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A B S T R A C T   

Background: Traditional dose selection for oncology registration trials typically employs a one- or two-step single 
maximum tolerated dose (MTD) approach. However, this approach may not be appropriate for molecularly 
targeted therapy, which tends to have toxicity profiles that are markedly different than cytotoxic agents. The US 
Food and Drug Administration launched Project Optimus to reform dose optimization in oncology drug devel
opment and has recently released a related guidance for industry. 
Methods: We propose a “three steps toward dose optimization” procedure, in response to these initiatives, and 
discuss the details in dose-optimization designs and analyses. The first step is dose escalation to identify the MTD 
or maximum administered dose with an efficient hybrid design, which can offer good overdose control and 
increases the likelihood of the recommended MTD being close to the true MTD. The second step is the selection of 
appropriate recommended doses for expansion (RDEs), based on all available data, including emerging safety, 
pharmacokinetics, pharmacodynamics, and other biomarker information. The third step is dose optimization, 
which uses data from a randomized fractional factorial design with multiple RDEs explored in multiple tumor 
cohorts during the expansion phase to ensure a feasible dose is selected for registration trials, and that the tumor 
type most sensitive to the investigative treatment is identified. 
Conclusion: We believe using this three-step approach can increase the likelihood of selecting an optimal dose for 
a registration trial that demonstrates a balanced safety profile while retaining much of the efficacy observed at 
the MTD.   

1. Introduction 

Over the past decade, drug development in oncology has evolved and 
shifted from the use of cytotoxic agents to drugs with novel mechanisms 
of action (MOAs), such as immunotherapies, targeted therapeutics, T- 
cell engagers, and others [1,2]. Key differences exist in the MOAs, 
treatment procedures, and pharmacodynamic (PD) and clinical effects 
among these therapies, which can markedly influence the 
dose-optimization process for registration trials. Because cytotoxic 
treatments are typically administered for a short duration in a fixed 
number of cycles and have narrow therapeutic indexes with steep 
dose-response/toxicity relationships, the maximum tolerated dose 
(MTD) is typically a reasonable dose for the registration study [1,2]. In 
addition, serious toxicities from cytotoxic therapies are relatively pre
dictable and often occur early in the treatment course. In contrast, the 
dose-selection process for targeted therapeutics or immunotherapies can 
be much more complex; if tolerable, these treatments are usually 
administered until disease progression, which can be many months or 

years after study initiation [1,2]. In the case of these non-cytotoxic or 
selectively cytotoxic therapies, serious safety signals may only become 
apparent at later stages of treatment, and long-term toxicities above 
grade 2 may not be tolerated due to the chronic nature of these thera
pies. Moreover, targeted therapies may have wide therapeutic indexes 
and non-linear dose-response/toxicity relationships. Therefore, the MTD 
may not be reached during the course of the study and the optimal dose 
selected for the registration study may differ substantially from the MTD 
[1,2]. 

The traditional approach to defining a dose for a registration study 
typically employs a one- or two-step approach [1,2]. The one-step 
approach involves conducting a dose-escalation study to determine the 
MTD of an investigative treatment, which is used as the study dose for 
comparison with the standard of care in subsequent registration trials. 
The two-step approach uses a dose-escalation study to determine the 
MTD, which is used in the expansion phase for different cohorts. Similar 
to the one-step approach, the MTD of the investigative treatment is then 
used as the registration study dose compared with the standard of care. 
In the traditional one- or two-step approach, suboptimal 
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characterization of the dosing schedule can lead to inappropriate dose 
selection for the registration trial, potentially leading to increased 
toxicity without additional efficacy. Severe toxicities may lead to high 
rates of dose reduction or premature discontinuation, resulting in failure 
to realize the full therapeutic potential of the investigative treatment. 
Furthermore, persistent or irreversible toxicities could potentially limit 
options for subsequent therapies and any benefits they may provide. 

