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Oxygen-induced impairment in
arterial function is corrected by
slow breathing in patients with
e’ type 1diabetes
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Hyperoxia and slow breathing acutely improve autonomic function in type-1 diabetes. However, their
effects on arterial function may reveal different mechanisms, perhaps potentially useful. To test the
effects of oxygen and slow breathing we measured arterial function (augmentation index, pulse wave
velocity), baroreflex sensitivity (BRS) and oxygen saturation (SAT), during spontaneous and slow
breathing (6 breaths/min), in normoxia and hyperoxia (5 L/min oxygen) in 91 type-1 diabetic and 40 age-
matched control participants. During normoxic spontaneous breathing diabetic subjects had lower BRS
and SAT, and worse arterial function. Hyperoxia and slow breathing increased BRS and SAT. Hyperoxia
increased blood pressure and worsened arterial function. Slow breathing improved arterial function and
diastolic blood pressure. Combined administration prevented the hyperoxia-induced arterial pressure
and function worsening. Control subjects showed a similar pattern, but with lesser or no statistical
significance. Oxygen-driven autonomic improvement could depend on transient arterial stiffening and
hypertension (well-known irritative effect of free-radicals on endothelium), inducing reflex increase in
BRS. Slow breathing-induced improvement in BRS may result from improved SAT, reduced sympathetic
activity and improved vascular function, and/or parasympathetic-driven antioxidant effect. Lower
oxidative stress could explain blunted effects in controls. Slow breathing could be a simple beneficial
intervention in diabetes.

Diabetes is associated with increased premature cardiovascular morbidity and mortality'. Although several fac-
tors contribute to these adverse outcomes, autonomic and vascular abnormalities have an adverse prognostic
effect both in experimental and epidemiological studies!. These abnormalities have traditionally been attributed
to anatomical changes involving neural degeneration” or atherosclerotic processes®. However, a functional ~hence
potentially reversible- component of autonomic and vascular abnormalities have been identified by our group,
and others®>.

Following these concepts, we observed that the parasympathetic cardiac arm of the baroreflex could be tran-
siently ameliorated by two simple physiological interventions, namely slow breathing® and oxygen administration®.
Nevertheless, in response to oxygen administration we also observed a transient increase in the blood pressure
in patients with type 1 diabetes®’. Conversely, slow breathing did not increase or it even reduced the blood pres-
sure®. These findings lead to the question of whether these two interventions, which at first sight produce similar
autonomic effects, might in fact have entirely different mechanisms of action, based on the responses in blood
pressure and arterial function, and its possible consequences in stimulating the parasympathetic nervous system.
However, so far, the effects of slow breathing and oxygen on arterial function have never been compared, neither
in healthy nor in patients with type 1 (or type 2) diabetes. The question is however relevant in order to understand
how the autonomic function is altered in diabetes and how this could potentially be corrected.
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Type 1 diabetes | Controls p-value

N 91 40

Gender (men/women) 50/41 19/21 NS
Age (years) 31.5+0.6 31.0+1.1 NS
Duration of diabetes (years) 13.240.2 0

Age at onset (years) 18.04+0.6 —

Body Mass Index (kg/m2) 25.7+0.4 23.8+0.6 <0.05
Waist/Hip ratio 0.87£0.1 0.86+0.01 | NS
Current smokers (n,%) 14, 15.4% 5,12.6%
Antihypertensive treatment (n,%) 19,20.8% 0

Laser-treated retinopathy (n,%) 6,6.2% 0

Microalbuminuria (n,%) 6,6.6% 0

Macroalbuminuria (n,%) 1,1% 0

HbA1lc, % (mmol/mol) gfiigéz gf;iggi* <0.001
Total cholesterol (mmol/1) 4.58£0.08 4.35+£0.15% | NS
HDL-cholesterol (mmol/l) 1.634+0.05 1.624+0.09* | NS
Triacylglycerol (mmol/l) 1.23+£0.08 0.85+£0.07* | <0.05
Urinary AER (mg/24h) 238+11.7 6.72+£1.10% | NS
Serum creatinine (pmol/l) 68.7+£1.2 722+£27*% | NS
Estimated Glomerular Filtration Rate (ml min~!1.73m™2) | 167+6 148 +8 NS
Office SBP (mmHg) 129.8+£1.2 120.9+£2.7 <0.005
Office DBP (mmHg) 77.2+0.9 75.1+1.4 NS
Autonomic score 0.20+0.04 0.12+£0.05 NS

Table 1. Clinical characteristics and laboratory measurements of patients with type 1 diabetes and healthy control
subjects. SBP: Systolic Blood Pressure. DBP: Diastolic Blood pressure* data obtained in 24 control subjects.

