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Many lymphoproliferative disorders (LPDs) are considered “EBV associated” based

on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via

expression of the viral latent genes and many pre-clinical and clinical studies have

shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After

a brief review of EBV virology and the natural life cycle within a host we will

discuss the importance of the viral gene programs expressed during specific viral

phases, as well as within immunocompetent vs. immunocompromised hosts and

corresponding EBV-associated LPDs. We will then review established and emerging

treatment approaches for EBV-associated LPDs based on EBV gene expression

programs. Patients with EBV-associated LPDs can have a poor performance status,

multiple comorbidities, and/or are immunocompromised from organ transplantation,

autoimmune disease, or other congenital or acquired immunodeficiency making them

poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of

EBV-directed therapy there is hope that we can devise more effective therapies that

confer milder toxicity.

Keywords: EBV (Epstein-Barr virus), EBV-associated cancers, Lymphoproliferative disease (LPD), EBV latency,

viral life cycle inhibitors

INTRODUCTION

Epstein-Barr Virus (EBV), also called human herpesvirus 4 (HHV-4), is a lymphotropic
gamma-herpes virus that infects >90% of adults worldwide (1). EBV is defined by a discrete viral
life cycle with primary infection, latency, and lytic reactivation phases (2). There are two peaks
of EBV infection as measured by seroconversion, age 2–4 years and 15 years (3). In children the
primary infection may go undetected or present as an upper respiratory infection. In adults the
symptoms of primary infection can be more severe, leading to a syndrome known as infectious
mononucleosis. After primary infection the virus remains dormant in latency with memory B cells
serving as the primary reservoir for persistence (4). For the vast majority of individuals latent EBV
infection does not seem to have any serious health consequences. However, dysregulation of latency
or inability to control lytic infection can lead to the development of lymphoproliferative diseases
(LPDs) and lymphoma.

EBV was originally discovered in the context of African endemic Burkitt lymphoma (5, 6)
and is classified as a Class I carcinogen by the International Agency for Cancer Research
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(7). EBV-associated malignancies are well characterized in
individuals with suppressed immune systems such as after solid
organ transplantation or in the setting of HIV/AIDS but are also
recognized in patients without overt immunodeficiencies (8, 9).
EBV is associated with nearly all nasopharyngeal carcinoma
(NPC), approximately 10% of gastric carcinomas, 30–40% of
classical Hodgkin lymphoma, a subset of diffuse large B-cell
lymphoma (DLBCL), and other T/NK cell LPDs (8, 10–13).
After primary infection EBV latency is defined by distinct
gene expression programs (14–16). Viral latency is mediated
through promoter silencing, characterized by limited protein
expression, and categorized by four latency types (latency 0-
III) (17–19). Expanded knowledge around the manipulation of
DNA methylation and histone acetylation has led to a better
understanding of the virus’ ability to facilitate viral persistence in
healthy individuals (20, 21), alter transcription factor accessibility
(22, 23), silence tumor suppressor genes (24–26), and ultimately
potentiate tumor development and growth (27–29). In the first
part of our review we will discuss the regulation of the latent
and lytic phases of EBV. In the second part we will show how
researchers have capitalized on these mechanisms to target EBV
and treat associated malignancy. EBV may prove to be the
Achilles’ heel of EBV-associated tumorigenesis and targeting the
viral life cycle may help patients avoid toxic chemotherapeutics
and receive more tailored and effective therapy.

REGULATION OF EBV GENE EXPRESSION:

EBV latency is defined by a restricted, but variable protein
expression that is specific to the host cell type (e.g., lymphoid
or epithelial) or tumor origin. In vitro, B-cell immortalization
is mediated by the viral latency III program in which all six
EBV nuclear antigens (EBNAs 1, 2, 3A, 3B, 3C, and –LP), three
latent membrane proteins (LMPs 1, 2A, and 2B), and viral non-
coding RNAs (EBERs, miRNAs, and BARTs) are expressed and
lead to the establishment of lymphoblastoid cell lines (1). The
latency III program is the least restrictive latency type and is
seen in LPDs associated with immunosuppression such as AIDS-
associated DLBCL and post-transplant lymphoproliferative
diseases (PTLDs) (30). Latency II is defined by expression of
EBNA1, LMP1, and LMP2A/B and is most closely associated with
Hodgkin lymphoma, NPC, and T/NK cell lymphomas (31–34).
Only EBNA1 is expressed during latency I, which is associated
with Burkitt lymphoma, as well as gastric carcinoma (35, 36).
Latency 0 refers to the persistence of the viral genome in the
absence of viral gene expression, which is associated with non-
dividing memory B-cells (37).

