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A novel method of skin segmentation is presented aimed to obtain as many pixels belonging to the real skin as possible. This
method is validated by experts in radiology. In addition, a biomechanical model of the breast, which considers the skin segmented
in this way, is constructed to study the influence of considering real skin in the simulation of the breast compression during an
X-ray mammography. The reaction forces of the plates are obtained and compared with the reaction forces obtained using classical
methods that model the skin as a 2D membranes that cover all the breast. The results of this work show that, in most of the cases,
the method of skin segmentation is accurate and that real skin should be considered in the simulation of the breast compression
during the X-ray mammographies.

1. Introduction

Currently, the most common imaging modalities used to
diagnose breast cancer is the X-ray mammography, magnetic
resonance imaging (MRI), and ultrasound. Each imaging
modality displays the information of the breast tissues
differently. Researchers have found that a combination of
these imaging modalities leads to a more effective diagnosis
and management of the breast cancer [1]. However, an
accurate fusion of the information from different imaging
modalities is not trivial. This is not only due to differences
in the physics of each imaging modality, but also because the
internal tissues deform differently as a result of the differing
loading conditions applied during breast imaging [2]. For
example, the breast is compressed between two plates during
X-ray mammography whereas the breast is typically pendant
during MR imaging.

In the last decade, research has been focused on devel-
oping algorithms to fuse the information of the different

imaging modalities, which take into account the loading
conditions of the breast during the imaging procedure. Thus,
including realistic models of the breast deformation in these
algorithms has gained significant interest. A great number
of groups have proposed different biomechanical models of
the breast for different applications. Some groups have used
homogeneous models [3–7]. However, there are other groups
that, in searching for more realistic and accurate models,
have proposed heterogeneous models, that is, models that
take into account the three tissues of the breast. For
example, Ruiter et al. [8] tested different heterogeneous
model combinations (from linear to exponential) to register
MRI with X-ray mammograms, Kellner et al. [9] used a
linear elastic model for each tissue to simulate the mechanical
compression of the breast, del Palomar et al. [10] used a
neo-Hookean model for the fat and glandular tissues and
a Polynomial model for the skin tissue, aimed to study the
effect of gravity for surgical planning, and Tanner et al. [11]
applied a heterogeneous model consisting of linear elastic
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and exponential material models also for the register between
MRI and X-ray mammograms. Nevertheless, although these
models have considered the real fat and glandular tissues
obtained, for example, from an MRI or CT, none of them
have considered the real skin, but the skin has been approxi-
mated as a membrane of constant thickness which covers all
the breast.

To the authors’ knowledge, there are no studies that
compare significant differences when an approximate skin
or a more accurate one is used in the simulation of the
mammographic compression. While the distribution of fat
and dense tissues have been many times represented using
the finite element methods, modeling the influence of the
skin in the breast biomechanical models still requires further
investigation. The simplest options have involved modeling
the skin layer as additional 3D elements that surround
the internal tissue elements or coupling 2D membrane
(skin) elements to 3D fat/dense elements. However, the skin
obtained with these approximations is a constant surface
which does not take into account issues like widened skin due
to suspicious masses near skin area [12, 13] or a differentiated
nipple region. Therefore, there is a need to develop a
segmentation method for the skin able to remove the real
skin (i.e., the external tissue surrounding the breast) from
the rest of the breast. This method is aimed to let a correct
segmentation of the breast in order to construct an accurate
biomechanical model that can be used in the different sim-
ulations of the different imaging modalities.

In this paper, a novel method for a more accurate skin
segmentation is presented. This method will allow further
studies about the impact of accurate skin in biomechanical
models, dense/fatty tissue segmentation without skin inter-
ference, or accurate density breast analysis. In addition, a
biomechanical model of the breast, which considers the skin
segmented in this way, is constructed to study the influence
of considering real skin in the simulation of the breast
compression during an X-ray mammography.

