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Chronic myeloid leukemia (CML) results from a translocation between chromosomes 9

and 22, which generates the Philadelphia chromosome. This forms BCR/ABL1, an active

tyrosine kinase protein that promotes cell growth and replication. Despite great progress

in CML treatment in the form of tyrosine kinase inhibitors, allogeneic-hematopoietic stem

cell transplantation (allo-HSCT) is currently used as an important treatment alternative for

patients resistant to these inhibitors. Studies have shown that unregulated expression

of microRNAs, which act as oncogenes or tumor suppressors, is associated with

human cancers. This contributes to tumor formation and development by stimulating

proliferation, angiogenesis, and invasion. Research has demonstrated the potential of

microRNAs as biomarkers for cancer diagnosis, prognosis, and therapeutic targets. In

the present study, we compared the circulating microRNA expression profiles of 14 newly

diagnosed patients with chronic phase-CML and 14 Philadelphia chromosome-negative

patients after allo-HSCT. For each patient, we tested 758 microRNAs by reverse

transcription quantitative polymerase chain reaction (RT-qPCR) analysis. The global

expression profile of microRNAs revealed 16 upregulated and 30 downregulated

microRNAs. Target genes were analyzed, and key pathways were extracted and

compared. Bioinformatics tools were used to analyze data. Among the downregulated

miRNA target genes, some genes related to cell proliferation pathways were identified.

These results reveal the comprehensive microRNA profile of CML patients and the main

pathways related to the target genes of these miRNAs in cytogenetic remission after allo-

HSCT. These results provide new resources for exploring stem cell transplantation-based

CML treatment strategies.
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INTRODUCTION

Chronic myeloid leukemia (CML) is a myeloproliferative disease
accounting for ∼20% of diagnosed adult cases (1, 2). CML was
the first human malignant disease to be linked to a chromosomal
abnormality. A translocation between chromosomes 9q34 and
22q11 generates the Philadelphia chromosome. This encodes the
BCR/ABL1 oncoprotein, an active tyrosine kinase protein that is
the main driver of CML pathogenesis (2, 3). There have been
great developments and improvements in anticancer targeted
therapy associated with CML (4). Imatinib was the first member
of a class of small molecules that prevent tyrosine kinase activity
to be developed, and acts by binding to the BCR-ABL1 protein.
Tyrosine kinase inhibitors (TKIs) act upon the interaction
between the BCR-ABL1 oncoprotein and ATP, blocking cellular
proliferation of the malignant clone. However, ∼2% of patients
become resistant to TKIs. Allogeneic-hematopoietic stem cell
transplantation (allo-HSCT) is the only curative treatment for
CML and provides an important alternative for TKI-resistant or
advanced phase CML patients (2). However, the mortality and
morbidity of this method, as well as a lack of suitable donors,
limits the application of allo-HSCT (5).

The natural course of CML begins in the chronic phase and
progresses to the blast phase, passing through the accelerated
phase. The transformation mechanisms involved with this
process are varied and not yet fully understood. The interruption
of differentiation, genomic instability, shortening of telomeres,
and loss of tumor suppressor functions are among the steps of
this transformation that have already been described (6, 7).

Recent advancements in gene expression profiling technology
have demonstrated that microRNAs (miRNAs) are promising
prognostic predictors of different types of cancers. miRNAs,
which modulate post-transcriptional gene expression, are 18–
25-nucleotide non-coding RNAs (8–10). They regulate gene
expression and modify cancer processes such as differentiation,
proliferation, and apoptosis. Previous studies have suggested
that miRNAs play important roles in regulating angiogenesis
and metastasis (11, 12). Additionally, miRNAs are very stable
molecules in the blood, suggesting that they can be applied as
molecular markers (13).

Bioinformatics is an important research approach that can
be applied for understanding gene regulation pathways. Cancer
bioinformatics is an emerging field that integrates knowledge
from cancer and information technology. Integrating cancer
research and bioinformatics is important for advancing the
diagnosis, prognosis, and treatment of cancer (14). Additionally,
bioinformatics analyses have contributed to the identification of
candidate genes and miRNA-mRNA target pairs (15).