The EBNA family of genes is among the viral genes
differentially regulated by epigenetic modification during EBV
latency. The six EBNA gene products expressed during the
latency III program are constructed from one extensively spliced
latency transcript. The EBV latency C promoter (Cp) is the
origin for transcription of the EBNA latency proteins (38). CpG
methylation of Cp plays an important role in regulating viral
latency and limiting viral gene expression in normal lymphocytes
and in certain malignancies including Burkitt, Hodgkin, AIDS

associated DLBCL, and NK cell lymphomas, as well as NPC (39–
42). During latent phase within the host cell the EBV genome
is maintained as a circular episome that undergoes replication
once per cycle, initiating from a region called oriP. EBNA1 is the
only viral protein required to replicate from oriP and segregate
the EBV episomal genomes in latency (43). EBNA1 has been
shown to be responsible for promoting and maintaining latency
(44). Compared to other EBV gene products EBNA1 is poorly
recognized by CD8+ T-lymphocytes (45). The down regulation
of the more immunogenic EBNA antigens (EBNA2, 3A-C),
LMP1, early lytic antigens, and lytic viral kinases contributes to
the virus’ ability to evade the immune system during latency (46).

EBNA2 is critical for the transformation of B-cells (47)
and is directly responsible for the initiation of transcription
of EBV proteins associated with latency III like LMP1 and
LMP2A/B (1, 48). EBNA2 is implicated in the Notch pathway,
which contributes to viral latency by downregulating LMP1
and preventing the expression of BZLF1 (49). EBNA2 has been
seen to target the c-Myc oncogene, which is important for
EBV-induced B-cell immortalization in vitro (50). The EBNA3
family of proteins are also involved in B-cell transformation and
essential for EBV persistence (51). EBNA2 and EBNA3 work
together to regulate the expression of cellular and viral gene
expression (52). EBNA3 may have a direct impact on progression
through the cell cycle disrupting G2/M checkpoint (53) and has
been shown to interact directly with human histone deacetylases
influencing epigenetic regulation (54, 55). The EBNA family of
proteins have been shown to work together in concert with
host cellular machinery to affect histone acetylation and DNA
methylation, directly impacting transcription of EBV related
proteins to maintain latency (56–59).

LMP 1 and LMP 2A/2B are found in latency II and latency III
EBV infected cells. LMP1 is essential for B lymphocyte growth
transformation and for the survival of EBV transformed B-
cells (60). LMP1 mimics CD40 signaling, which is a key B-cell
costimulatory receptor (61). LMP1 behaves as a prototypical
oncogene in vitro and is associated with upregulation of
antiapoptotic proteins (62, 63) and stimulation of cytokine
production (64). Specifically, constitutive activation of NF-kB
and mitogen-activated protein kinase (MAPK) are supported
by LMP1 and critical to lymphoblastoid cell line survival (65,
66). Knockdown of LMP1 downregulates NF-kB signaling and
induces apoptosis (67). Expression of LMP1 in transgenic mice
induces the development of B-cell lymphomas (68). LMP2A/B
support LMP1 functions, as well as suppress B-cell receptor
signaling (69). The inhibition of B-cell receptor signaling
regulates EBV latency by preventing B-cell differentiation to
plasma cells and effectively blocking the switch from latent to
lytic replication (70). LMP1 and LMP2A signaling can induce
expression of DNA methyltransferases (DNMT1, 3A, and 3B),
which impacts major cellular pathway signaling. PARP1mediates
EBV replication during latency and LMP1 has been shown to
alter expression of tumor-promoting genes by blocking histone
methylation via PARP1 activation (71). LMP1 and LMP2A
have been associated with hypermethylation and silencing of
the PTEN gene in gastric carcinoma (72, 73). LMP1 induces
the expression of the histone demethylase KDM6B, which has
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been associated with the pathogenesis of Hodgkin lymphoma
(74). LMP2A is also implicated in the development of Hodgkin
lymphoma via specific alterations in gene transcription (75).
These examples highlight how EBV machinery can subvert the
cell’s normal epigenetic mechanisms thereby promoting viral
latency and subsequent tumorigenesis.