The old approach of “more is better” may be applicable for dose 
selection of chemotherapy; however, this assumption no longer holds 
true for many of the newer targeted therapies with vastly different MOAs 
and other features [1,2]. Thus, the current paradigm for dose selection 
using the one- or two-step approach, developed around cytotoxic che
motherapeutics, may lead to an investigative molecularly targeted 
therapy entering registration trials without adequately characterized 
dosing schedules. In response, the Oncology Center of Excellence 
announced an initiative, Project Optimus, to reform the 
dose-optimization and dose-selection paradigm in oncology drug 
development [3–5]. As a result, health authorities, in particular the US 
Food and Drug Administration (FDA), now mandate rigorous 
dose-finding and dose-optimization processes before the initiation of 
pivotal trials for new oncology drugs [6]. 

The goal of Project Optimus is to move forward with a dose-finding 
and dose-optimization standard across oncology that emphasizes se
lection of a dose or doses to maximize not only the efficacy of a drug, but 
also safety and tolerability. The Project Optimus initiative recommends 
a balanced benefit-risk ratio in defining the optimal dose early in 
development [3,7]. Recently, the FDA published a draft guidance for 
industry on optimizing dosage in the treatment of oncologic diseases 

[8], ensuring maximal efficacy is retained at optimal dose(s) relative to 
the MTD, while striving for a better-balanced safety profile. This rep
resents a shift toward identifying an optimal (biological) dose, which 
considers overall efficacy and tolerability, where the MTD represents the 
upper limit of the optimal dose range, and away from solely determining 
the MTD. Fig. 1 illustrates the different relationships between the 
optimal dose and the MTD/maximum administered dose (MAD) among 
different drug treatments, where the MTD/MAD needs to be determined 
and the optimal dose will be identified in the dose optimization pro
cedure. Such optimization requires consideration of complex MOAs, 
schedule optimization, long-term drug tolerability, and potentially 
novel PD endpoints. Consequently, thoughtful study designs, exposure 
information, translational data, and statistical modeling play an 
increasingly important role. In response to Project Optimus and the FDA 
draft guidance on dose optimization in oncology drug development, we 
propose a “three-step toward dose optimization” procedure. 

2. Three steps toward dose optimization 

Determining the optimal dose of a drug should start with considering 
the fundamentals of the therapeutic index. In general, the difficulty of 
developing a drug with a balanced efficacy and safety profile increases 
as the therapeutic window narrows. Regardless of the therapeutic index, 
it is important to first identify an upper boundary when searching for the 
optimal dose (Fig. 1), as this narrows the search range for an optimal 
dose. 

2.1. Step 1: dose escalation in identifying an MTD/MAD 

Since the introduction of Project Optimus, there could be a miscon
ception that the MTD of a non-cytotoxic drug is no longer relevant. 
However, finding an accurate MTD estimate that closely resembles the 
true MTD with a low likelihood of overdose toxicity remains pertinent. 
As described, the first step of searching for an optimal dose involves 
establishing the upper boundary to limit the search range. If the MTD of 
some targeted therapeutics or immunotherapies cannot be established, 
the MAD may be used as an alternative for establishing an upper 
boundary for an optimal dose. 

The MTD is often identified during the dose-escalation part of a 
phase 1 study, with various study designs such as the algorithm-based 3 
+ 3, model-assisted mTPI (modified toxicity probability interval) and 
the model-based BLRM (Bayesian logistic regression model). We 
recommend a recently developed hybrid design [9] for identifying the 
MTD. This is a hybrid design on two levels; it is a hybrid of a modified 
mTPI design and a dose-toxicity model, as well as a hybrid of the 
Bayesian approach for each individual dose level and the frequentist 
approach for combining available information from all tested doses. The 
design retains the merits of existing designs while minimizing the 