We therefore tested whether slow breathing and oxygen administration exhibit different effects on arterial and
autonomic function and whether the combined effects of these two interventions further potentiate the vascular
or the autonomic response. We then measured the augmentation index and the pulse wave velocity as indices
of arterial function, and the baroreflex sensitivity, as a comprehensive index of autonomic function, in response
to oxygen and slow breathing during separate and combined administration. We reasoned that if oxygen and
slow breathing act through independent mechanisms their combination should produce some additive or even
multiplicative effects, whereas if they act through the same mechanism although in opposite directions, their
combination should cancel their individual effects.

Methods

Participants. We studied 91 patients with type 1 diabetes and 40 age-matched healthy controls. The partici-
pants were recruited through the register of The Social Insurance Institution that comprises all patients entitled to
special reimbursement of insulin or anti-diabetic medication in Finland. Selection criteria were diabetes (E10 in
ICD-10) diagnosed before the age of 35 years, and age 18-35 years at the time of inclusion.

Type 1 diabetes was defined as C-peptide deficiency (<0.03 nmol/l) and initiation of permanent insulin treat-
ment within one year after the diagnosis of diabetes. None of the patients showed clinical signs of cardiovascular
disease. Six patients were laser-treated because of diabetic retinopathy.

Nineteen patients received antihypertensive medication (14 with an ACE-inhibitor, 1 with a combination of
an ACE-inhibitor, a calcium channel blocker and a diuretic, 1 with a combination of ACE-inhibitor and calcium
channel blocker, and 3 with angiotensin-2 receptor blockers). The healthy control participants were recruited by
email advertisements among university students and staff. Only individuals with normal fasting glucose and with-
out 1% degree relatives with diabetes mellitus were included. Before participation, all participants gave their writ-
ten informed consent. The study protocol was approved by the Ethics Committee of Helsinki University Hospital,
and the study was carried out in accordance with the principles of the Declaration of Helsinki as revised in 2000.

The participants underwent a clinical examination, resting-ECG, laboratory testing, overnight urine collec-
tions, and standard autonomic function evaluation by 4 cardiovascular tests: the expiration/inspiration ratio of the
RR interval during slow deep breathing, the maximum/minimum 30/15 ratio of the RR interval during Valsalva
manoeuvre and active standing, the systolic blood pressure response to standing. Cardiovascular autonomic neu-
ropathy was defined as the presence of two or more abnormal tests’. Each patient completed a detailed question-
naire on life style, smoking habits and family history. Anthropometric data of the participants are shown in Table 1.

Protocol. All participants were investigated in a quiet room, at a temperature between 19 and 23 °C, between
8 a.m. and 2 p.m. The participants received instructions to refrain from alcohol for 36 h, caffeinated beverages
and cigarettes for 12h prior to the examination. A light meal was permitted 2 hours before testing. If a participant
reported or measured symptoms/values of hypoglycaemia in the previous 24 hours the test was postponed. The
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electrocardiogram was recorded using a bipolar precordial lead. Continuous blood pressure was monitored with
a Finapres 2300 digital plethysmograph (Ohmeda, Louisville, CO, USA). Two respiratory signals were obtained
by inductive plethysmography (Z-rip®, Pro-Tech, Mukilteo, Wa, USA), from belts positioned around the chest
and the abdomen. Pulse oxymetry and expired carbon dioxide (CO,) partial pressure (7100 model CO2SMO,
Novametrix, Wallingford, CT, USA) were obtained.