2. Materials and Methods

2.1. Skin Segmentation. Breast MRI provides 3D images to
cover the whole breast and shows a good contrast between
the two major tissues (fatty and dense). Various studies [14–
16] have used this difference in signal intensities to separate
both tissues. However, there are some limitations. One
problem in the breast MRI segmentation is the confusion
between skin tissue and dense tissue due to the signal
intensities of both tissues are similar and can be easily
misclassified if they are not handled properly (Figure 1). The
impact of skin in breast MRI segmentation has been shortly
investigated, and it is shown that a correct skin removal
provides a better density measurement [17].

For this study, a total of 20 cases were segmented. For
every case, left and right breasts were segmented separately,
with a broad spectrum of breast densities and breast
sizes, excluding any case with significative abnormal masses
because they were out of the objectives of this work. Fifteen
different breasts were selected randomly for the evaluation

(a)

(b)

(c)

Figure 1: Different MRI (T1 with fat suppression, T1, T2) with skin
intensity level similar to dense tissue intensity level.

by three experts. MRIs were acquired using a Philips Achieva
1.5T scanner. Analyzed images were obtained with an axial
T2 TSE configuration with TR = 5000 ms, TE = 120 ms,
flip angle = 90◦, slice thickness was of 2 mm, image height
was 512 pixels, image width was 512 pixels, and the matrix
size was 448 × 512. T2 sequence displayed 80 slices with
high gray level values (white) for fatty tissues and low gray
level values (black) for dense and skin tissues due to the
time employed by hydrogen protons to offset after radio
frequency pulse. This sequence was used due to its ability to
display breast structures clearly (with less internal noise than
other sequences), its number of slices, and because it does
not employ any signal suppression to mask tissues. MRIs
were presented in a digital Imaging and communication in
medicine format (DICOM). Each DICOM image contained
80 slices with a separation of 2 mm and 65535 different gray
levels.

Skin segmentation process was formed by a sequence of
stages (Figure 2). In a first step, right and left breasts are
separated from axial zone and one from each other. An easy
and fast method to separate breast from axial zone is used
to search lowest middle point between both breasts (from all
slices) with a high gray level variation and to use that point
as a frontier. With the axial zone segmented, each breast can
be obtained deleting the right or left side of the image to get
left or right breast, respectively.

With both breasts separated one from each other and sep-
arated of the axial zone, its differentiation from background
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Figure 2: Skin segmentation process.

is handled. T2 MRIs have random noise surrounding breast
that may vary with each case: patient’s breathing, noise added
by the machine, and so forth. In order to “standardize” each
MRI, a curvature flow filter [18, 19] was implemented and
applied to images. Curvature flow performs edge-preserving
smoothing (similar as an anisotropic diffusion would do)
with a level set formulation [20–22]. The intensity contours
of an image are used as level sets, where each intensity pixel
value forms one level set; the resulting level set function
evolves under the control of a diffusion equation where the
speed is proportional to the contour’s curvature as (1) shows:

It = k|∇I|. (1)

In this equation, k is the curvature of the contour, It is
the level set, and ∇I is the image gradient. With this filter,

noise artifacts disappear quickly while large scale interfaces
evolve slowly. This slowly evolution allows preservation of
boundaries. Typical value for time step is 0.0625 in 3D
images and, for the number of iterations, is 10 (obtained
experimentally, above this number, there was a higher fi-
nalization time but no significant improvement). More
iterations would result in further smoothing (affecting breast
boundaries) and would increase linearly the computing time.
After applying curvature filter, a low threshold operation is
needed: with the curvature filter, background artifacts are
deleted or grouped in low-level gray values around the
breast. A low threshold operation with a value obtained
experimentally (a value equivalent to 6 if rescaled to a 255
histogram values) managed those little groups.

With noise reduced as explained before, a cluster analysis
was performed to the filtered MRI with C-means. C-means is
an unsupervised classification method that has been widely
used in breast segmentation [16, 23, 24]. A partition with
4 clusters was enough to divide the MRI in four parts: the
darker one, that belongs to background and darkest dense
parts of breast, a brighter part, that takes fatty tissues and two
clusters that mixe skin and internal breast dense tissues. Only
pixels that belonged to the mixed clusters were obtained from
original MRI and reclassified with a new 2 clusters C-means
(which did not use pixels from background or fatty clusters).
This new classification was able to reveal a skin layer that
surrounded the breast but still classified some dense tissue in
that cluster. Adding those two new clusters to the older ones,
an image was obtained with a differentiated background.