This study was conducted to determine the profiles ofmiRNAs
and their target genes in CML patients treated with allo-HSCT.
These profiles were then compared to those of a newly diagnosed
and untreated patient group.

PATIENTS AND METHODS

The study was previously approved by the Research Ethics
Committee of the Dr. Amaral Carvalho Hospital, Jahu, SP, Brazil

(CEPHAC-−2.917.389). The patients provided informed consent
to participate in the study, in accordance with the Declaration
of Helsinki.

Patients and Samples
A total of 28 patients diagnosed with chronic phase-CML and
treated at the Dr. Amaral Carvalho Hospital were included in
the study. The patients were separated into two groups: (1)
14 patients newly diagnosed with Philadelphia chromosome-
positive (Ph+) CML who had not been treated with TKIs; and
(2) 14 patients who achieved complete cytogenetic remission
(Philadelphia chromosome-negative) post-allo-HSCT. Patient
characteristics are described in Table 1. The present study used
a leukocyte pool of 14 healthy blood donors as a control
group. To determine the miRNA profiles of each patient group,
the control group was compared to the patient groups to
determine which miRNAs were upregulated or downregulated.
All transplanted patients received BuCy-2 as a conditioning
regimen and cyclosporine and methotrexate as graft-vs.-host
disease prophylaxis (16, 17).

Total RNA Isolation and RT-qPCR
Total RNA isolation was performed using a QIAamp R© RNA
Blood Mini Kit (QIAGEN, Hilden, Germany) with 5mL
peripheral blood. RNA integrity and quantity were evaluated by
NanoDrop (Thermo Scientific, Waltham, MA, USA) and RNA
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)
according to the manufacturer’s instructions.

The total RNA was reverse-transcribed using a Taqman
MicroRNA Reverse Transcription Kit, and a TaqManTM

MGB probe was used for real-time qPCR according to the
manufacturer’s instructions. RT-qPCR and TaqMan R© Low
Density Array Human MicroRNA Arrays A v2.0 and B v3.0
(ABIV R©, Life Technologies, Carlsbad, CA, USA) were performed
on a ViiA7 platform (ABIV R©) following the manufacturer’s
instructions. miRNAs were quantified using the comparative Ct-
method (18). Each Human Pool Set contains 377 unique human
miRNAs, three internal controls, and one negative control. A
total of 758 miRNAs were analyzed.

Bioinformatic Analysis
The study followed the experimental procedure detailed in
Figure 1. Expression Suite Software Version 1.1 Program was
used to identify differentially expressed miRNAs. To identify
possible differentially expressed miRNA targets, we conducted
RT-qPCR using miRWalk 2.0, which includes target prediction
data generated by different algorithms (including own algorithm)
(19). The following algorithms were selected: miRWalk, miRDB,
Micro T4, miRanda, RNAhybrid, and Targetscan. Only targets
predicted by at least three of the selected algorithms were
accepted. We then verified whether the predicted targets have
been identified as being differentially expressed in CML using
microarray data available from Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo), accession number GSE
43225. Microarray data were analyzed using the GEO2R script
(https://www.ncbi.nlm.nih.gov/geo/geo2r/).
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TABLE 1 | Patient clinical data.

Patient Gender Age BCR-ABL (%) Breakpoint

Untreated group

1 M 61 92 b2a2

2 M 52 100 b2a2

3 M 35 100 b2a2

4 F 54 100 b2a2

5 M 46 73 b3a2

6 M 72 100 b2a2

7 F 80 100 b3a2

8 M 67 100 b3a2

9 M 59 40 b2a2

10 M 60 82 b2+b3

11 F 52 100 b3a2

12 M 37 100 b3a2

13 F 53 100 b3a2

14 M 72 100 b3a2

Patients Gender Age HSCT indication Source DAT BCR-ABL (%) Breakpoint Mutation Follow up