The signals were recorded in the supine position during 5 minutes of spontaneous breathing, and during
2 minutes of slow deep breathing at the rate of 6 cycles/minute. Subsequently, the participants repeated the entire
protocol while breathing 5 L/min oxygen. Signal recordings started after the first 5 minutes of oxygen adminis-
tration to allow stabilization of oxygen saturation and ventilation. All signals were simultaneously recorded on
a personal computer with an analog-to-digital converter with a 12-bit resolution at a sampling rate of 200 Hz
(WinAcq data acquisition system, Absolute Aliens Ltd, Turku, Finland).

Assessment of baroreflex sensitivity. From the original data, the time series of the RR interval (from
each of 2 consecutive R waves of the electrocardiogram) and the systolic blood pressure (SBP) were obtained.
Previous studies have shown poor correlation between different indices of BRS, while no method has shown
superior performance over the other'®. Accordingly, we computed all 7 most common BRS indices, and used
their average'’.

BRS was determined from spontaneous fluctuations in the RR interval and SBP during the spontaneous and
6 breaths/min recordings using the sequence methods for (1) positive and (2) negative sequences, or spectral
analysis for the (3) low frequency, (4) high frequency and (5) for the average of the low- and high-frequency com-
ponents, (6) the transfer function technique and (7) by the standard deviation method, following the technical
details previously explained'!. Additionally, the standard deviation of all RR intervals (SDNN) was considered an
index of global RR interval variability.

Assessment of arterial stiffness.  Using the ECG R-wave peak as a reference, we obtained an average pulse
pressure profile during each recording. From this averaged pressure signal we obtained the augmentation index,
adjusted for the standard heart rate of 75 beats/min (AI75) using a recently validated method!?. The pulse wave
velocity (PWV) was calculated as the equivalent index SI-DVP derived from the pulse pressure profile, described
by Millasseau ef al. and validated by themselves' and by our group'?.

Laboratory tests. Venous blood samples were obtained after a light breakfast and were analyzed for HbA,,
lipids and serum creatinine. HbA . concentrations were determined by an immunoturbidimetric immunoassay
(Medix Biochemica, Kauniainen, Finland). Serum lipids (cholesterol, triglycerides, HDL-cholesterol) and creati-
nine were measured by enzymatic methods. Urinary albumin excretion rate (AER) was measured from three con-
secutive timed urine collections, one 24-hour and two overnight collections. Normal AER was defined as values
persistently < 20 ug/min or < 30 mg/24 h, microalbuminuria as AER > 20 < 200 pg/min or > 30 < 300 mg/24 h,
and macroalbuminuria as AER >200 pg/min or > 300 mg/24 h in at least two out of three urine collections’.

Statistical analyses. Data are presented as mean + standard error of the mean, unless differently stated.
Differences between the two groups and between conditions were tested by a linear normal model. As out-
come we modeled the different continuous variables, and included conditions (normoxia/hyperoxia), breath-
ing patterns (spontaneous, and slow breathing) and participant groups (healthy control/diabetic) as categorical
covariates. For each continuous variable, we assessed the interactions between conditions, groups and breathing
patterns. Sheffe’s test was used to test for significances between different breathing rates. Statistical significance
was defined as a p-value <0.05.

Results

Baseline data. During spontaneous breathing in normoxia, diabetic subjects had lower BRS and SDNN
(Fig. 1, panels a and b), lower resting oxygen saturation (Fig. 1, panel c), higher systolic and diastolic blood pres-
sure (Fig. 2, panels a and b), and higher AI75 and PVW than controls (Fig. 2, panels ¢ and d). Mean RR interval
was similar in diabetic and control subjects (940 £ 15 vs 1016 &= 17 msec, NS). No differences were observed in
the end-tidal carbon dioxide.

Effect of oxygen administration. Oxygen administration prolonged the RR interval in diabetic patients
(from 940 £ 15 to 1016+ 17 msec, p < 0.001) and in control subjects (from 971+ 27 to 1029 & 25 msec, p < 0.001),
and increased BRS, SDNN and oxygen saturation in diabetic and control participants (Fig. 1, panels a, b and c).
However, oxygen increased the blood pressure (Fig. 2, panels a and b) and worsened the arterial function (both
AI75 and SI-DVP), and this was particularly seen in the diabetic participants (Fig. 2, panels c and d). Control
subjects showed similar directional changes but to a lesser degree than in the diabetic participants (Figs 1 and 2).
Carbon dioxide levels dropped in both groups (Fig. 1, panel d), indicating some degree of hyperventilation.

