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Diabetes is a common disease character-
ized by the disruption of glucose ho-
meostasis that results when insulin, the
hormone that converts glucose from the
blood into energy used by the body’s cel-
lular machinery, is absent (through auto-
immune destruction of the pancreatic
b-cells in type 1 diabetes) or inefficient
(increased insulin resistance or reduced
insulin sensitivity in type 2 diabetes).
There are multiple pathways to develop-
ing diabetes, yet practically all involve an
underlying genetic etiology with an envi-
ronmental trigger.
The extent of knowledge of genetic

factors and environmental factors differs
across the forms of diabetes. In the case
of type 1 diabetes, the concordance in
monozygotic twins (genetically identical)
is ;50%, with familial aggregation and
modeling suggesting a major impact of
genetics on risk (1). The genetic contribu-
tion to type 1 diabetes is well described,
with HLA genes accounting for one-half
of the genetic risk (2) and;50 other sites
in the genome contributing the majority
of the remaining genetic risk (3). The fa-
milial (heritable) contribution to type 2
diabetes has also been estimated through
twin studies, with monozygotic twin con-
cordance rising from;50% inmiddle age
to nearly 80% later in life (4). Complexity
in assessment of the contribution of ge-
netic factors to type 2 diabetes arises
from the impact of other familial and be-
havioral factors that are associated with

risk, including obesity, reduced physical
activity, and dietary habits. Although the
overall risk of type 2 diabetes appears
“more heritable” than type 1 diabetes,
the estimatedeffects of;100 sites across
the genome account for;10% of the risk
(5). Similar investigations have shown
other types of diabetes to be heritable,
including neonatal diabetes (6), maturity-
onset diabetes of the young (MODY)
(7), gestational diabetes mellitus (8),
and latent autoimmune diabetes in adults
(LADA) (9), and numerous studies have
shown diabetes complications to be her-
itable as well (10).

Despite the differences in presumed
etiologies and nearly complete nonover-
lap of genetic risk factors in multiple
forms of diabetes, there is growing recog-
nition that genetic effects on DNA regu-
lation may play an important role in
disease initiation and progression. Multi-
ple loci associated with diabetes risk have
single nucleotide polymorphisms in/near
transcription factor binding sites that
could alter the chromatin landscape in
relevant tissues. These single nucleotide
polymorphisms could either alter the abil-
ity to regulate a target gene, transcription
factor, or protein or modulate the com-
petitive binding of the regulatorymachin-
ery, effectively “silencing” the target gene
(3,11–13). While research is just begin-
ning in the areas of type 1 diabetes and
type 2 diabetes related to transcription
factor binding and its effects on disease

and intermediate traits (e.g., production
of autoantibodies in type 1 diabetes, in-
sulin sensitivity and resistance in type 2
diabetes), there has been greater prog-
ress made for a form of diabetes that is
caused by genetic alterations in genes
encoding transcription factorsdnamely,
MODY.

MODY is amonogenic form of diabetes
(due to defects in a single gene) that usu-
ally occurs in adolescence or early adult-
hood, although it is typically not diagnosed
until later in life, as the genetic defect lim-
its (but not blocks) the ability of the pan-
creas to produce insulin (14). Individuals
with MODY are typically not overweight,
have normal blood pressure, and often
have a strong family history of MODY in
an autosomal dominant pattern of trans-
mission. Prolonged exposure to hypergly-
cemia over decades prior to detection
often results in individuals with MODY
having high rates of diabetes complica-
tions at diagnosis. Although individual
forms of MODY appear rare, the preva-
lence ofMODY collectively is estimated at
1–5% of all forms of diabetes. The major-
ity of MODY cases derive from mutations
in GCK (MODY2) and hepatocyte nuclear
factor 1B (HNF1B) (MODY3), withmanyof
the causal genes identified as transcrip-
tion factors.

In this issue of Diabetes Care, Dubois-
Laforgue et al. (15) provide a critical view
of the genetic basis of MODY5 as a tran-
scription factor–driven, monogenic form
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of diabetes. Important insights areobtained
into the genetic spectrum of causal muta-
tions in (or deletion of) HNF1B associated
with MODY5. These gene alterations
impact the diagnosis of this form of diabe-
tes, its treatment, the prediction of diabe-
tes risk in carriers currently unaffected,
and the likelihood of complications in
those with MODY5. The article by Dubois-
Laforgue et al. has several strengths, includ-
ing the multicenter design that enabled
the ascertainment of a large sample of
201 individuals, a period of clinical follow-
up in subjects over 18 years of age, and the
collection of data from those with HNF1B
mutations (n = 101) or larger deletions
that include HNF1B (n = 100). The focus
on the defects in HNF1B (mutation and
deletion) rather than diabetes per se pro-
vides the opportunity to characterize 1)
themutational spectrum ofHNF1Bmuta-
tions leading to diabetes, 2) the effect of
deletion of HNF1B on development of di-
abetes, and 3) clinical differences in those
with HNF1B mutations compared with
those with HNF1B deletion.
It is sometimes not appreciated that