Hematopoietic stem cell transplantation group

1 M 37 Disease progression BM 224 1.60 b2a2 Absence Relapsed

2 F 44 Failed therapy BM 231 1,20 b3a2 Absence Relapsed

3 F 03 Disease progression BM 208 0.20 b3a2 _ Relapsed

4 F 63 FC BM 1569 0.20 b3a2 Absence Relapsed

5 M 37 Failed therapy BM 110 0.50 b2a2 _ Relapsed

6 M 43 FC BM 2450 0.30 b3a2 _ MMR

7 M 48 Disease progression PBSC 80 0.75 b3a2 Absence MMR

8 M 35 Failed therapy BM 2352 0.03 b3a2 Absence Relapsed

9 M 42 Failed therapy PBSC 3561 0.01 b2a2 _ Relapsed

10 F 42 Disease progression PBSC 3708 0.01 b3a2 _ MMR

11 F 56 FC BM 3932 0.03 b2a2 Absence MMR

12 M 32 FC PBSC 3242 0.08 b2a2 _ Relapsed

13 M 21 FC BM 1949 0.30 b3a2 Absence Relapsed

14 M 58 Disease progression BM 41 0.02 b2a2 _ MMR

DAT, days after transplantation; BM, bone marrow; PBSC, peripheral blood stem cell; (-), BCR-ABL mutation test was not performed; MMR, Major molecular response (BCR-ABL1

transcript level ≤ 0.1%).

FIGURE 1 | Flowchart showing the experimental procedure.
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TABLE 2 | Dysregulated miRNAs in chronic myeloid leukemia.