Abbreviations 

BLRM = Bayesian logistic regression model 
DLT = dose-limiting toxicity 
FDA = US Food and Drug Administration 
HD = high dose 
LD = low dose 
MAD = maximum administered dose 
MOA = mechanism of action 
MTD = maximum tolerated dose 
mTPI = modified toxicity probability interval 
PD = pharmacodynamics 
PK = pharmacokinetics 
RDE = recommended dose for expansion 
RR = response rate 
RE = relative efficacy  

Fig. 1. Relationship between the optimal dose and the MTD/MAD among different drug treatments. Note: CT = cytotoxic therapy; IO = immunotherapy; MAD =
maximum administered dose; MTA = molecularly targeted agent; MTD = maximum tolerated dose. 
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limitations. This hybrid design has demonstrated robust performance 
with good overdose control, which can minimize the difference in the 
recommended dose for trial and the true MTD [9]. With the integration 
of all available dose groups in addition to a modified mTPI, the hybrid 
design could improve accuracy and efficiency in dose selection. The 
hybrid design is composed of three stages (Fig. 2). 

Stage 1: The mTPI design is modified to control overdose toxicity 
more efficiently by an additional constraint using the posterior 
probability of the dose-limiting toxicity (DLT) rate in the overdosing 
interval (δ2, 1) being less than a value γ (e.g., <0.75). 
Stage 2: This stage uses a dose-toxicity model by pooling observed 
safety information from all previous doses to estimate the DLT rate 
for the current dose level and to predict the DLT rate for the next dose 
level in the provisional dose list. 
Stage 3: Dose-escalation decisions from stages 1 and 2 are pooled to 
make a conservative dose-escalation decision to further control 
overdose toxicity. 

Image adapted from “A hybrid design for dose-finding oncology 
clinical trials”, by Liao, JJZ, Zhou F, Zhou H, Petruzzelli L, Hou K, 

Asatiani E., Int J Cancer 2022; 151(9):1602–1610, is licensed under CC 
BY 4.0. 

Details of this hybrid design and an example of its application have 
been reported [9]. To use this in practice, an R-package “HybridDesign” 
[10] and an R-shiny tool (https://fzh223.shinyapps.io/HybridModel/) 
have been developed. These tools are freely available to guide clinicians 
at every step of the dose-finding process using the hybrid design. 

As emphasized in Liao et al., a dose-escalation procedure can be 
continued to search for an MTD with a tolerated toxicity limit. If the 
MTD is not reached or does not exist, but the MAD has satisfactory ef
ficacy, the dose-escalation process may be stopped [9]. In such cases, an 
upper boundary may be established using either the MTD or MAD for 
efficient search of the optimal dose. To better characterize the 
exposure-response before progressing to identifying the dose levels for 
further evaluations, the backfill cohorts at certain dose levels in the 
dose-escalation study could be explored with more patients in selected 
populations to gain additional information on pharmacokinetics (PK) 
and PD. 

2.2. Step 2: dose selection to identify recommended doses for expansion 
(RDEs) 

After the MTD or MAD with satisfactory efficacy has been identified, 
multiple different dose levels may be selected for the dose-response 
assessment for efficacy and toxicity. Before determining the RDEs, the 
dose/exposure and efficacy/toxicity-response relationships should be 
well characterized. This provides a preliminary understanding of dose- 
and exposure-response relationships for activity, safety, and tolerability 
[8]. As such, all available data should be evaluated; this includes 
non-clinical and clinical data, with emerging clinical safety, PK, PD, and 
other biomarker information. 

