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Abstract

Background: Genome-wide association studies (GWASs) and global profiling of gene expression (microarrays) are two major
technological breakthroughs that allow hypothesis-free identification of candidate genes associated with tumorigenesis. It
is not obvious whether there is a consistency between the candidate genes identified by GWAS (GWAS genes) and those
identified by profiling gene expression (microarray genes).

Methodology/Principal Findings: We used the Cancer Genetic Markers Susceptibility database to retrieve single nucleotide
polymorphisms from candidate genes for prostate cancer. In addition, we conducted a large meta-analysis of gene
expression data in normal prostate and prostate tumor tissue. We identified 13,905 genes that were interrogated by both
GWASs and microarrays. On the basis of P values from GWASs, we selected 1,649 most significantly associated genes for
functional annotation by the Database for Annotation, Visualization and Integrated Discovery. We also conducted functional
annotation analysis using same number of the top genes identified in the meta-analysis of the gene expression data. We
found that genes involved in cell adhesion were overrepresented among both the GWAS and microarray genes.

Conclusions/Significance: We conclude that the results of these analyses suggest that combining GWAS and microarray
data would be a more effective approach than analyzing individual datasets and can help to refine the identification of
candidate genes and functions associated with tumor development.
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Introduction

Microarray technology allows simultaneous assessment of the

expression of virtually all genes in the genome. This approach has

been widely used to identify candidate genes associated with

cancer development and progression [1–3]. Genome-wide associ-

ation studies (GWASs) have recently emerged as a powerful tool to

identify genetic polymorphisms associated with cancer risk [4,5].

In a GWAS, hundreds of thousands of single nucleotide

polymorphisms (SNPs) are genotyped in a large number of cases

and controls. A difference in allelic or genotype frequencies

between cases and controls suggests an association between cancer

risk and the SNP and a linked gene or regulatory region.

Whether these two approaches produce comparable results has not

been examined. Recently Chen et al. [6] identified the genes that tend

to be differentially expressed across various experiential conditions

and states using gene-expression data from the Gene Expression

Omnibus (GEO). They found that differentially expressed genes are

more likely to be detected as disease variants in association studies.

In this study, we undertook a more direct approach to link

GWAS and microarray data. We performed functional annotations

of the top genes identified in prostate cancer GWASs and the same

number of the top candidate genes identified in a meta-analysis of

the gene-expression data for normal prostate and prostate tumor.

The results of our analyses indicate that these two approaches yield

similar results at the functional level.

Materials and Methods

Several prostate cancer GWASs were recently conducted, and a

number of candidate genes were identified (Table 1) [7–10].

Though only a few SNPs with the genome-wide level of

significance, 1027, were identified in these studies, a number of

SNPs were significant at the level of individual tests but

nonsignificant after correction for multiple testing. Such SNPs

likely indicate enrichment with causal SNPs that do not reach the

genome-wide significance level because of their small effect size or

low allele frequency [11].

The GWAS data for this analysis were retrieved from the Cancer

Genetic Markers Susceptibility (CGEMS) database, http://cgems.

cancer.gov/about/executive_summary.asp. We used the Oncomine

database http://www.oncomine.org/main/index.jsp to conduct a
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meta-analysis of the number of studies comparing gene expression in

normal prostate tissue with that of localized prostate tumor tissue

[12]. The complete list of the studies used in the meta-analysis can

be found in the supplementary materials (Table S1). We used an

extension of Stouffer’s method [13] for the meta-analysis. This

approach is based on estimating the standard normal deviation, Z,

and is similar to the approach recently proposed by Ochsner et al.

[14]. The meta-analysis identified a number of genes differentially

expressed between normal prostate and prostate tumor.

