico. In this case we
had to come up with a fluctuation matrix to be used as input to the method along with
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Table 1 Inference results for the in-silico metabolome data, comparison of JacLy and GGM.

In-silico data for Yeast In-silico data for E.coli

TPR FPR g-score TPR FPR g-score
JacLy 0.66 0.08 0.78 0.69 0.29 0.70
GGM 0.76 0.12 0.82 0.63 0.12 0.74

the covariance of metabolome data. As it was mentioned in the ‘Methods’ section, we
hypothesized that standard deviation of data might be a reasonable source to be used for
the construction of a fluctuation matrix. In a stochastic dynamic system all or some of the
sources of stochasticity are usually unknown. In the Lyapunov equation the fluctuation
matrix D is the parameter counting for sources of stochasticity. Since standard deviation is
a measure of variation in data, we used it as a reasonable source to construct the fluctuation
matrix. Table 1 shows the inference results of JacLy applied to in-silico data for the yeast
and E.coli with a comparison to GGM-based inference results. In GGM analysis a cut-off
of 0.01 was used for p-values to decide on the significance of partial Pearson correlation
values. The networks predicted by JacLy are directed while those estimated by GGM are
undirected.

It must be considered that solving Eq. (6) for the Jacobian vector is highly sensitive to
the fluctuation vector d, and so it is of critical importance to come up with a fluctuation
vector that is most reasonable for data replicates. We thought of normalization as a way that
might improve the correspondence between the covariance matrix C and the fluctuation
matrix D in the Lyapunov equation. Data normalization doesn’t have any effect on the
results of similarity-based inference methods such as GGM. In-silico metabolome data for
the yeast and E. coli were normalized to between 0 and 1 by dividing each value to the
maximum value in the dataset. Normalized data was then used to make both covariance
matrix C and fluctuation matrix D. When applied to the normalized data, JacLy showed
a significant improvement in inference results for the yeast data (0.95 TPR and 0.13 FPR,
with a g-score of 0.91) while it had no effect on the inference results of E.coli data.

Another parameter influential on the result of network inference is the number of
replicates in the data. Previous GGM-based analysis for the inference of metabolic
interactions using in silico metabolome data for the same networks analyzed here showed
a sharp decrease in the quality of the inference after the number of replicates decreased
below 200 (Cakir et al., 2009). Here we tested the effect of number of datapoints on the
inference results of JacLy. Of 1,000 replicates initially generated by stochastic differential
equations, 100 randomly chosen replicates were used in the inference of the network for
S. cerevisiae. Repeating this 10 times and taking the average, a TPR of 0.73 and an FPR of
0.16 was obtained by using JacLy, corresponding to a g-score of 0.78. On the other hand,
GGM-based inference for the same randomly chosen 100 replicates resulted in average
TPR and FPR values of 0.42 and 0.03, respectively, with a g-score of 0.63. Therefore, an
advantage of JacLy over GGM is its considerable robustness in terms of the number of
replicate datapoints used in the covariance/correlation calculation.
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In the process of inferring a network for a set of metabolites, there are cases when
existence (true positive) or non-existence (true negative) of an edge between two
metabolites might be available as prior knowledge. Such information can be used as
additional input to inference algorithms, resulting in a shrinkage of the solution space and
so enhancing the computational speed and performance of the algorithm. We tested the
effect of prior knowledge for non-existent edges on the performance of JacLy. To this aim, 7
and 20 zeros of the true Jacobian matrices were selected as priorly known true negatives for
yeast and E. coli models, respectively. This corresponds to 5% and 7% of the total number
of elements in Jacobian matrices for yeast and E. coli models. This procedure was repeated
10 times for each model and JacLy was applied to data each time. The average TPR and
FPR over 10 repetitions for the yeast model are 0.75 and 0.08, respectively, leading to a
g-score of 0.83. For E. coli, an average TPR of 0.79 and an average FPR of 0.31 was obtained,
leading to a g-score of 0.74. These results show a significant improvement compared to the
corresponding values in Table 1. Based on the results, JacLy performs considerably better
when a very small portion of true negatives is introduced as prior knowledge. Specifying
true negatives contributed to a better prediction of true positives. The correlation-based
GGM approach, on the other hand, is not suitable for the use of prior knowledge.