EBV encodes many small non-coding RNAs (EBER1, EBER2,
and viral miRNAs) that are widely expressed in infected
cells (76, 77). Non-coding RNAs are expressed during all
forms of EBV latency and also during the lytic cycle (78).
Epigenetic manipulation by non-coding RNAs is thought to
occur via recruitment of host transcription factors and chromatin
regulators that modulate viral and host gene expression (79).
Recruitment and thus alterations to host gene expression is
mediated by viral RNA targeting of complementary sequences
on cellular mRNA (80, 81). For example, EBER2 has been
shown to target the B-cell transcription factor PAX5 via an
RNA:RNA interaction (82). EBER1 has been shown to increase
the expression of insulin growth factor-1 (IGF-1) and potentiate
cellular proliferation in EBV associated gastric cancer (83). In
fact, the EBERs, and in particular EBER1, have been shown
to contribute to lymphoid hyperplasia and lymphoma on their
own (84). There is evidence to suggest EBERs can increase IL-6
expression leading to the downstream activation of STAT3. This
interactionmay have a direct impact on host cell chemoresistance
and migration (85).

The viral miRNAs are differentially expressed depending on
the infected cell or tumor type. EBV miRNAs are involved
with early B-cell proliferation and suppression of apoptosis
(86, 87). The miRNAs are subdivided into two groups, Bam HI
fragment H rightward open reading frame I microRNAs (BHRF1
miRNAs) and Bam HI-A rightward transcripts microRNAs
(BART miRNAs), based on their locations (76, 88). The BARTs
are a group of stable viral RNAs represented in every EBV
infected cell type. Their expression is regulated by promoter
methylation and treatment with a DNA methyltransferase
increased the expression of BART miRNA transcripts (89). The
BART promoter region is hypomethylated in NPC, which may
explain why BART miRNAs are highly expressed in this tumor
type (90, 91). Whether the BART miRNAs are translated to
protein products remains controversial but is an important
area of research for targeting EBV in malignancy (90, 92,
93). Expression of EBV miRNAs has been observed in gastric
carcinoma (94), peripheral and cutaneous T-cell lymphoma (95–
97), B-cell lymphoma cell lines, and NPC EBV-infected cells
(76, 88) implicating EBV miRNAs in tumorigenesis.

When an EBV infected B-cell terminally differentiates to the
plasma cell lineage the virus activates the lytic cycle genes and
generates viral progeny (98). The switch from latency to the
lytic cycles is mediated by two viral transactivator proteins,
BZLF1 and BRLF1 (99). These two genes are influenced by DNA
methylation of the viral genome. BZLF1 binds to methylated
DNA and interacts with histone acetyltransferases to instigate
expression of lytic promoters (100, 101). Expression of BZLF1
leads to a cascade of over 80 EBV gene products that results in
viral replication and ultimately host-cell lysis. BRLF1 activates
some early lytic genes through a direct binding mechanism

(102, 103), while other gene activation is mediated through
interactions with cellular transcription factors (104). BRLF1
activates phosphatidylinositol 3 kinase (PI3K), which is required
for BRLF-mediated induction of lytic gene expression (105).
During reactivation in an immunocompetent host, EBV-primed
CD4+ and CD8+ memory T-cells can respond within hours
and destroy virally infected cells before viral replication is
finished (46). EBV expresses several gene products during lytic
reactivation to directly counteract the T-cell response. Expression
of BNLF2a, for example, prevents peptide presentation by MHC
class I molecules through direct inhibition of antigen processing
(106) and BGLF5, another lytic protein, augments the expression
of MHC class I and II molecules (107). In addition, these lytic
viral proteins can suppress pro-inflammatory cytokine release
and temper the innate immune response including natural killer
cell killing of EBV-infected B-cells (108).