Results

As an initial validation of our hypothesis that GWASs and

microarrays tend to identify the same genes, we used a meta-

analysis of the Oncomine gene-expression data to assess the

expression of the GWAS-identified genes (Table 1). We found that

all but three (HNF1B, EHBP1, and LMTK2) of the genes were

differentially expressed between the normal and tumorous

prostate. Therefore, 10 of 13 (77%) of the GWAS genes were

differentially expressed in the transition from normal prostate to

prostate cancer that is higher than one can expect to detect among

randomly chosen 13 genes 21.1 (x2 = 20.9, df = 1, P,0.0001).

The prostate cancer GWAS data from CGEMS Phase 1A and

Phase 1B, were used in the analysis. We limited our analysis to the

gene-associated SNPs to make GWAS and microarray results

comparable. We followed the CGEMS designation of the gene-

associated SNPs. A total 63,831 gene-associated SNPs belonging

to 16,550 unique genes were identified. For each gene, a SNP with

the smallest P value was used to characterize an association. If a

given SNP was associated with multiple genes, all those

associations were included in our analysis. Because in many cases

aliases rather than official gene names were used in GWAS, we

linked various gene identifiers to the official gene names and

EntrezIDs using the latest version of the NCBI gene database

(accessed January 17, 2009). Overlapping of the unique GWAS

and microarray genes demonstrated that 13,905 genes were

assessed in both GWAS and microarray analyses. The list of the

genes with corresponding GWAS and microarray P values is

shown in Table S1.

To assess whether the GWAS and microarray analyses tend to

identify similar sets of genes we assess a correlation between –log(P)

values based on GWAS data and –log(P) values based on the

analysis of gene expression. We found a small but significant

(because of the large sample size) positive correlation between

GWAS and microarray –log(P)s (Figure 1).

The Database for Annotation, Visualization and Integrated

Discovery (DAVID) [15] was used for the functional annotation of

GWAS and microarray genes. We selected genes with GWAS P

values #0.01. A total of 1,649 genes were identified. We used

exactly the same number of the top genes identified in the meta-

analysis of the gene-expression data. To control for possible biases

in gene selection, we used the list of 13,905 genes as background.

Functional annotation charts were used to retrieve an extended

annotation coverage that included more than 40 annotation

categories [15]. A functional chart for the top GWAS genes can be

found in Table S2. Many cell adhesion–related categories are

among the top annotation categories. Clustering of the terms of

functional annotations summarized all types of the functional

description used by DAVID, identifying cell adhesion as the top

cluster, followed by plasma membrane and fibronectin.

Functional annotation of the top differentially expressed genes

identified cytoskeleton, focal adhesion, extracellular matrix, and

cell adhesion as the top annotation terms (Table S3). Clustering of

the terms of functional annotation demonstrated cytoskeleton,

actin cytoskeleton, extracellular matrix, and cell adhesion among

the top identified clusters. Figure 2 shows the results of the

clustering of functional terms by DAVID based on the analysis of

the top GWAS and differentially expressed genes (see also Table

S4). In both lists, most of the top functional clusters derived from

GWAS and microarray data are directly or indirectly related to

cell adhesion.

We next looked for an overlap between the top 1,649 GWAS

and the top 1,649 differentially expressed genes. We identified 248

appearing in both lists genes (see supplementary materials for the

list of the genes). This number is higher than would be expected by

chance. If we randomly sample 1,649 genes from among the

13,905 genes, the expected number of the genes found in two

independent samples would be (1,649/13,905)̂2*1,649 = 23.2. The

functional annotation of these 248 genes identified cytoskeleton,

focal adhesion, and actin binding as top functional categories.

Functional clustering of the genes identified cell migration, cell

motility, cytoskeleton, and cell adhesion as the top clusters.

Table 1. Candidate genes identified in prostate cancer GWAS.