miR miRBase ID FC P-value

hsa-miR-1260a MIMAT0005911 0.013 0.000

hsa-miR-27a-3p MIMAT0000084 0.082 0.000

hsa-miR-140-3p MIMAT0004597 0.083 0.000

mmu-miR-374b-5p MIMAT0003727 0.105 0.000

hsa-miR-143-3p MIMAT0000435 0.150 0.000

hsa-miR-181c-5p MIMAT0000258 0.159 0.000

hsa-miR-26b-5p MIMAT0000083 0.160 0.000

hsa-miR-212-3p MIMAT0000269 0.164 0.000

hsa-miR-29c-3p MIMAT0000681 0.172 0.000

hsa-miR-26a-1-3p MIMAT0004499 0.180 0.000

hsa-miR-181a-5p MIMAT0000256 0.189 0.000

hsa-miR-19a-3p MIMAT0000073 0.224 0.008

hsa-miR-363-3p MIMAT0000707 0.243 0.001

hsa-miR-30d-5p MIMAT0000245 0.252 0.000

hsa-miR-10a-5p MIMAT0000253 0.259 0.014

hsa-miR-29a-3p MIMAT0000086 0.291 0.000

hsa-miR-16-5p MIMAT0000069 0.291 0.002

hsa-miR-486-5p MIMAT0002177 0.292 0.029

hsa-miR-345-5p MIMAT0000772 0.310 0.000

hsa-miR-26a-5p MIMAT0000082 0.318 0.000

hsa-miR-18a-3p MIMAT0002891 0.329 0.000

hsa-miR-27b-3p MIMAT0000419 0.331 0.003

hsa-miR-374a-5p MIMAT0000727 0.343 0.009

hsa-miR-362-5p MIMAT0000705 0.350 0.000

hsa-let-7g-5p MIMAT0000414 0.402 0.000

hsa-miR-324-3p MIMAT0000762 0.417 0.000

hsa-miR-550a-5p MIMAT0004800 0.417 0.003

hsa-miR-125a-3p MIMAT0004602 0.444 0.046

hsa-miR-106b-5p MIMAT0000680 0.477 0.001

hsa-miR-191-5p MIMAT0000440 0.496 0.000

hsa-miR-15b-3p MIMAT0004586 2.005 0.039

hsa-miR-328-3p MIMAT0000752 2.179 0.013

hsa-miR-222-3p MIMAT0000279 2.233 0.000

hsa-miR-139-5p MIMAT0000250 2.338 0.039

hsa-miR-92a-3p MIMAT0000092 2.492 0.002

hsa-miR-628-3p MIMAT0003297 2.589 0.010

hsa-miR-150-5p MIMAT0000451 2.748 0.034

hsa-miR-574-3p MIMAT0003239 2.764 0.001

hsa-miR-484 MIMAT0002174 2.820 0.000

hsa-miR-127-3p MIMAT0000446 3.969 0.007

hsa-miR-146a-5p MIMAT0000449 3.973 0.000

hsa-miR-193a-5p MIMAT0004614 4.513 0.000

hsa-miR-342-3p MIMAT0000753 5.070 0.000

hsa-miR-7-1-3p MIMAT0004553 5.650 0.000

mmu-miR-134-5p MIMAT0000146 6.473 0.002

hsa-miR-409-3p MIMAT0001639 10.905 0.004

FC, fold-change; miR, microRNA.

We considered genes to be differentially expressed when
they showed a fold-change of at least 1.5. Gene Ontology (GO)
(http://www.geneontology.org/) was used to search for enriched
terms among differentially expressed genes, accepting only terms
with P ≤ 0.05 and using Bonferroni’s correction. Differentially
expressed genes related to upregulated and downregulated

miRNAs were analyzed according to EnrichR (https://amp.
pharm.mssm.edu/Enrichr/) for enrichment analysis. Reactome
was used for analysis. To assess the protein-protein interaction
(PPI) network based on a list of genes, the online tool STRING
Version 11.0 (https://string-db.org/) was utilized. Experiments,
databases, co-expression data, neighborhood, and co-occurrence
were considered active interaction sources. The minimum
required interaction score was 0.700. Finally, we used Cytoscape
Version 3.8.0 (http://www.cytoscape.org) software to visualize
the enrichment results. Network nodes represent genes, while
edges represent protein-protein associations.

Statistical Analysis
Comparative CT analysis was used to quantify miRNA gene
expression. The differences were estimated by Student’s t-test.
Values of P < 0.05 were considered statistically significant.

RESULTS

Differentially Expressed miRNAs
The miRNA expression data set is available in the NCBI GEO
database (accession number GSE 148567). A total of 758miRNAs
were analyzed by RT-qPCR in peripheral blood samples from
14 newly diagnosed patients and untreated chronic phase CML
patients, and 14 patients in cytogenetic remission after allo-
HSCT. According to the cut-off criteria (fold-change ≤ 0.5
and fold-change ≥ 2.0), 46 differentially expressed miRNAs
were identified. Sixteen (34.8%) miRNAs were upregulated, and
thirty (65.2%) were downregulated (Table 2). Among them, miR-
1260a was the most downregulated miRNA, whereas miR-409-
3p was the most upregulated miRNA. The main functions of all
differentially expressed miRNAs are listed in Table 3.

MiRNA Target Genes
Upregulated and downregulated miRNAs were analyzed in
miRWalk to identify the miRNA target genes. Using microarray
analysis, 1,069 genes were identified.

Gene Expression
We evaluated whether the identified target genes were previously
differentially expressed in CML using available microarray
data in the Gene Expression Omnibus. The microarray data
were analyzed using GEO2R script. The identified genes
were compared to our results. Of the 822 genes related to
downregulated miRNA, 789 (96%) were also identified among
the Gene Expression Omnibus microarray data genes. Among
the genes associated with upregulated miRNAs, 247 genes were
found in the patients included in the experiment, and 234 (95%)
were found in the data searched.