In a general dose-exposure-response relationship, there are two 
layers of variabilities. Given the same dose, the patients’ exposure can be 
different and given the same exposure, patients’ response (efficacy or 
safety) can be different. Thus, to identify the doses with acceptable re
sponses (efficacy/safety), two calibration stages are needed for deriving 
the dose for specified desired responses. The first stage is to derive the 
desired exposure from the specified responses (Fig. 3A), where many 
modeling techniques can be applied. Some of the example model tech
niques, such as the exposure model, PK/PD model, PK/safety model, PK/ 
efficacy model, or biomarker/efficacy correlation, could be used to 
identify the exposure range. Note the safety/efficacy data could be 
categorical or continuous outcomes and Fig. 3B only displays the prin
cipal using the categorical data format. At the second calibration stage, 
exposure information derived from the first stage is used to define the 
RDEs (Fig. 3B), which should be dose levels no greater than the MTD/ 
MAD, and no less than the pharmacologically active dose. 

As depicted in Fig. 1, the relationship between the optimal dose and 
the MTD/MAD differs with different drugs. The potential uncertainty of 
the response curve and variability at different dose levels can render 
identifying the optimal dose challenging. As such, the selections of RDEs 
for comparison with the MTD/MAD should build upon the shape of dose 
response (efficacy/toxicity) and variability. Therefore, multiple doses 
should be selected and recommended for expansion (phase 2) [8] to fully 
explore all potential clinical benefits of the drug, which may not be 
limited to prolonged survival but may also include improved quality of 
life. The goal for evaluating multiple RDEs is to decrease uncertainty by 
identifying an optimal dosage(s) [8]; the probability of selecting the 
appropriate optimal dose(s) increases with the number of RDEs being 
evaluated. 

Araujo et al. suggested that at least two, but preferably three, RDEs 
be selected for evaluation: one for the minimum reproducibly active 
dose, another for an effective dose close to the MTD, and one for an 
intermediate dose [11]. This suggestion is supported by the fact that at 
least three doses are required to accurately ascertain non-linearity of the 
dose-response curve. Moreover, the greater the degree of non-linearity, 

Fig. 2. Hybrid design for dose escalation. Note: DLT = dose-limiting toxicity; 
MTD = maximum tolerated dose; mTPI = modified toxicity probability interval. 
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the more RDEs are needed to better capture the non-linearity. In respect 
to selecting the optimal dose(s), three or more RDEs should be identified 
and a subset of these identified RDEs compared because of the potential 
non-linearity of the dose response and the variability at each dose level. 
The choice and number of RDEs selected for comparison should strike a 
balance between scientific rationale and clinical and practical 
considerations. 

2.3. Step 3: dose optimization 

Following the selection of multiple RDEs in step 2, a dose- 
optimization procedure is conducted in a randomized, parallel, dose- 
response trial by applying the selected RDEs [8]. At this early stage, 
more information is needed on tumor sensitivity, including that in 
different tumor types and diseases/populations. In 2022, the FDA issued 
guidance recommending the use of multiple expansion cohort trials to 
expedite oncology drug development [12]. A unique feature of multiple 
expansion cohort trials is the two-dimensional dependency structure 
across doses and indications, which collects evidence on whether a drug 
may be effective across a range of diseases/populations and it can 
identify treatment-sensitive diseases/populations [12]. Thus, the effi
cacy and safety of different RDEs are evaluated in different cohorts and 
an optimal dose is selected based on a balanced benefit-risk ratio 
through a randomized design. The design should be fit-for-purpose and 
could be a randomized multidose and/or multistage design, with options 
to discontinue inadequate dose arms to limit patient exposure to sub
optimal doses that are either inefficacious or unsafe [8]. 

One such design involves randomizing patients in each cohort to all 
the selected RDEs. This full factorial design commonly used in trials [13] 
requires large numbers of patients with multiple different selected RDEs, 
which may impose a significant resource burden on trial sponsors. To 
achieve dose optimization using a smaller number of patients and within 
shorter timelines, we propose a randomized fractional factorial design, 
as illustrated in Fig. 4A. Patients in each cohort are randomized to two 
RDEs, one of which is common to every cohort in the study; in addition 
to further characterizing the exposure-response relationship, this infor
mation can be used to identify the tumor types most sensitive to the 
investigative treatment for a registration trial. 