Gene GeneID Comparison PMID Microarray Ps

CTBP2 1488 nonaggressive vs. aggressive prostate cancer 18264096 4.661026

EHBP1 23301 case control study 18264098 0.63

SLC22A3 6581 case control study 18264097 1.161024

LMTK2 22853 case control study 18264097 0.38

KLK2 3817 case control study 18264097 1.461027

KLK3 354 case control study 18264097 2.161029

NUDT10 170685 case control study 18264097 5.6610211

DAB2IP 153090 nonaggressive vs. aggressive prostate cancer 18073375 8.061027

HNF1B 6928 nonaggressive vs. aggressive prostate cancer 18264096 0.31

HPC1(RNASEL) 6041 controls vs. sporadic prostate cancer 17876339 1.161023

JAZF1 221895 nonaggressive vs. aggressive prostate cancer 18264096 1.5610210

MSMB 4477 nonaggressive vs. aggressive prostate cancer 18264096 4.761024

MYC 4609 controls vs. cases 17401366 2.6610240

doi:10.1371/journal.pone.0006511.t001

GWAS vs Microarrays
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Discussion

GWAS and microarray analyses both allow unbiased identifi-

cation of candidate genes and pathways associated with cancer

development. These two approaches each have advantages and

drawbacks. By combining data from multiple expression studies,

analyses of gene expressions have the statistical power to detect

even small differences in gene expression between normal and

tumor tissues. On the other hand, because genes in the human

genome are involved in multiple interactions, modulation of the

expression of a single gene may cause a ‘‘ripple effect’’ on multiple

downstream targets, making it difficult to separate causal and

induced changes in gene expression. This is unlikely to be an issue

in GWASs. GWASs, however, are often statistically underpowered

to detect SNPs with small effect size.

When we compared candidate genes for prostate cancer

identified by GWAS with those identified by microarray, we noted

a significant positive correlation between the GWAS and micro-

array –log(P)s. The correlation was small, with the Pearson rank

correlation coefficient being only 0.04, but positive correlation

between two ranks is expected to be driven by a relatively small

number of causal genes. Not all causal genes will be detected by

GWAS. Even if the gene is mechanistically linked to prostate

tumorigenesis, it can be detected by GWAS only if it carries genetic

variants that modulate its function. On the other hand, genes

identified by microarray analysis are expected to be a mix of causal

genes and the genes that are differentially expressed because of the

ripple effect of the causal genes. This suggests that only a fraction of

the genes significant in both analyses are causal genes.

We found that the top GWAS and differentially expressed

candidates were enriched in cell adhesion genes. If we consider all

known cell adhesion genes in the genome, only 74 genes or 10% of

them were among the top differentially expressed genes. If the cell

adhesion pathway is associated with prostate tumorigenesis, one

can expect that other cell adhesion genes—those that did not make

it to the top 1,649 genes—also will tend to be significantly

positively associated. We found that the average GWAS-derived P

value for the cell adhesion genes that failed to reach the top 1649

was lower than the average value for the GWAS genes (t test = 2.9,

df = 13,902, P = 0.001). A similar result was obtained for the P

values derived from the analysis of the gene expression: the

absolute Z score was higher among cell adhesion genes (excluding

those among the top 1649 genes) than was the average Z score (t

test = 1.81, df = 17811, P = 0.07 on the two-tailed test and P = 0.03

on the one-tailed test). This suggests that cell adhesion function as

a whole is associated with prostate tumorigenesis.

Both GWAS and microarray genes form functional clusters

related to different aspects of cell adhesion, including cell adhesion

itself, cell junction, extracellular matrix glycoproteins, fibronectin,

actin cytoskeleton, and cell motility. Several other clusters also

show a mechanistic association with cell adhesion. For example,

cadherin uptake from the cell surface by endocytosis regulates the

level of the free cadherins on the cell surface and therefore cell

adhesion [16]. Also, zinc finger proteins with the LIM domain are

important for focal adhesion and cell adhesion to fibronectin

[17,18]. The modulation of the cell adhesion function seems not to

be limited to any specific adhesion type but includes cadherins,

integrins, and selectins as well as adhesion molecules associated

with tight junctions.

The results of a number of studies suggested the involvement of

the cell adhesion system in prostate cancer development.