Pathway Enrichment Analysis and PPI
Network Construction
GO analysis (including Molecular Function, Biological Process
and Cellular Component) was performed on 1,069 target genes.
A total of 461 results were obtained fromGO analysis. The top 30
terms are shown in Figure 2.
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TABLE 3 | Functions of dysregulated miRNAs in chronic myeloid leukemia.

miR Name Dysregulation in cancer References

hsa-miR-1260a Down-regulated in follicular B-cell

lymphoma

(20)

hsa-miR-27a-3p Involved in tumor growth: cell proliferation

and cell invasion

(21)

hsa-miR-140-3p Chemoresistance in osteosarcoma and

colon cancer

(22)

mmu-miR-374b-5p Inhibits cell migration, proliferation and

invasion in cervical cancer

(23)

hsa-miR-143-3p Low expression level contributes to tumor

development, differentiation, proliferation,

invasion and metastasis

(24)

hsa-miR-181c-5p Inhibits chemoresistance in chronic

myelocytic leukemia

(25)

hsa-miR-26b-5p Down-regulated in breast cancer (26)

hsa-miR-212-3p Inhibits cell proliferation and promotes

apoptosis

(27)

hsa-miR-29c-3p Deregulated in hematological malignances (28)

hsa-miR-26a-1-3p Tumor suppressor (29)

hsa-miR-181a-5p Downregulation in resistance to imatinib (30, 31)

hsa-miR-19a-3p Potential biomarker for CML (32)

hsa-miR-363-3p Tumor suppressor in gastric cancer (33)

hsa-miR-30d-5p Downregulation in resistance to imatinib (30, 31)

hsa-miR-10a-5p Biomarker of drug response in CML (34)

hsa-miR-29a-3p Deregulated in hematological malignances (28)

hsa-miR-16-5p Regulation of cell cycle and apoptosis in

myeloid leukemogenesis

(35)

hsa-miR-486-5p Expression increased in erythroid

differentiation in CML

(36)

hsa-miR-345-5p Tumor suppressor in pancreatic cancer (37)

hsa-miR-26a-5p Tumor suppressor (29)

hsa-miR-18a-3p Potential biomarker for CML (32)

hsa-miR-27b-3p Oncogene; expression increased in

lymphoma

(38)

hsa-miR-374a-5p Promotes proliferation and migration of

transformed mesenchymal stem cells

(39)

hsa-miR-362-5p Induces apoptosis resistance and cell

proliferation in gastric cancer

(40)

hsa-let-7g-5p Downregulated in Burkitt’s lymphoma (41)

hsa-miR-324-3p Overexpression promotes cell growth and

decreases apoptosis

(42)

hsa-miR-550a-5p Tumor suppressor (43)

hsa-miR-125a-3p Induces apoptosis in pancreatic cancer (44)

hsa-miR-106b-5p Inhibits metastasis and invasion colorectal

cancer cells

(45)

hsa-miR-191-5p Disregulated in human gliobastoma tissues (46)

hsa-miR-15b-3p High expression in poor prognosis for

hepatocellular carcinoma

(47)

hsa-miR-328-3p CML progression (48)

hsa-miR-222-3p Cancer development as oncomiR or as

oncosuppressor

(49)

hsa-miR-139-5p Antimetastic and anti-oncogenic activity (50)

hsa-miR-92a-3p Higher levels in acute myeloid leukemia

and acute lymphoblastic leukemia

(51)

hsa-miR-628-3p Inhibits proliferation of acute myeloid

leukemia cells

(52, 53)

(Continued)

TABLE 3 | Continued

miR Name Dysregulation in cancer References

hsa-miR-150-5p CML progression; CML biomarker (54)

hsa-miR-574-3p Tumor suppressor in ovarian cancer (55)

hsa-miR-484 Highly expressed in breast cancer patients (56)

hsa-miR-127-3p Tumor suppressors in gastric cancer (57)

hsa-miR-146a-5p Development and maintenance of

neoplastic processes

(58)

hsa-miR-193a-5p Low expression in lung cancer (59)

hsa-miR-342-3p Suppresses acute myeloid leukemia cell

proliferation

(60)

hsa-miR-7-1-3p Up-regulated in metastatic prostate cancer (61)

mmu-miR-134-5p Cancer cell proliferation (62)

hsa-miR-409-3p Tumor suppressor in endometrial

carcinoma cells

(63)

Fc, fold change; miR, microRNA.