Effect of slow breathing. Similar to oxygen, slow breathing increased BRS and SDNN (Fig. 1, panels a
and b) in the diabetic participants, and showed a trend toward an increase in BRS and SDNN in the control par-
ticipants, whereas the RR interval slightly shortened in the diabetic (to 927 4= 13 msec, p < 0.01) and the control
participants (to 946 =23 msec, p < 0.025). The extent of the increase in BRS was similar to that of oxygen and
it was larger in diabetic (p < 0.0001) than in control (p < 0.05) participants (Fig. 1, panel a). Oxygen saturation
also increased in diabetic and control participants (p < 0.001) though less than with oxygen. Unlike oxygen, slow
breathing did not increase the systolic blood pressure and decreased the diastolic blood pressure (Fig. 2, panels a
and b), and improved the arterial function in the diabetic participants (both AI75 and pulse wave velocity, Fig. 2,
panels c and d). In the control group the changes were directionally the same, but a significant improvement was
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Figure 1. Effect of Slow Breathing (SLB) and Oxygen (O,), alone (middle data of each panel) and combined
(right data in each panel) on autonomic function: baroreflex sensitivity (panels a) and heart rate variability
(standard deviation of RR intervals, SDNN, panels b), and blood gases: oxygen saturation (panels ¢) and end-
tidal carbon dioxide (CO,_,,, panels d). Data from Type 1 diabetic (left panels) and control participants (right
panels). Baseline: spontaneous breathing in room air. Within each panel, significances written in red refer to
baseline, significances in blue refer to SLB vs O,. Note the additive effect of oxygen and slow breathing in all
autonomic and respiratory variables.

seen only in the augmentation index. Carbon dioxide levels dropped significantly in both groups (Fig. 1, panel d),
although to a lesser extent than with oxygen.
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Figure 2. Effect of Slow Breathing (SLB) and Oxygen (O,), alone (middle data of each panel) and combined
(right data in each panel) on blood pressures: systolic (panels a) and diastolic (panels b), and arterial
function: heart rate-adjusted augmentation index (AI75, panels c) and Pulse wave velocity (SI-DVP, panels
d). Same explanations as in Fig. 1. Note the opposite effects of slow breathing and oxygen on blood pressure
and particularly on each index of arterial function, and the blockade of the oxygen-induced worsening by
combining slow breathing.

Effect of combined oxygen administration and slow breathing. The combination of oxygen admin-
istration and slow breathing did not further increase BRS and SDNN as compared to each intervention sepa-
rately (Fig. 1, panels a and b), and the RR interval returned to values similar to those at baseline (diabetic group:
955 £ 14 msec, NS; control group: 986 & 20 msec, NS). Oxygen saturation did not increase further as compared
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to each separate intervention (Fig. 1, panel c). However, the worsening of the arterial function and the increase
in the blood pressures observed with oxygen alone were abolished by adding slow breathing (Fig. 2). Similarly,
the worsening of the arterial function (both AI75 and pulse wave velocity) seen with oxygen disappeared when
slow breathing was added to oxygen (Fig. 2, panels c and d). Carbon dioxide levels remained lower in both groups
(Fig. 1, panel d).

Discussion

There are several important observations in this study. First, although oxygen and slow breathing produce similar
favorable autonomic modifications, their effects are the opposite with respect to blood pressure and particularly
arterial function: oxygen impaired and slow breathing improved them. Second, during their combined adminis-
tration the increase in blood pressure and the impaired arterial function seen with oxygen alone was reversed by
slow breathing.

One likely mechanism of the oxygen-induced vasoconstriction and the arterial function worsening is free
radical-induced transient endothelial dysfunction. Reactive oxygen species (ROS) induced by excess oxygen are
known to have an irritative effect on the bronchial receptors, which could stimulate the parasympathetic activity'.
Finally, an increase in the blood pressure stimulates the baroreflex as a compensatory mechanism. This hypothe-
sis is supported by the blunted overall effects seen in the healthy controls, as their likely lower baseline oxidative
stress could have reduced the impact of oxygen-induced ROS.