This detailed knowledge of the viral life cycle provides
opportunities to target features of the virus that promote
lymphoproliferation. In the following section we will show
how treatment strategies have capitalized on this to target
EBV driven lymphoproliferation, thus providing novel treatment
options. Ultimately though, we expect and look forward to
future treatment approaches that will be more specific based
on the improved understanding of the viral life cycle, including
epigenetic modifications, outlined above.

EBV TARGETED THERAPY

The various patterns of viral gene expression in LPDs has
treatment ramifications (Table 1). For lymphomas like Burkitt
and classical Hodgkin only a small subset of the latent gene profile
is expressed offering limited and poorly immunogenic antigens to
target. Alternatively, EBV-associated LPDs that arise as a result of
immunosuppression generally express more gene products and
are thus susceptible to antiviral directed therapy and reduction
in immunosuppression, as is the case for EBV-associated PTLD
after solid organ transplantation (109). In tumor types like EBV-
associated PTLD or DLBCL with expanded viral protein motifs,
constitutive activation of lytic proteins, such as viral thymidine
kinases (vTKs) BXLF1 and BGLF4, has been demonstrated
(110–113). Activation in vTKs result in phosphorylation of the
nucleoside analogs ganciclovir (GCV), acyclovir, and zidovudine
(AZT) (114–116). As a result, these antivirals can be effective
in tumor types that demonstrate constitutive activation of lytic
phase proteins; however, they are inactive against latent infection
since there is no expression of the lytic kinases. There has been an
evolving interest in developing techniques for inducing the lytic
phase of the virus, sometimes referred to as the “kick and kill”
strategy. In this scenario the virus is pushed into replicating so
that phosphorylation of the nucleoside analogs can occur.

The use of AZT and GCV in patients with
immunosuppression-related EBV-associated B-cell lymphoma
was originally investigated by the late Dr. William J. Harrington
at the University of Miami in the 1990s, based on in vitro
data showing that AZT and GCV additively induced apoptosis
in EBV+ cell lines (117) and on anecdotal reports of disease
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TABLE 1 | Latent viral protein expression patterns in EBV-associated malignancy.

Latency type Associated diseases EBV proteins expressed LMP1 LMP2 EBER/miRNA

EBNA1 EBNA2, 3A-C, LP

0 Burkitt Lymphoma – – – – +

I Burkitt Lymphoma + – – – +

Gastric carcinoma + – – (+) +

II Hodgkin’s Lymphoma + – + + +

NPC + – + + +

T/NK LPD + – + + +

EBV+ DLBCL, NOS + (+) + (+) +

III AIDS associated

DLBCL

+ + + + +

PTLD* + + + + +

DLBCL, diffuse large b-cell lymphoma; EBNA, EB viral nuclear antigen; EBV, Epstein-Barr virus; LMP, latent membrane protein; LPD, lymphoproliferative disorder; NPC, nasopharyngeal

carcinoma; PTLD, post-transplant lymphoproliferative disorder.

* including lymphomatoid granulomatosis variant.

(), variable expression.

regression in patients with HIV-associated lymphomas after
exposure to AZT (118, 119). Harrington and colleagues reported
rapid clinical responses in 4 of 5 patients using a regimen of
intravenous AZT, GCV and interleukin (IL)-2 for 2–3 weeks,
without any antineoplastic chemotherapy or radiation (117).
This regimen was adopted by the AIDs Malignancy Consortium
in a prospective study (AMC-019, NCT00006264) (120), and
in 1998 a Phase II clinical trial of the AZT/GCV combination,
based on the Harrington schedule, was opened for patients with
primary CNS PTLD, a B-cell neoplasm that shares a number
of clinical and biologic features with HIV-associated PCNSL,
including near universal association with EBV, inconsistent
response to immune restoration, and poor prognosis (121).
The original Harrington regimen was amended to eliminate use
of IL-2 in recipients of solid organ transplant and to include
an extended 2-year maintenance phase or oral AZT and GCV
following the initial intravenous 14-day “induction” phase. The
Phase II trial was eventually closed due to difficulties with accrual
associated in part with the rarity of the indication and with the
severity and acuity of the target population.