mutations in a single gene associated
with a monogenic form of disease do not
occur only at a single site. The most obvi-
ous examples are the thousands of recog-
nized mutations in BRCA1 that account
for risk of early-onset breast/ovarian can-
cer (16) and the hundreds ofmutations in
CTFR that, together with the classical
DF508 deletion, lead to cystic fibrosis
(17). Thus, it should not be surprising
that in the 154 case subjects with HNF1B
alterations,;50% (n = 87) had the entire
HNF1B gene deleted, while in the remain-
ing 67 subjects with HNF1B changes,
there were missense mutations (n = 37),
nonsense mutations (n = 7), splicing vari-
ants (n = 8), insertion/deletions (n = 11),
deletion of protein-coding regions (exons,
n = 3, all different), and a duplication of an
exon. This array of HNF1B change sug-
gests many pathways to MODY5 and
that gene sequencing rather than geno-
typing will be required to screen for this
genetic effect on disease risk.
Among those with HNF1B mutations,

there were no differences in the clinical
characteristics by type of mutation (mis-
sense, nonsense, etc.), although the fail-
ure to detect differences could be due to
small sample size and low statistical
power. A comparison of those subjects
with an HNF1B deletion and those with
anHNF1Bmutation found that thosewith

the deletion were more often diagnosed
as having diabetes, had a lower BMI at
diabetes diagnosis, maintained a lower
BMI at follow-up, were more often treat-
ed with insulin, had a higher estimated
glomerular filtration rate at diagnosis
and at follow-up, and had a lower fre-
quency of kidney transplantation. These
data suggest that having the entire HNF1B
genedeletedwas associatedwith a better
clinical profile and prognosis than having
HNF1B mutations. This could be due to
the greater number of deletion cases
treated with insulin at diagnosis and
throughout the follow-up period, provid-
ing greater glucose control and lessening
complication rates. In the absence of in-
sulin treatment, an individual with the
loss of a gene (HNF1B) would be expected
to have earlier and more significant clini-
cal effects than those with single muta-
tions (18). These datamay also reflect the
relatively limited impact of loss of a gene
encoding a transcription factor that is
not necessary for survival, given the large
number of such factors and overlap in
function.

An interesting outcome of this study
was that diabeteswas not present in all sub-
jects with HNF1B mutations/deletions.
Only 159 of the 201 subjects developed
diabetes, with only 67/144 having clinical
symptoms of diabetes at diagnosis. The
presence of “causal genetic variants” in
people with no apparent disease is now
becoming the rule rather than the excep-
tion, as other factorsmay “overcome” ge-
netic risk (19). Even among those with
HNF1B-mediated diabetes, the clinical
presentation at diabetes diagnosis was
highly variable with respect to age at on-
set, clinical symptoms, BMI, HbA1c, and
basal and stimulated C-peptide levels. Re-
sidual insulin secretion was typically pre-
sent at diagnosis and follow-up, and the
extent of insulin secretion did not cor-
relate with either diabetes duration or
kidney function (estimated glomerular fil-
tration rate). Therewas a general absence
of coronary artery disease (;10%) with
relatively few risk factors, which may be
the impact of low levels of hyperglycemia,
insulin and sulfonylurea treatment, and
low BMI in those with HNF1B mutations
and deletions.

While the retrospective cohort design
has some limitations (such as a survival
bias that could reduce the effect of the
HNF1B deletion), the study benefits from
the large number of participants and

careful clinical evaluation. Because of its
retrospective design, somedataweremiss-
ing, but the study is the largest of HNF1B-
related outcomes. Although the study
cannot provide accurate frequency of di-
abetes in those with HNF1B alterations
or the clinical outcomes, the impact of
the genetic heterogeneity, even within a
“homogeneous MODY subtype,” should
provide insights as to the difficulty in ap-
plying this information in a public health
setting. The MODY5–HNF1B relationship
is difficult to diagnose, has variable clini-
cal presentation, and has only character-
istic renal outcomes to aid in diagnosis.
Perhaps members of a family with a his-
tory of MODY also consciously (or sub-
consciously) alter their lifestyle to one that
is “diabetes-protective” (diet, exercise,
weight loss).

The findings of this study provide in-
sights related to HNF1B effects on di-
abetes development, treatment, and
downstream complications. At the same
time, the study highlights the future diffi-
culty in translating genomic information
into the clinical setting and the implemen-
tation of precision public health to reduce
the burden of diabetes and its associated
increased mortality in the population.
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