Fig. 4B illustrates the outcomes of a hypothetical fractional factorial 
design with five cohorts and two RDEs within each cohort, where six 
different doses (HD, LD1, LD2, LD3, LD4, LD5) are compared. This 
fractional factorial design offers reductions of sample sizes when 
compared with the full factorial design. For example, if there are 20 
patients enrolled for each RDE in each cohort, the commonly used full 
factorial design would require a total sample size of approximately 600 
patients (5 × 6 × 20), but a fractional factorial design only requires 

around 200 patients (5 × 2 × 20). If this fractional factorial design is 
used for k cohorts, a total of k + 1 different doses could be investigated 
in a randomized fashion for a higher chance of finding the optimal dose 
(s) with less uncertainty. Note that some of the low doses (LDs) could be 
the same and the full factorial design could be considered as a special 

Fig. 3. Two calibration stages in deriving the RDEs: A) Identify the exposure range where the efficacy could be a selected biomarker (efficacy and toxicity curves 
with 95 % CI) and B) identify the doses (dose exposure with 95 % CI). Note: CI = confidence interval; PK = pharmacokinetics; P(Response) = probability of response; 
RDE = recommended dose for expansion. 

Fig. 4. A) The randomized fractional factorial design for dose optimization. B) 
Dose-optimization design with five cohorts and different lower RDEs. Note: HD 
= high dose; LD = low dose; RDE = recommended dose for expansion. 
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case of the fractional factorial design, with 100% as the fraction. 
With k+1 RDEs identified for dose optimization, a fractional factorial 

design in Fig. 4A is preferred over the full factorial design. This frac
tional factorial design offers the following several advantages over a full 
factorial design: 1) the proposed design could efficiently investigate as 
many as k + 1 dose levels for k different tumors and tumor sensitivity 
identified in a randomized fashion, reducing the uncertainty of optimal 
dose identification with less patients and cost; 2) exposure to ineffica
cious/toxic doses is well controlled in the staged design or continuous 
monitoring in an adaptive fashion and thus is limited to a few patients; 
and 3) decision-making uses aggregated information from different co
horts; 4) a common high dose (HD) is used to directly compare the ef
ficacy and safety across different cohorts and a sensitive tumor cohort 
which gives a better response could be identified. The fractional facto
rial design can be used for the expansion phase or standalone phase 2 
studies. The sample size could be calculated with the desired efficacy in 
mind; as stated in the FDA dose-optimization guidance, the chosen 
sample size is not necessarily powered for a certain hypothesis, but 
rather for estimating the response rate (RR) with high precision [8]. The 
sample size for each dose level in a selected cohort could be chosen, for 
example, using a Simon’s two stage approach along with certain esti
mation precision requirement. With an adequate sample size for each 
RDE studied, the general dose-response profile for the investigational 
treatment can be estimated efficiently. 

With the efficacy and toxicity information from the randomized 
study, possible k + 1 doses can be compared, where k is the number of 
cohorts. If there are no toxicity/tolerability concerns over the HD, it 
could be selected as the dose for full assessment of efficacy and efficacy 
in the registration study of the investigational treatment. Otherwise, one 
of the LDs with a balanced benefit-risk profile could be chosen: a dose at 
which efficacy is comparable with that of the HD, but with a more 
tolerable safety profile. 