In addition to the binary structure of estimated Jacobians, which is the main output
in inferring the structure of an active metabolic pathway, we also compared the best-
found Jacobians in the selected area around the elite Jacobian—before binarization and
combination—with the true mechanistic Jacobians of kinetic models calculated by using
detailed rate expressions and parameter values in those models. Since JacLy has a stochastic
nature, we repeated the optimization on the same SDE data three times, and then we
used the Spearman correlation to make the comparisons. The medians of correlations
are around 0.45 and 0.25 for yeast and E. coli models, respectively while the medians of
p-values are less than 0.0001 in all cases (See Fig. S1).

We used the kinetic-model-based true Jacobian matrices together with SDE-data-based
covariance matrices in the Lyapunov equation to calculate D and see its similarity with our
approximation for D. We observed that the calculated D contained off-diagonal non-zero
elements as opposed to the approximated D. Some of the elements had the same magnitude
as the diagonal elements. On the other hand, our very simple method of estimating D led
to quite acceptable TPR and FPR values in those case studies, and the standard deviation
of data is logically related to the source of natural fluctuation in the system. Therefore,
our estimation approach can be used because of its simplicity and applicability. However,
research should be performed to develop a more accurate method of estimating D. On the
other hand, one should note that SDE simulator algorithms and toolboxes, such as the one
used in this study, have stability problems in terms of the generated noise when applied
to highly nonlinear systems. This could also be another reason behind the inconsistency
between the covariance of SDE data and the true Jacobian matrix, which directly affects
calculation of the fluctuation matrix from the Lyapunov equation.
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DISCUSSION

JacLy is a network inference algorithm with specific focus on the inference of small-scale
metabolic networks from steady-state data. It has significant advantages over its ancestor
(Oksiiz, Sadikoglu & Cakir, 2013). Here, we reported algorithmic improvements included
in JacLy, which led to significant improvements in the runtime and prediction power. Major
improvements were (i) vectorizing all possible computations, significantly improving the
runtime, (ii) the use of the reduced form of the Lyapunov equation by removing the
columns corresponding to zero Jacobian vector entries, improving the runtime, (iii) the
use of sparsity constraint in genetic algorithm to improve the runtime by eliminating the
possibility of generating low-sparsity individuals, (iv) scanning the scaling factor rather than
fixing it for each specific problem, making the algorithm more flexible and independent
from the effect of chosen parameter value and improving the prediction power, and (v)
the use of a community of candidate Jacobian vectors rather than using the elite Jacobian
vector in the inference, improving the prediction power of the results. Inferring metabolic
pathways via prediction of Jacobian matrices is also useful in estimating dynamic and
mechanistic characteristics of the system under investigation.

One issue that is worth mentioning at this stage is the applicability of the approach in
terms of the size of the network to be inferred. For example, each run for the E.coli model
consumed about twice more computational time compared to that of yeast, while the
E.coli model has only five more metabolites compared to the yeast model—an almost 40%
increase in the number of network nodes. This dramatic increase in computational time
with respect to network size—whenever the calculation of Jacobian matrix is involved in
a network inference method—was observed and explained in previous studies (Hendrickx
et al., 2011), and it is indeed one of the major drawbacks of using such methods to infer
larger networks. From this aspect, JacLy is more suitable as a small-scale (<20 metabolites)
network inference method. There are several network inference methods in the literature
with a specific focus on small-scale networks (Weber et al., 2013; Linde et al., 2015). Since
different cellular functions are biologically attached to smaller metabolic pathways or
subnetworks, it still makes sense to be able to infer active subnetworks for a specific
cellular condition rather than inferring the whole network. Table 2 summarizes some
characteristics of JacLy through a comparison with GGM as one of the most common
methods in inference of biological networks.