Other strategies have been employed to induce the lytic
phase of the EBV lifecycle and make the associated malignancies
susceptible to antiviral therapy regardless of latency subtype.
Preclinical studies have shown that pharmacologic induction
with dexamethasone and rituximab induces lytic protein
expression and renders EBV infected B-lymphocytes sensitive
to ganciclovir (122). In a phase I/II study investigating EBV
lytic induction in nasopharyngeal carcinoma, patients were given
a combination of gemcitabine and valproic acid to induce
lytic gene expression and then treated with valganciclovir. The
authors were able to demonstrate safety of this regimen, as
well as increases in EBV-DNA loads in the blood (123). Other
chemotherapies like 5-fluororuacil, platinum agents, or paclitaxel
in conjunction with antiviral medication have also induced
lytic activation and increased sensitivity to antiviral therapy
in NPC (124). Aspirin can induce lytic gene expression via

suppression of NF-kB, which allows downregulation of LMP1
and subsequent expression of BZLF1. Treatment of EBV+ cells
in vitrowith aspirin and ganciclovir shows significantly improved
cytotoxic effect than with either drug alone (125). In many cases
investigators have been able to show synergistic effects between
traditional chemotherapies and antiviral therapies, as well as
increased levels of viral DNA in blood. Clinically, these patients
seem to have transient and/ormoderate side effects and improved
quality of life, which are important benchmarks for a patient
population whom would not have tolerated traditional high dose
chemotherapy and radiation.

Exposure of latently infected B-cells in vitro to histone
deacetylase inhibitors (HDACi) alters the promoter sequences
or disrupts the gene silencing of BZLF1 and BRLF1 genes
thereby inducing lytic reactivation (126). Support for this
approach was first demonstrated in a lung transplant recipient
with an EBV-associated immunoblastic lymphoma 4 months
following transplantation (127). Based on work demonstrating
that butyrate congeners could induce EBV lytic genes, including
vTKs (128, 129), a cell line derived from the patient’s tumor
was exposed to arginine butyrate resulting in induction of EBV
TK transcription. The combination of arginine butyrate and
ganciclovir resulted in inhibition of cell proliferation and cell
death. Arginine butyrate was added to the patient’s existing
treatment with ganciclovir with no apparent increase in toxicity.
Though the patient succumbed to a systemic aspergillus infection
that had preceded the administration of arginine butyrate
therapy, pathologic examination of the tumor demonstrated
substantial necrosis compared to pre-therapy histology (127).
Additional support for the use of an HDAC inhibitor to
sensitize EBV infected tumor cells to nucleoside antivirals
was demonstrated in a phase I/II trial of arginine butyrate
combined with ganciclovir in 15 patients with EBV-associated
LPDs previously treated with chemotherapy and/or radiation
(130). Arginine butyrate was administered by daily continuous
IV infusion on an escalating dose schedule for 21 days of a
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TABLE 2 | Clinical trials targeting EBV in malignancy.