EnrichR is a free web-based gene signature search tool.
It was used to evaluate the 247 target genes of upregulated
miRNAs, among which 573 terms were identified. Among
the 822 target genes of downregulated miRNAs, 1,017 terms
were found. EnrichR provides a visualization summary of
the pathways based on a collective gene function list. The
free pathway database tool Reactome is available for online
use, and provides biological interpretation and visualization
models for network analysis. STRING analysis was performed
on the target genes of upregulated miRNAs (Figure 3) and
downregulated miRNAs (Figure 4). The results were visualized
using Cytoscape.

DISCUSSION

Differentially Expressed miRNAs
MiRNAs can act as oncogenes or tumor suppressor genes in
CML, contributing to the pathogenesis, disease progression, and
therapeutic responses (1, 52). Following the advent of TKIs as
specific target drugs, hematopoietic stem cell transplantation
began to play an important role in treating CML patients that
are in the disease phase or are resistant to TKIs. This study
investigated the miRNA profile of a group of 14 CML patients
treated with allo-HSCT, who were in complete cytogenetic
remission at the time of sample collection. Among the evaluated
group, five patients underwent transplantation due to disease
progression (patients 1, 3, 7, 10, and 14) and four others
underwent transplantation due to a failed therapeutic response
(patients 2, 5, 8, and 9). These comprised a total of 64.3% of the
evaluated patients.

miR-10a
MiR-10a has been extensively studied due to its
potential as a CML marker. Flamant et al. suggested
the relevance of miR-10a as a drug response biomarker.
By means of microarray analysis, a significant increase
in miR-10a was observed in patient samples 2 weeks
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FIGURE 2 | Ontology analysis of differentially expressed genes in CML patient blood samples, performed to determine the main altered pathways. Horizontal bars

represent the number of genes found in each term. The fold-enrichment and P-values are displayed on the sides of the horizontal bars, and are separated by a

vertical line.

post-imatinib treatment (34). miR-10a downregulation
was also detected in the transplanted patient group in the
present study.

miR-17/92 Cluster
The miR-17/92 cluster is another potential biomarker for CML
progression, and may be detected from the chronic phase to
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FIGURE 3 | Protein-protein interaction network analysis of the target genes of upregulated miRNAs. Gene interactions were constructed using the STRING online

database and Cytoscape. Network nodes represent genes, and the edges represent protein-protein associations.

the blastic phase. This cluster is comprised of miR-17, miR18a,
miR-19a, miR19b-1, miR20a, and miR92a-1 (32). In our study, a
downregulation in the expression of miR-18a and miR-19a was
observed, both of which are present in this cluster.

miR-328 and miR150
miR-328 and miR-150 are also related to disease progression
(32, 48, 54, 64). Eiring et al. (48) have previously demonstrated
the loss of miR-328 in blastic crisis CD34+ cells, which did
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FIGURE 4 | Protein-protein interaction network analysis of the target genes of downregulated microRNAs. Gene interactions were constructed using the STRING

online database and Cytoscape. Network nodes represent genes, and the edges represent protein-protein associations.

not otherwise occur in chronic phase CD34+ myeloid cells.
Poláková et al. (52) detected a negative correlation between the
levels of BCR-ABL transcript andmiR-150, further substantiating

previous findings by Agirre et al. (64) and Fallah et al. (54)
suggested that the downregulation of miR-150 is a potential
diagnostic marker of CML. RT-PCR was performed for 50
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samples from patients newly diagnosed with CML, revealing a
downregulation in miR-150. In our study, both miRNAs were
found to be upregulated, suggesting that miR-328 and miR-150
are useful as molecular biomarkers of the treatment response.

miR-486
The results of previous studies have also suggested miR-
486 as an effective treatment response marker. Wang et al.
compared miRNA expression in normal human CD34+ cells
with that in CML CD34+ cells, using human leukemia cell
lines and CD34+ cells isolated from chronic phase CML
patients who had not been treated with imatinib. The results
showed that miR-486 was overexpressed in CML cells, especially
in megakaryocytes and erythroid progenitor cells (36). In
our study, miR-486 was downregulated, further suggesting
the potential of this miRNA to act as a biomarker of the
treatment response.

miR-181c and miR-30
According to studies carried out in the K562 cell line, miR-181c,
and miR-30 downregulation is related to imatinib resistance
(30, 31). Yu et al. demonstrated that the downregulation of
miR-30 in this CML cell line was related to the autophagy
process and imatinib resistance mechanisms (30, 31).
These results were reflected in the current study, with
our findings demonstrating that miR-181c and miR-30
were downregulated.