To demonstrate how the aggregated data of both efficacy and safety 
from the k cohorts could be used in determining the optimal dose, one 
can build a statistical model for inference. Let Li(θ|Di) be the likelihood 
from the ith cohort, i = 1, …, k, where θ are the parameters from the 
response model, such as the logistic model, and Di are the observed data 
from ith cohort. Thus, the likelihood function L0(θ|D1,⋯,Dk) with all k 
cohorts from this randomized fractional factorial design can be 
obtained: 

L0(θ|D1,⋯,Dk)∝L1(θ|D1)L2(θ|D2)
α2⋯Lk(θ|Dk)

αk (1)  

Where 0 ≤ αj ≤ 1 (j = 2, …, k) is a power parameter to discount the 
contribution from the jth cohort, L1(θ|D1) is the most sensitive tumor 
cohort with the highest RR at the HD. When αj = 0, it means the jth 
tumor cohort has no contribution to the most sensitive tumor evalua
tion. When αj = 1, it indicates the jth tumor cohort has the full contri
bution, i.e., has the same response pattern as the most sensitive tumor. 
With the response data, these power parameters αj can be set as the ratio 
of the RR from the jth tumor cohort to that of the most sensitive tumor 
(cohort 1). This setting is reasonable by calibrating and bringing all the 
tumor cohorts to the same level to make an inference. Note that model 
(1) has the same format as the Bayesian power model [14,15], 
borrowing information from different cohorts. 

To assess the efficiency of this statistical inference with the aggre
gated data, results from a simulation study can be used to demonstrate 
the performance of the selected optimal dose against the MTD/MAD, 
and the efficiency of the fractional factorial design against the full 
factorial design, when the total number of patients is held constant. The 
goal of the simulation is first, to correctly identify the most sensitive 
tumor cohort with the highest RR at the HD, and second, to identify a 
dose that preserves the highest possible efficacy relative to that observed 
at the MTD/MAD. 

To achieve the goals, it is desirable to first estimate the dose response 
for the most sensitive tumor cohort. Then, based on the inferred statis

tical model, the intersection of the 90 %, say, lower confidence bound 
from the fitted value at the MTD/MAD and the fitted dose-response 
curve is selected as the optimal dose, which is likely to retain most of 
the efficacy of the MTD/MAD. Because the power parameters αj (j = 2, 
…, k) are typically unknown in model (1), the estimates using the 
observed response ratio of the jth tumor to the most sensitive tumor (i.e., 
the highest tumor response at the MTD/MAD) are used in the statistical 
inference. 

In the example simulation, a logistic dose response is assumed with 
MTD as 500 mg which is the HD for all five cohorts. Cohorts 1–5 range 
from the most sensitive tumor type to the least sensitive tumor type at 
the MTD, i.e., cohort 1 has the highest tumor response at the MTD. The 
assumed RR at the MTD ranges from 14.2% (Cohort 5 in Fig. 4B) to 
55.0% (Cohort 1 in Fig. 4B). A lower dose arrangement for each of 
schemes1–4 in the fractional factorial design is shown in the 1st half of 
Table 1. It is also assumed that there are 30 patients for each RDE in each 
cohort. Thus, the total number of patients is 300 (30 × 2 × 5). To 
demonstrate the efficiency of the fractional factorial design, a full 
factorial design with the same number of 300 patients is constructed as 
scheme 5, with an equal number of patients in all six RDEs for each 
cohort. Thus, the number of patients in each RDE/cohort is 10 and the 
total number is the same as 300 (10 × 6 × 5). 