Category Intervention Drug class Indication Phase Status Identifier

Lytic

Induction

VRx-3996

Valganciclovir

HDACi

Antiviral

R/R EBV+ lymphomas 1b/2 Recruiting NCT03397706

Doxorubicin + MTX

Zidovudine +

Hydroxyurea

Cytotoxic

Antiviral

Antimetabolite

R/R EBV+ lymphomas

PTLD

II Completed NCT01964755

LBH589

RAD001

HDACi

mTOR inhibitor

NPC, EBV+

lymphomas, any EBV+

solid tumor

1b/2 Active, not

recruiting

NCT01341834

Epigenetic

manipulation

Vorinostat Azacitadine HDACi Hypomethylator NPC, Extranodal nasal

NK/T cell lymphoma

1 Active, not

recruiting

NCT00336063

CTL GRALE CTL LMP, BARF1, EBNA1 EBV+ Lymphomas

T/NK LPD

CAEBV

1 Recruiting NCT01555892

LMP1/2 CTL LMP1/2 EBV+ Lymphomas

T/NK LPD

CAEBV

Leiomysarcoma

1 Recruiting NCT01956084

MABEL CTL LMP, BARF-1, EBNA1 EBV+ Lymphomas

T/NK LPD

CAEBV

1 Recruiting NCT02287311

PBTLs and EBV-CTLs CD19-CD28

EBV-specific

R/R low or int grade

B-cell lymphoma

or B-CLL

1 Active, not

recruiting

NCT00709033

CMD-003 EBV-specific EBV+ Extranodal

NK/T-cell lymphoma

2 Recruiting NCT01948180

CAEBV, chronic active epstein-barr virus; CTL, cytotoxic T-lymphocyte; EBV, Epstein-Barr virus; HDACi, histone deacetylase inhibitor; LPD, lymphoproliferative disease; MTX,

methotrexate; NPC, nasopharyngeal caricinoma; R/R, relpase/refractory.

28-day treatment course, combined with a fixed dose of daily
continuous ganciclovir. Eleven patients received at least 28
days of arginine butyrate and ganciclovir, and all 15 patients
were evaluable for response. Significant antitumor activity was
seen in 10 patients, with 4 complete responses (CRs) and 6
partial responses (PRs). Several HDAC inhibitors in addition
to arginine butyrate can induce expression of EBV lytic phase
genes in vitro, leading to the sensitization of EBV infected
lymphoma cells to nucleoside antivirals (127, 131). Ongoing
studies are evaluating the ability of HDAC inhibitors to sensitize
EBV infected lymphoma cells, irrespective of latency subtype, to
ganciclovir in vivo (NCT0339770).

As discussed, CpG promoter methylation is used by EBV
to silence lytic phase genes and promote latency. CpG
methylation can be reversed via pharmacologic demethylation
promoting the expression of EBV lytic genes in latently
infected cells. Drugs targeting this epigenetic mechanism include
the DNA hypomethylators 5-azacitadine and decitabine. 5-
azacitadine inhibits DNAmethyltransferase, reducesmethylation
of CpG promoter regions, and activates transcription of
EBNA2 (132). EBNA2 is directly associated with regulation
of the latency III program and transcription of proteins
LMP1 and LMP2A/B (1, 48) In one study, EBV promoter
methylation was evaluated in patients with NPC and AIDS
associated lymphomas before and after receiving 5-azacitadine.
The authors were able to demonstrate demethylation to
varying degrees in the latent and early lytic EBV promoters

evaluated (133). Reducing CpG methylation and stimulating
the more immunogenic EBV proteins may facilitate immune-
mediated destruction of the tumor cells and make them
sensitive to antiviral therapy. Ultimately, methylation of viral
DNA may become a clinically useful tool to characterize the
associated latency subtype and treat the corresponding associated
LPD (134).