Conversely, slow breathing in room air improved blood oxygenation by better ventilation-perfusion matching'?,
and improved the autonomic and arterial function by reducing sympathetic activation at the central and the
peripheral levels. The reversal of the impaired arterial function caused by slow breathing during oxygen admin-
istration suggests that slow breathing could have a protective effect both on the autonomic and the arterial func-
tion, possibly by preventing the negative effects of oxygen-induced ROS on endothelial function, thus “de facto”
providing an endogenous anti-oxidant effect. This new finding might have important clinical implications.

Is oxygen administration always beneficial for the patient?  The expected increase in oxygen satura-
tion induced by oxygen was accompanied by a marked increase in the RR interval (decrease in heart rate) and by
an improvement in the baroreflex sensitivity. However, these positive findings were accompanied by an increase
in the systolic and the diastolic blood pressures, and by an impairment of the arterial function (indicated by an
increase in the augmentation index and the pulse wave velocity index). Since resting oxygen saturation was lower
in the diabetic as compared to the control group, it is possible that these positive effects on the autonomic func-
tion could be due to correction of pre-existing hypoxia. In fact, hypoxia is a direct arterial vasodilator, and as a
consequence of the resulting hypotension it is also a stimulator of the sympathetic nervous system. Additionally,
hypoxia stimulates the sympathetic nervous system!®. Accordingly, oxygen-induced relief of the hypoxia, could
have induced a vasoconstriction and a simultaneous decrease in the sympathetic activity, and an increase in the
parasympathetic activity.

Another mechanism is also plausible and not in contrast to the first. Because an excess of oxygen produces
an excess of ROS, both of these might in concert have created a transient endothelial dysfunction, leading to an
increase in arterial stiffness and blood pressure®”. Diabetic subjects already have a condition of oxidative stress,
excess of free-radicals and endothelial dysfunction due to various reasons, including hyperglycaemia, low-grade
inflammation!” and pre-existing hypoxia®. These conditions taken together might lead to a low antioxidant
reserve, and thus the negative effects of oxygen may be much more pronounced in the diabetic than in the healthy
subjects. In our control participants a sufficient antioxidant reserve could have limited the negative effects of
oxygen. If this was the case, then “excess” oxygen in the lungs could have initiated an irritative response, already
started by receptors present in the lungs'*.

Does slow breathing mimic the effects of oxygen? Slow breathing increases oxygen saturation in
healthy subjects®, in subjects with heart failure'® and diabetes®. This effect is due to a reduction in both the ana-
tomic (due to reduced breathing rate) and the physiological dead space (due to improvement in ventilation/
perfusion matching). Additionally, slow breathing improves the parasympathetic arm of the cardiac baroreflex in
healthy subjects®, as well as in diabetic® and cardiac'® patients, and directly reduces the muscle sympathetic nerve
activity'® . Because oxygen saturation was depressed in our diabetic participants at baseline, it is likely that some
of the effects of slow breathing could be mediated at least in part by improving the arterial oxygenation.

Unlike oxygen, slow breathing reduced the arterial pressure in subjects with essential hypertension?®, and
in the present study, we observed a significant decrease in the diastolic blood pressure. The lack of significant
decrease in the systolic blood pressure could be explained both by an overall lower blood pressure in our diabetic
patients as compared to the hypertensive subjects?, and by the fact that a substantial proportion of them were
receiving antihypertensive medication.

Unlike oxygen, slow breathing improved the arterial function (both PWV and AIx75) in our diabetic patients.
The improvement in arterial function could simply be a reduction in the sympathetic activity, but this seems to
contrast with the fact that also oxygen administration reduced the sympathetic activity, and yet induced an oppo-
site effect on the arterial function.