Cadherins play a role in regulating tumor cell proliferation

through cyclins and cyclin-dependent kinases [19]. Integrins are

involved in different aspects of prostate tumorigenesis, including

cell proliferation, cell motility, and apoptosis [20–22]. Modulation

of cell adhesion can play an important role in epithelial-to-

mesenchymal transition that is believed to be a key step in

malignant transformation [23–25]. Also the results of a number of

studies suggestd an involvement of cell adhesion in angiogenesis

[26–28].

GWAS-identified genes are considered to be cancer susceptibility

genes that are mainly associated with tumor initiation. We believe,

however, that genes identified by GWAS are also likely to include

genes important for tumor progression. Indeed, the detection of

tumor is usually symptomatic: the tumor needs to reach a certain

size to be detected. This suggests that genes involved in tumor

progression will be among GWAS-detected candidate genes.

Therefore, GWAS and gene expression analysis may target

essentially the same set of genes, providing the theoretical basis

for the joint analysis of GWAS and microarray data.

Figure 1. The plot of GWAS and microarray –log(P)s. Black line shows the linear regression curve, red line – moving average computed using a
sliding window of 100 points. Spearman’s rank-order correlation coefficient: r = 0.043, N = 13905, P = 0.0000001.
doi:10.1371/journal.pone.0006511.g001

GWAS vs Microarrays
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In summary, our analysis found a considerable overlap between

prostate cancer genes identified by GWAS and those identified by

global profiling of the gene expression. We identified cell adhesion as a

biological function associated with prostate tumorigenesis. The results

of this study also suggest that combining GWAS and microarray data

might be a more effective approach than using just the analysis of the

individual datasets, and can help to refine the identification of

candidate genes and/or functions involved in tumor development.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0006511.s001 (0.83 MB

PDF)

Table S2

Found at: doi:10.1371/journal.pone.0006511.s002 (0.07 MB

XLS)

Figure 2. Clustering of the functional annotation terms based on GWAS- (upper panel) and microarray-derived genes (lower
panel). Functional clusters related to cell adhesion are shown in blue. Detailed information on the composition of clusters can be found in
Table S4.
doi:10.1371/journal.pone.0006511.g002

GWAS vs Microarrays
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Table S3

Found at: doi:10.1371/journal.pone.0006511.s003 (0.33 MB

XLS)

Table S4

Found at: doi:10.1371/journal.pone.0006511.s004 (0.33 MB

XLS)

Author Contributions

Conceived and designed the experiments: IPG OYG CL. Performed the

experiments: IPG CIA. Analyzed the data: IPG GG OYG. Wrote the

paper: IPG GG CIA CL.

References

1. Lacroix L, Commo F, Soria JC (2008) Gene expression profiling of non-small-

cell lung cancer. Expert Rev Mol Diagn 8: 167–178.

2. Konstantinopoulos PA, Spentzos D, Cannistra SA (2008) Gene-expression
profiling in epithelial ovarian cancer. Nat Clin Pract Oncol 5: 577–587.

3. Bao T, Davidson NE (2008) Gene expression profiling of breast cancer. Adv
Surg 42: 249–260.

4. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, et al. (2008)

Genome-wide association studies for complex traits: consensus, uncertainty and
challenges. Nat Rev Genet 9: 356–369.

5. Browning SR (2008) Missing data imputation and haplotype phase inference for
genome-wide association studies. Hum Genet 124: 439–450.

6. Chen R, Morgan AA, Dudley J, Deshpande T, Li L, et al. (2008) FitSNPs: highly

differentially expressed genes are more likely to have variants associated with
disease. Genome Biol 9: R170–173.

7. Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, et al. (2007) Two
genome-wide association studies of aggressive prostate cancer implicate putative

prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 99: 1836–1844.
8. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, et

al. (2007) Genome-wide association study identifies a second prostate cancer

susceptibility variant at 8q24. Nat Genet 39: 631–637.
9. Nam RK, Zhang WW, Loblaw DA, Klotz LH, Trachtenberg J, et al. (2008) A

genome-wide association screen identifies regions on chromosomes 1q25 and
7p21 as risk loci for sporadic prostate cancer. Prostate Cancer Prostatic Dis 11:

241–246.

10. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, et al. (2008) Multiple
loci identified in a genome-wide association study of prostate cancer. Nat Genet

40: 310–315.
11. Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting

paradigm of association studies: value of rare single-nucleotide polymorphisms.
Am J Hum Genet 82: 100–112.

12. Gorlov IP, Gorlova OY, Efstathiou E, Logothetis CJ (2009) Candidate pathways

and genes for prostate cancer: a meta-analysis of gene expression data. BMC
Cancer, In press.

13. Rosenthal R (1979) The file drawer problem and tolerance for null results.
Psychol Bull 86: 638–641.

14. Ochsner SA, Steffen DL, Hilsenbeck SG, Chen ES, Watkins C, et al. (2009)

GEMS (Gene Expression MetaSignatures), a Web resource for querying meta-
analysis of expression microarray datasets: 17beta-estradiol in MCF-7 cells.

Cancer Res 69: 23–26.

15. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:

44–57.

16. Delva E, Kowalczyk AP (2009) Regulation of cadherin trafficking. Traffic 10:

259–267.

17. Brown MC, Perrotta JA, Turner CE (1998) Serine and threonine phosphor-

ylation of the paxillin LIM domains regulates paxillin focal adhesion localization

and cell adhesion to fibronectin. Mol Biol Cell 9: 1803–1816.

18. Hansen MD, Beckerle MC (2006) Opposing roles of zyxin/LPP ACTA repeats

and the LIM domain region in cell-cell adhesion. J Biol Chem 281:

16178–16188.

19. Mason MD, Davies G, Jiang WG (2002) Cell adhesion molecules and adhesion

abnormalities in prostate cancer. Crit Rev Oncol Hematol 41: 11–28.

20. Moschos SJ, Drogowski LM, Reppert SL, Kirkwood JM (2007) Integrins and

cancer. Oncology (Williston Park) 21(9 Suppl 3): 13–20.

21. Fornaro M, Manes T, Languino LR (2001) Integrins and prostate cancer

metastases. Cancer Metastasis Rev 20(3-4): 321–331.

22. Goel H, Li J, Kogan S, Languino L (2008) Integrins in prostate cancer

progression. Endocr Relat Cancer 15: 657–664.

23. Ke XS, Qu Y, Goldfinger N, Rostad K, Hovland R, et al. (2008) Epithelial to

mesenchymal transition of a primary prostate cell line with switches of cell

adhesion modules but without malignant transformation. PLoS ONE 3(10):

e3368.

24. Takkunen M, Ainola M, Vainionpaa N, Grenman R, Patarroyo M, et al. (2008)

Epithelial-mesenchymal transition downregulates laminin alpha5 chain and

upregulates laminin alpha4 chain in oral squamous carcinoma cells. Histochem

Cell Biol 130: 509–525.

25. Etienne-Manneville S (2008) Polarity proteins in migration and invasion.

Oncogene 27: 6970–6980.

26. Piao M, Mori D, Satoh T, Sugita Y, Tokunaga O (2006) Inhibition of

endothelial cell proliferation, in vitro angiogenesis, and the down-regulation of

cell adhesion-related genes by genistein.Combined with a cDNA microarray

analysis. Endothelium 13: 249–266.

27. Bazas VM, Lukyanova NY, Demash DV, Galakhin KO, Myasoedov DV (2008)

Relation between cell-to-cell adhesion and angiogenesis and clinico-morpholog-

ical prognostic factors in patients with gastric cancer. Exp Oncol 30: 235–239.

28. Ramjaun AR, Hodivala-Dilke K (2009) The role of cell adhesion pathways in

angiogenesis. Int J Biochem Cell Biol 41: 521–530.

GWAS vs Microarrays

PLoS ONE | www.plosone.org 5 August 2009 | Volume 4 | Issue 8 | e6511