Lastly, we would like to discuss the role of adoptive
T-cell immunotherapy. In a seropositive immunocompetent
person EBV is actively monitored by EBV-specific cytotoxic T-
lymphocytes (CTLs). In patients that are immunocompromised
either via iatrogenic means as in the case of organ transplantation
or via infectious means like HIV, EBV is permitted to
proliferate due to the depletion of these CTLs. Adoptive T-cell
immunotherapy involves infusing EBV-specific CTLs generated
in vitro with the aim of reconstituting the EBV immunity
and influence targeted destruction of EBV infected tumor
cells. Importantly, native T-cells are HLA-restricted meaning a
patient’s T-cell will only recognize antigen presented by HLA
molecules of their own allelic type. This has implications for
sourcing EBV-specific CTLs. For example, in bone marrow
transplant recipients PTLD is almost exclusively of donor origin,
so attempts have been made to treat PTLD in this scenario
with donor derived EBV-specific CTLs. Preparing non-specific
populations of CTLs (i.e., donor lymphocyte infusions) can have
serious consequences, such as graft vs. host disease, related to
the alloreactivity of T-lymphocytes (135). Severe and even fatal
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graft vs. host disease have been seen after administration of non-
specific allogeneic CTLs, which is why most new therapies use
polyclonal EBV-specific HLA matched CTL lines prepared in
vitro (136). In 1995 Rooney et al. introduced gene-modified EBV-
specific T-lymphocytes to allotransplant recipients with EBV-
associated LPDs. The authors showed that EBV-CTLs could
generate a CR without associated infusional complications (137).
In a total of 101 patients given EBV-CTLs for prophylaxis, none
of the patients developed an EBV-associated LPD and 11/13
patients with an EBV-associated LPD had a CR (138). The
majority of research on the clinical application of EBV-CTLs has
focused on PTLD given the immunogenicity of these tumors
and the full expression of EBV latency III antigens. In 2007
Bollard and colleagues showed that by increasing the frequency
of LMP2-specific CTLs responses in immunocompetent patients
were dramatically improved. They concluded that it was possible
to generate immune responses to weak tumor antigens like
LMP2 by in vitro manipulation of CTL antigen recognition
(139). In a 2014 study Bollard et al. looked at LMP1/2 specific
EBV-CTLs in patients with a variety of latency II associated
malignancy including Hodgkin lymphoma, DLBCL, T/NK cell
lymphomas, and NPC. Twenty-nine of 50 patients treated with
autologous CTLs in remission from high-risk or multiple-
relapsed disease had an EFS of 82% and 11 of 21 patients
treated with active disease experienced a CR (140). In a
another trial, patients with extranodal NK cell lymphoma were
given LMP1/2a specific CTLs and 9 of 10 patients showed
a sustained remission (141). There are multiple active trials
evaluating EBV-specific and EBV-antigen specific CTLs for use
in patients with EBV-associated LPDs (see Table 2 for a list
of trials).

Another T-cell mediated strategy that has shown some
promise in EBV-mediated malignancy involves checkpoint
blockade. EBV-infected lymphoma cells express the inhibitory
ligand PD-L1 (142). PD-L1 is also found in EBV-associated
gastric cancer (143) and T/NK-cell lymphomas (144). Green
et al. showed that EBV infection induced PD-L1 expression
in classical Hodgkin lymphoma (145). Preclinical work by
Ma et al. has shown that inhibition of PD-1 and CTLA-4
dramatically reduces lymphomas induced by EBV in a mouse
model (142). The PD1 antibody pembrolizumab has been

effective in relapsed/refractory NK cell lymphomas. In their
case series, Kwong et al. showed 5 of 7 patients retained

a CR after a median follow-up of 6 months after failing
l-asparaginase containing therapy (144). Research into the
role of checkpoint inhibitors in EBV-mediated malignancy is
ongoing (NCT03586024). Combinations of checkpoint inhibitors
with lytic induction may prove to be a promising strategy
in the future.

FUTURE DIRECTIONS

Induction of EBV from latency to the lytic phase of viral
replication has become an attractive method for treating
EBV mediated malignancy. As discussed and outlined in
Table 2, there are a variety of methods for achieving lytic
induction. The methods for induction range from traditional
chemotherapies to steroids to HDAC inhibitors. The optimal
method for inducing lytic activation has not yet been defined.
Many of the patients who receive EBV directed therapy
have multiple comorbidities, are immunosuppressed, and have
already received more traditional cytotoxic chemotherapy-
based regimens. Identifying the ideal regimen to induce lytic
reactivation and target EBV while reducing the degree of
treatment related morbidity and mortality associated with
traditional cytotoxic chemotherapy is an active area of research.
Combining antiviral targeted approaches with immune based
therapies that permit a functional adaptive immune system
(or an “off the shelf ” allogeneic CTL) may be a potentially
rational synergist approach. Perhaps combination of the “kick
and kill” approach with checkpoint blockade and/or CTLs (auto
or allo) will be a simultaneous or sequential treatment strategy of
the future.
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