The RR at each RDE for each tumor cohort was simulated according 
to the response curves for the five different cohorts (Fig. 4B). Three 
confidence levels (80/90/95%) were adopted to select different optimal 
doses, among which higher confidence level should result in wider 
confidence band at the MTD and lower estimated optimal dose. This 
simulation was repeated 10,000 times for each scenario. The 2nd half of 
Table 1 summarizes the operating characteristics of the chosen optimal 
dose in terms of estimated optimal dose and the relative efficacy of the 
estimated dose to the MTD. P(select) is the probability of correctly 
selecting the most sensitive tumor cohort (i.e., cohort 1). RE (%) is the 
relative efficacy (RE) of the estimated dose to the HD in cohort 1 and is 
defined as 100 × f1(D̂)/f1(MTD), where f1(x) is the dose-response 
function and D̂ is the chosen optimal dose. The percentage of finding 
a dose whose relative efficacy is lower than 70% is presented as %(RE <
0.7), which reflects the risk of severely underestimate the dose and 
overly compromise efficacy. As shown in Table 1, when the total number 
of patients is held constant, the probability of correctly selecting the 
most sensitive tumor cohort using the full factorial design in Scheme 5 is 
lower than using the fractional factorial designs (schemes1–4). This is 
due to the smaller number of patients allocated equally to each RDE, 
with a larger variability in the full factorial design when compared with 
fractional factorial designs. Upon comparing the estimated dose from 
different design schemes, Scheme 2 has the best performance in terms of 
standard deviation for both estimate and RE of the estimated dose, fol
lowed by Scheme 3. Meanwhile, Scheme 2 may also lead to a better 
choice of LD for each cohort when compared with other schemes. When 
assigning different LDs to each cohort, it is preferrable to assign the 
highest LD RDE to the tumor cohort that has the highest hypothetical 
sensitivity to the study treatment, for better RE of the selected optimal 
dose. 

3. Summary 

We propose a “three-step toward dose optimization” procedure 
(Fig. 5) in response to the FDA’s Project Optimus, which aligns with the 
recently published FDA guidance for industry on dose optimization for 
drug development in oncology [8]. The proposed three-step procedure 
is: 1) a dose-escalation part to identify MTD or MAD using an efficient 
hybrid design; 2) identification and exploration of multiple RDEs using 
all available data (such as pre-clinical data; emerging clinical safe
ty/efficacy, PK, PD, and other biomarker information; and the 
exposure-response model and efficacy/toxicity-response model for the 
dose-expansion phase); and 3) dose optimization using data from a 
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randomized fractional factorial design with multiple RDEs explored in 
the expansion phase or a phase 2 study, to ensure that a feasible optimal 
dose is selected for registration trials. 

We presented the theoretical basis and performed a simulation to 
demonstrate how the efficient hybrid design in dose-finding studies of
fers control of overdose toxicities and can lead to an effective recom
mended MTD that is close to the true MTD. The step 2 uses the totality of 
data and can efficiently select RDEs with clinical and practical consid
eration to further generate clinical data in step 3. The randomized 
fractional factorial design for the dose optimization would enable effi
cient identification of drug-sensitive tumor types and optimal dose, 
whereas the use of an adaptive design may help limit patients’ exposure 
to suboptimal or toxic dose(s). As such, this three-step procedure is 
likely to select a recommended dose that has a favorable safety profile, 
while retaining most of the observed efficacy at the MTD/MAD. Of note, 
we recommend identifying at least three RDEs for comparisons in the 
third step, to reduce the uncertainty of optimal dose selection for drugs 

that may have non-linear dose-response profiles. We also provided 
simulation data to support our recommendation for allocating a higher 
LD RDE to the patient cohort with the tumor type that has the highest 
hypothetical sensitivity to the investigative treatment for potentially 
better efficacy outcomes. 

The design for dose optimization (Fig. 4A) could have several stages, 
and it could be continuously monitored using the Bayesian predicted 
probability of success, e.g., until certain futility criteria are met, such as 
achieving the desired precision for response estimate, or the maximi
zation of the allocated budget. Once the safety and efficacy information 
of the investigative treatment becomes available from a well- 
characterized, randomized, multidose study, the sponsor can select an 
optimal dose and initiate discussion about the design of a registration 
study with health agencies. This three-step approach can be viewed as a 
seamless phase 1/2 study design for finding the optimal dose of inves
tigative oncology drugs; if the treatment is a combination, then a formal 
phase 2 study for the contribution of components could be carried out. 

Table 1 
Lower RDEs used for each cohort for different simulation settings and the operating characteristics of the chosen optimal dose from the simulations.   