Once the biggest object that does not belong to back-
ground (the breast) is chosen and an open-close operation is
applied (to smooth breast borders), it is possible to separate
skin from dense tissue using a dynamic search from the breast
boundary to breast interior with a limit of 3 mm in nipple
region (this is the region where skin and dense tissue may be
in contact) as suggested in bibliography [17]. If there were
isolated pixels classified as dense in contact with skin, they
were passed to the skin. With dense tissue isolated from skin,
it was easy to change every pixel between breast skin limits to
another class value (Figure 3).

Final segmented image needed some improvements.
Skin-dense tissue separation explained above can leave skin
artifacts inside the breast, with a thickness value of one
pixel or dense tissue artifacts with a thickness value of one
pixel attached to the skin. Those artifacts are removed with
a smoothness iterative filter applied inside the breast that
searches skin pixels or dense pixels (in contact with skin)
with 3 of its 4 connected neighbor pixels with a value
that does not belong to skin or dense cluster, respectively.
Skin segmentation method described in this work is able to
segment skin in 2D slices, but 3D nature of DICOM images
leaves spaces between slices. Those interslice millimeters may
produce zones in a 3D reconstruction without skin, leaving
internal breast tissues in contact with exterior. To solve this
problem, an iterative 3D search adds skin pixels to internal
tissues in contact with background (Figure 4). The final
pixels labeled as skin were used as a mask to delete skin from
original MRI, letting it ready for studies and analysis without
skin interaction.
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Figure 3: From left to right (a): original MRI slice; pixels with gray value higher than 0; pixels with gray value higher than 0 after curvature
flow filter and low threshold. From left to right (b): C-means with 4 clusters; clusters with skin and dense tissue; new C-means with 2 clusters;
final skin classification (white pixel values).

Figure 4: From left to right: one thickness skin artifact (up) and skin growing effect after skin pixel addition (down); skin with holes;
reconstructed skin.

2.2. Fat and Dense Tissue Segmentation. With the skin re-
moved, a partition clustering algorithm (C-Means) that
searches for an optimal partition of the data into 2 clusters
was used. The objective of the algorithm is to minimize the
sum of squared errors (SSE) of the partition into C clusters
(2), where x ∈ X is a data element and mC is the cluster C
mean:

∑

i

∑

j

= ∥∥xi −mC j
∥∥2
. (2)

The data is distributed randomly into each cluster, and
then the algorithm chooses an optimal partition minimizing
the cluster SSE, thus, proving the impact in the SSE formula
by moving each data element from one cluster to another and
changing the cluster membership to the one that minimizes
the SSE. This is, if ‖x −mj‖2 < ‖x −mi‖2, data element x
will belong to cluster mj instead of cluster mi. C-means
performs an accurate segmentation of the breast tissues in
fatty and dense clusters [16, 23].

2.3. Biomechanical Model. Finite element methods (FEMs)
are the most popular methods for biomechanical modeling

of the soft tissues due to their capability to model irregular
structures and complex boundary conditions. In this paper,
FEMs are used to perform the simulation of the breast com-
pression during an X-Ray mammography. These simulations
were carried out in the commercial package ANSYS. To
generate the 3D volume of the breast and the meshes of
the three tissues used by ANSYS, the commercial software
Simpleware v4.2 was used. The steps followed in this software
were as follows.

(i) Volume Reconstruction. The 3D volume of the breast
was reconstructed from the all segmented tissues from the
segmented DICOM image imported by Simpleware.

(ii) Smoothness. The smoothing recursive Gaussian filter
with sigma values between 0.4 and 0.7 in the X , Y , and Z
directions was used in order to smooth the surfaces of the
three tissues, the island removal filter was applied to classify
free pixels that still could keep in the breast, and the cavity fill
filter was applied to fill possible hollows.
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Figure 5: Meshes of the glandular and skin tissues for the two cases under study: (a), considering real skin and, (b), considering the skin as
a shell.