Let-7g and miR-16
Let-7a and miR-16 also have important functions in myeloid
leukemogenesis, such as regulating the cell cycle and apoptosis.
Let-7a regulates oncogenes such as RAS and HMGA, while
Mir-16 targets MCL1, BCL2, WNT3A, and CCNDI (35). Let-
7a is also a member of the let-7 family, and it has been
found that it may suppress CML via CRKL (20). Zuo et al.
(35) examined the plasma levels of miR-16 and let-7a in a
group of 50 patients with myelodysplastic syndrome (MDS).
After comparing these results with those from a group of
76 healthy donors, it was found that both miRNAs were
significantly lower in MDS patients than in healthy controls.
In the present study, we found that let-7g and miR-16
were downregulated.

Pathway Enrichment Analysis and PPI
Network Construction
In the analysis conducted using STRING and EnrichR, it
was possible to determine which pathways were enriched
by observing the target genes of unregulated miRNAs.
Through our analysis, we found that MAPK, NRAS,
KRAS, and ROCK had important functions related to CML
regulation pathways.

The mitogen-activated protein kinase (MAPK) pathway is an
important signaling cascade in several types of cancer, including
CML (65). This pathway controls fundamental cellular processes
such as cell proliferation, migration, growth, differentiation, and
death (66). The MAPK pathway therefore plays a fundamental

role in cell growth and survival, and irregularities in this pathway
can lead to cells developing cancerous properties. This may
include exacerbated cell proliferation, metastasis, and evasion of
apoptosis (67).

RAS proteins are involved in signal transduction, and
are mutated in different types of human cancer. The RAS
family comprises three genes associated with carcinogenesis:
HRAS, KRAS, and NRAS (68). These three genes encode
a protein located on the inner cell membrane, which has
GTPase activity. This protein participates in extracellular signal
transduction into the cell, and the signal is transmitted by
a cascade of kinases. As a result, MAPK is activated, which
then activates transcription factors. Mutations in the RAS
genes in human cancer inhibit GTP hydrolysis, and mutated
RAS proteins remain in their GTP-linked active form. This,
leads to disordered cell proliferation (69). KRAS and NRAS
mutations are frequently found in myeloid disorders, including
CML (70).

ROCK proteins perform different functions in cells. They are
involved in organization of the actin cytoskeleton, human tumor
pathogenesis, and in the signaling pathways that lead to cell
proliferation. The RAS and ROCK pathways are interconnected,
with RAS activating PI3K, which then activates the ROCK
pathway. This interaction network can lead to continuous cell
proliferation and survival (68).

The MAPK, RAS, and ROCK genes had increased expression
in the patient group of our study. As these genes are involved in
cell proliferation during leukemogenesis, it can be concluded that
these genes play an important role in post-transplant evolution.
Nine of the 14 patients (64.3%) had leukemia relapse, and the
other five (35.7%) did not achieve a deep molecular response
(BCR-ABL transcript level ≤ 0.01%).

This study explored miRNAs in CML patients and their
target genes, and analyzed the pathways involved. Our
study was based on original and clinical samples. However,
as there were scarce samples available and these were
insufficient to validate the 46 altered miRNAS, the study
was limited by this factor. The bioinformatics analyses predicted
interactions that require further biological validation before their
therapeutic application.

Despite the small sample size, these findings showed that
aggressive therapy such as transplantation did not alter the
disease course in these group of CML patients. Furthermore,
the demonstrated pattern of gene expression is suggestive of
disease progression.
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