Dose level (mg) 

Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 

Scheme1 250 300 350 400 450 
Scheme2 450 400 350 300 250 
Scheme3 450 300 250 350 400 
Scheme4 250 400 450 350 300 
Scheme5 250 300 350 400 450 

Scheme P(select) CL Estimated dose (mg) RE of estimated dose (%) 
Mean Median SD Mean Median SD % (RE < 0.7) 

1 0.85 80 % 443.9 454.5 41.1 85.0 87.6 10.0 4.5 
90 % 426.7 442.5 52.8 80.6 84.4 12.7 8.9 
95 % 409.6 432 62.9 76.3 81.5 14.9 15.2 

2  80 % 474.3 475 6.0 93.0 93.2 1.6 0.0 
90 % 467.4 468.5 9.7 91.1 91.4 2.5 0.1 
95 % 460.6 463 17.5 89.3 89.9 4.3 0.5 

3  80 % 469.8 471 8.0 91.8 92.1 2.2 0.0 
90 % 461.5 463.5 12.6 89.6 90.1 3.3 0.2 
95 % 453.8 457 18.9 87.5 88.3 4.7 0.6 

4  80 % 448.8 458.5 40.0 86.3 88.7 9.7 3.6 
90 % 431.9 447.5 52.8 82.0 85.7 12.7 7.6 
95 % 413.5 437.5 65.6 77.4 83.0 15.6 13.9 

5 0.73 80 % 450.5 455.5 25.4 86.6 87.9 6.3 1.2 
90 % 438.4 446 34.3 83.4 85.3 8.3 2.7 
95 % 427.1 438 43.3 80.5 83.1 10.3 5.1 

Note: CL = confidence level for the lower confidence bound to derive the estimated optimal dose; P(select) = probability of correctly selecting the most sensitive tumor 
cohort; RDE = recommended dose for expansion; RE = relative efficacy; SD = standard deviation. 

Fig. 5. A summary of the three-step approach leading to dose optimization. Note: E-R = exposure-response; PD = pharmacodynamics; PK = pharmacokinetics; MAD 
= maximum administered dose; MTD = maximum tolerated dose; RDE = recommended dose for expansion. 
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Recently, Guo and Yuan [16] proposed a two-stage DROID approach 
for dose optimization using a full factorial design with selected doses. 
They combined both efficacy and safety assessment in the early part of 
dose-escalation step, where the dose-escalation (i.e., the first step in our 
3-step approach) is typically safety focused and only a very few patients 
in each dose level and the efficiency to evaluate both efficacy and safety 
can be weakened. However, some of the methods in the first stage of 
DROID and other methods mentioned in their paper such as the U-BOIN 
design [17], BOIN12 and BOIN-ET could be used in our 2nd step (dos
e-selection). Yang et al. [18] proposed a phase 2 MERIT design using a 
full factorial randomized multiple-dose trial for dose optimization. 
Similarly, the methods in the second stage of MERIT could be used in our 
2nd step (dose-selection). 

The DROID and MERIT use both efficacy and safety information 
adaptively selecting certain RDEs to generate more data in a full facto
rial fashion. The step 2 in the proposed approach using the totality of 
data may select the same RDEs as DROID/MERIT. However, the pro
posed fractional factorial design can generate different data comparing 
to a full factorial design with the advantages described in the paper and 
the simulation conducted in the paper. When there is only one RDE 
selected in the step 2 in current paper, our design will be reduced to the 
SHOTGUN [19]. 

As pointed out by a reviewer, the optimal approach to identifying an 
optimal dose may in fact be some combination of pre-approval dose 
optimization and post-approval dose optimization. However, the post- 
approval dose optimization could be more costly than the pre- 
approval dose optimization. The proposed three-step approach is for 
the pre-approval dose optimization. The final decision leading to the 
choice of optimal dose(s) should be based on both statistical and prac
tical considerations, which is particularly the case for selecting RDEs in 
the step 2. It is a complex procedure which involves a holistic assessment 
of various factors beyond statistical considerations using a totality of 
data. 
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