(iii) Mesh Generation. An algorithm that allows surface
adaptation was used in order to achieve the best mesh
optimization, reducing the number of elements. In the
case of considering the skin as a small surface of constant
thickness, the real skin was removed and replaced by a 2D
membrane of uniform thickness which covered all the breast.

(iv) ∗.ans File Generation. A file with all the information
about the meshes of the three tissues was generated in
Simpleware. This file can be read by ANSYS. ANSYS loads
the meshes and allows the deformation to be simulated.

Figure 5 shows the meshes of the glandular and skin
tissues for the two cases under study: considering real skin
on the left and considering the skin as a 2D membrane on
the right. The elements chosen to construct the 3D meshes
of the three tissues were SOLID186, except when the skin was
assumed as a 2D shell. In this case, the chosen element was
the shell element SHELL181 with thickness of 1 mm [10, 25].

To simulate the biomechanical behavior of the breast
tissues under compression, the hyperelastic model used for
the dense and glandular tissues by del Palomar et al. in
[10] was also used in this paper. Regarding the skin, the
also hyperelastic model proposed by Hendriks et al. for the
human skin in [26] was used. For the three cases, the model
was a neo-Hookean model, for which the form of the strain
energy potential, WNH, is defined by (3):

WNH = C1

(
I1 − 3

)
+

1
d

(J − 1)2, (3)

where C1 = µ0/2 and µ0 is the initial shear modulus of
the material, I1 is the first deviatoric strain invariant, d is
a material incompressibility parameter that is related to the
initial bulk modulus K0 = 2/d, and J is the determinant
of the elastic deformation gradient. The elastic constants
used for the three tissues were the constants obtained by
these authors in their respective works: C1 = 3 kPa for
the fat tissue, C1 = 12 kPa for the glandular tissue, and

C1 = 50 kPa for the skin. The values of d were obtained using
the approximation to incompressible materials.

For the simulation of the compression of the breast dur-
ing the X-Ray mammography, the same boundary conditions
were established for both cases, considering real skin and
considering the skin as a shell of uniform thickness covering
the breast. The gravity was applied twice in order to, first,
recover the reference state of the breast when the patient is
lying in prone during the MR scanning and, second, establish
the real state of the breast when the patient is standing up
(Figure 6, left). Regarding the boundary conditions of the
problem, the displacement of the nodes that belonged to the
chest wall was restricted in the anterior-posterior directions
[27] (Figure 6, right). Figure 7 shows the simulation of the
compression in ANSYS.

3. Results

3.1. Results of the Skin Segmentation Method. Fifteen seg-
mented breast DICOMs were analyzed by three experts (of
both hospitals) and compared with a segmentation method
that used a fixed skin thickness value of 3 mm to determine
skin [17]. This fixed thickness method was rejected by the
three experts due to excessive fatty skin tissue in most of
the slices (they classified a high amount of slices per case as
“Bad,” more than 60.00%). In order to analyze the proposed
segmentation, the experts classified each slice in “Bad” (if
skin area takes air or is excessively fat), “Tolerable” (if skin
is a bit fattier than expected), and “Good.” This validation
shows a high percentage of valid slices with a low amount of
“Bad” slices (Table 1).

After asking the experts, most of “Tolerable” slices be-
longed to regions that had experimented skin pixel addition
for 3D correction (as explained before). Some slices classified
as “Bad” feature air mistaken as skin in air regions naturally
formed by patient’s position and breasts, and other slices
had been classified as “Bad” because skin pixel addition
had created skin in slices that did not contain it. However,



6 The Scientific World Journal

g

g

R
e-

al
ig

n

Breast

Compression plate

Direction of 
compression

Po
st

er
io

r

A
n

te
ri

or

x

y

z

G

Fixed plate

G: center of mass

Fg

Fg : gravity force

Figure 6: Boundary condition of the problem. Recovering the reference state when the patient is standing up (left) and boundary condition
(right).