Does slow breathing act as an anti-oxidant in type 1 diabetes?  Assuming that the adverse effects of
oxygen on arterial function were due to transient endothelial dysfunction induced by excess of free-radicals’, then
our results lead to the hypothesis that slow breathing may exert some antioxidant effect, possibly via parasympa-
thetic stimulation. The concept that parasympathetic stimulation has an antioxidant effect is well known and sup-
ported by many findings in experimental?!~* and clinical cardiovascular research, related to heart failure?!-2%27
and stroke?® %
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Although our findings are in full agreement with these previous studies, it is however of note that our results
were obtained by slow breathing, and not by direct vagal nerve stimulation. However, it is well established that
slow breathing directly suppresses muscle neural sympathetic activity’>?°, and recent papers did show that slow
breathing has a direct antioxidant effect in healthy subjects, when their redox status was challenged by postprandial
hyperglycemia® or acute physical exercise®!. Ventilatory manipulations, such as slow deep breathing, have been
shown to engage neural substrates that partially overlap those found in studies of vagus nerve stimulation. Within
the brain, this overlap occurs particularly in the dorsal anterior cingulate cortex, as well as in the superior frontal
gyrus and the temporal pole*?-**. Furthermore, changes in the tidal volume induced by slow deep breathing corre-
late positively with the activity of the medullary nuclei, including the solitary tract®. The same network has been
shown to play an important role in vagus nerve stimulation, as vagal afferents traverse the brainstem in the solitary
tract, with terminating synapses located mainly in the nuclei of the dorsal medullary complex of the vagus®.

In diabetes, similar studies are surprisingly missing, possibly due to the old but now updated concept that
autonomic dysfunction is already the result of a neural lesion rather than a complex reflex imbalance, at least at
the earlier stages of the disease™®. The lack of dedicated studies is surprising given that oxidative stress is a fre-
quent finding in diabetes and an established cause of diabetic microvascular complications'’.

“Neuropathy” and vascular abnormalities in diabetes: always irreversible?  This paper under-
lines for the first time that the increase in arterial pressure and stiffness induced by oxygen administration, could
be acutely corrected by a simple maneuver that activates the parasympathetic system, thus confirming that the
parasympathetic system is not destroyed but only inhibited at the earlier stages of diabetes, and that the vascular
abnormalities are also to some extent functional, hence potentially reversible.

Hypoxia and diabetes. Diabetic patients have lower resting oxygen saturation. Although the oxygen satura-
tion was only mildly reduced, one should consider that in the normoxic range eve a small difference in oxygen sat-
uration implies a large difference in arterial partial O, pressure, due to the dissociation curve of the hemoglobin.
This reduced arterial partial O, pressure (hypoxia) could play a relevant role in diabetes, since hypoxia is known
to be another relevant source of endothelial dysfunction and ROS generation®. Hypoxia could thus be yet another
mechanism leading to endothelial dysfunction and oxidative stress in diabetes. The fact that oxygen saturation is
reduced at rest also implies a reduced sensititvity of the mechanisms that regulate hypoxia in diabetes, and this
has been confirmed in experimental human and animal models* ¥’. In the present study, we can speculate that
the pre-existing ROS excess (likely induced by hypoxia and other mechanisms) could have been increased by
oxygen administration, in view of the limited antioxidant reserve of diabetic patients.

Our group previously reported that acute hyperglycaemia can induce oxidative stress and increase arterial
stiffness®® %, The fact that our diabetic participants had rather high HbAlc values (8.03 4 0.12, Table 1) indeed
suggests a condition of oxidative stress. In addition, our present and previous findings suggest that with better gly-
caemic control the adverse vascular response to hyperoxia (or hypoxia) might be reduced. Conversely, the higher
resting oxygen saturation of healthy participants, and the concomitant likely lack excess in ROS can explain the
reduced modifications observed in the present study.

In summary, while oxygen administration seems to improve the BRS in response to impaired arterial function
(possibly by irritative effect of free-radical excess on endothelial function), slow breathing could improve BRS
by improving oxygen saturation and by direct parasympathetic stimulation and sympathetic suppression. The
effects of slow breathing are fully consistent with a direct antioxidant effect, similarly to what shown for vagal
nerve stimulation in other diseases, in which, like in diabetes, oxidative stress plays a major role. There is indeed
evidence that slow breathing has a direct antioxidant effect in healthy subjects®**!. These findings could have not
only theoretical but also practical interest for the management of diabetes and its complications. However, further
studies need to confirm this concept by a direct measure of ROS generation and antioxidant capacity in diabetes.
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