Currently, steady-state metabolome measurement data that are reported in the literature
are limited in terms of the number of replicates. This limitation is not specific to our method;
commonly used correlation-based inference methods are also suffering from low number
of data replicates and usually lead to significantly high number of false positives. Also,
in case of real metabolome data, experimental measurement errors interfere with natural
stochasticity of the system leading to lower quality in predicted networks. Moreover, since
our method relies on the fluctuation matrix (D) as one of its inputs, this external noise is
more troublesome. To test the applicability of our approach to the real metabolome data,
we introduced random noise to the SDE data of the yeast model by following the approach
presented by De la Fuente et al. (2004). For each metabolite, we sampled the random noise
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Table2 A summarized comparison of JacLy with GGM.

JacLy GGM

Computational time versus network size NP-hard problem No sensible change in the computational time
Computational time increases exponentially from very small to very large networks
by increasing the network size

Accuracy versus number of data replicates ~ Accuracy is a moderate function Accuracy is a very strong func-
of number of data replicates tion of number of data replicates
For lower number of data replicates, it Reduction in the number of data replicates
outperforms correlation based methods has a very high negative impact on the quality of

inferred network

Directionality of inferred network Directed Undirected

Meaningfulness of inferred edge’s weights Mechanistically meaningful Correlation values cannot be used as any physical
Inferred values for the Jacobian elements are or mechanistical parameter of the system

measures of interaction strengths and their sign
(positive/negative) points into the nature of
interaction

from a normal distribution with mean zero and a standard deviation equal to 10% of its
variance in the data. We generated 10 sets of noisy data using this approach. The in silico
data already includes randomness due to natural stochasticity since it was generated using
an SDE simulation toolbox. This random noise was still added to the data to count for the
other sources of error and randomness in the data, such as measurement errors. We then
applied both Jacly and GGM on the noisy data sets and compared the inference results
with that of noise-free SDE data. The average g-score dropped from 0.78 (noise-free data)
to 0.71 (noisy datasets) for JacLy and from 0.82 to 0.79 for GGM. These results provide
a theoretical base for applicability of our approach to real metabolome data that includes
other sources of randomness in addition to the natural stochasticity of the system. Although
the results for GGM are better than those of JacLy, one should remember that JacLy clearly
outperforms GGM for lower number of data replicates (see ‘Results’ section).

CONCLUSIONS

Thanks to the improvements introduced to the network inference algorithm, results
reported in the previous work (Oksiiz, Sadikoglu ¢~ Cakir, 2013) could be obtained much
faster, with much higher reproducibility, and with a higher prediction power. In addition,
by applying the approach to in silico metabolome data, we showed that the use of standard
deviation of replicates is a suitable approximation for the fluctuation matrix used as input to
the algorithm. However, there might be more sophisticated ways of estimating a fluctuation
matrix that better represents the nature of stochasticity in cellular metabolism. Finding
more relevant fluctuation matrices for different biological networks can be an altogether
separate research topic and can lead to an increase in accuracy and applicability of Lyapunov
based inference methods such as JacLy. Also, the power of JacLy was especially obvious
when a considerably lower number of replicates were used, or when a small portion of
non-existent edges were introduced as prior knowledge. Prediction of the Jacobian matrix
from steady-state data is another power of JacLy over GGM since Jacobian matrix is much
more informative and biologically relevant in terms of the network structure. Here, we
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have introduced JacLy as an algorithm to infer molecular interactions of small networks
since the size of matrix A is proportional to the square of the network size, leading to a
dramatic increase in the computational time with respect to the network size. Therefore, it
should be applied with caution for metabolic systems having higher than 20 metabolites.
Additionally, albeit its remarkably better performance for lower number or replicates
compared to a correlation-based inference as shown in this work, the use of JacLy for
datasets with lower than 100 replicates should be cautioned.
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