Table 1: Means of validated cases (percentage of slices belonging to
each category) by three experts.

Case Good Tolerable Bad

1 61.67% 21.25% 17.08%

2 57.50% 27.92% 14.58%

3 70.43% 21.66% 07.91%

4 62.93% 29.16% 07.91%

5 47.51% 33.33% 19.16%

6 54.17% 27.08% 18.75%

7 62.50% 22.92% 14.58%

8 58.76% 29.58% 11.66%

9 56.68% 27.91% 15.41%

10 60.42% 27.50% 12.08%

11 40.00% 40.84% 19.16%

12 58.76% 27.91% 13.33%

13 52.51% 30.83% 16.66%

14 52.50% 28.33% 19.17%

15 56.25% 25.00% 18.75%

the percentage of those “Bad” slices is very low when
compared with the percentage of the valid ones (Good and
Tolerable).

3.2. Results of the Simulation of the Breast Compression. To
study the influence of considering real skin and considering
the skin as a 2D membrane of uniform thickness covering
the breast in the simulation of an X-ray mammography,
the reaction forces on the plates of the mammograph were
obtained and compared with the reaction forces obtained

using classical methods that model the skin as a 2D
membrane that covers all the breast for seven cases. Table 2
shows the results. As it can be observed in this table, the
committed error when the skin is approximated to a 2D
membrane is considerable in most of the cases.

4. Discussion

Skin is an important factor that must be taken into account
when there is some kind of breast segmentation in MRI. Skin
intensity level, similar to dense tissue, is an issue that must be
fixed in order to obtain accurate information: breast density
analysis or breast segmentation will benefit from a correct
skin management [14–17].

The segmentation process described in this paper uses
a curvature flow filter to minimize MRI noise and to
prepare it for a cluster analysis. C-means with 4 clusters is
able to differentiate image parts, and two of those parts,
which contain skin with some dense tissue, are reanalyzed
with a new C-means that tries to extract skin pixels. Final
improvements as smoothness filter and 3D skin search are
justified by the objective of build a biomechanical 3D model
to be virtually compressed, so the 3D view must be as
complete as possible.

Validation carried out by experts shows a high percentage
of valid slices with a low amount of “Bad” slices. And most
of those “Bad” slices were classified as “Bad” due to 3D
completion or confusion with interbreast air features.

Regarding the influence of considering real skin in
the simulation of the breast compression during an X-ray
mammography, it has been proved that the approximation
of the skin to a 2D membrane for this simulation can
provide important errors that can be swept by the algorithms
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Figure 7: Mammography simulation with ANSYS.

Table 2: Results of the simulation of the breast compression.

Case Breast compression % Real skin reaction force (N) Skin as 2D membrane reaction force (N) Committed error

1 43.4% 30.745 25.891 15.8%

2 31.8% 246.73 189.44 23.2%

3 29.4% 172.90 129.37 25.2%

4 33.5% 96.938 92.763 4.3%

5 31.9% 155.68 126.13 19.0%

6 30.1% 45.653 41.435 9.2%

7 41.1% 54.858 46.273 15.6%

that fuse information of different imaging modalities. This
issue has been proved using a neo-Hookean model for
the three tissues, model that has been frequently used by
other authors, and with not very complicated boundary
conditions. Therefore, further studies with more compli-
cated models and boundary conditions should be performed
in order to deeply analyze the influence of this kind of
approximation. However, the method of skin segmentation
presented in this paper opens the possibility to use real
skin for the biomechanical models of the breast without the
necessity of any approximation for the skin.

5. Conclusions and Future Work

In this work, a novel method of accurate skin segmentation
has been presented and validated by experts in radiology.
Some improvements will be made like, for instance, an
intensive search in the nipple region for those MRIs where
it is not correctly segmented or computation speed increase.
This method will be used to study the impact of considering
real skin in biomechanical models of the breast, dense-fatty
tissue segmentation without skin interference, and possible
impact in the simulation of the load states of the breast in
the different imaging modalities.
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