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Abstract: The driver’s attentional state is a significant human factor in traffic safety. The executive
control process is a crucial sub-function of attention. To explore the relationship between the driver’s
driving performance and executive control function, a total of 35 healthy subjects were invited to take
part in a simulated driving experiment and a task-cuing experiment. The subjects were divided into
three groups according to their driving performance (aberrant driving behaviors, including lapses
and errors) by the clustering method. Then the performance efficiency and electroencephalogram
(EEG) data acquired in the task-cuing experiment were compared among the three groups. The
effect of group, task transition types and cue-stimulus intervals (CSIs) were statistically analyzed by
using the repeated measures analysis of variance (ANOVA) and the post hoc simple effect analysis.
The subjects with lower driving error rates had better executive control efficiency as indicated by
the reaction time (RT) and error rate in the task-cuing experiment, which was related with their
better capability to allocate the available attentional resources, to express the external stimuli and to
process the information in the nervous system, especially the fronto-parietal network. The activation
degree of the frontal area fluctuated, and of the parietal area gradually increased along with the
increase of CSI, which implied the role of the frontal area in task setting reconstruction and working
memory maintaining, and of the parietal area in stimulus–Response (S–R) mapping expression. This
research presented evidence of the close relationship between executive control functions and driving
performance.

Keywords: attention; executive control; simulated driving; task-cuing experiment; electroencephalo-
gram; fronto-parietal network

1. Introduction

Traffic safety has a great impact on the family and society. The World Health Organiza-
tion (WHO) reported that approximately 1.25 million people died in road traffic accidents
every year [1]. Among the traffic accidents, a very large proportion was caused by the
drivers, which was nearly 90% according to the National Motor Vehicle Crash Causation
Survey (NMVCCS) [2]. The driver, as the final service object, is the central node of sensa-
tion and control in the driver-vehicle-environment system and plays the most important
role in traffic safety [3]. Drivers’ physical and psychological state would greatly affect
driving safety. The abnormal state of the driver, such as distraction and fatigue, would
result in visual disturbances, which were related to most accidents [2]. Driving distraction
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and fatigues are the ubiquitous problems and the major cause of injury and death for the
drivers throughout their life cycle [4]. Driving fatigue, usually resulted from lack of sleep
or prolonged driving, would cause a decreased function of the sensory-motion system and
a decline in driver’s attention ability [5]. Driving distraction is defined as any activity that
detracts the driver from the primary driving task, and is mainly reflected in three aspects,
i.e., visual (taking one’s eyes off the road), manual (taking one’s hand off the wheel) and
cognitive (taking one’s mind away from the driving task) distraction [6]. Both driving
fatigue and distraction are the manifestations of insufficient attention allocated for the
driving tasks.

Several studies have investigated the monitoring method of the driving attentional
state. Generally, several kinds of methods were developed, based on either the behav-
iors, the psychophysiological state of the driver, or the driving parameters of the vehicle.
Some behaviors of the drivers, such as nodding, yawning and mouth movements were
closely related to fatigue [7]. Usually, these behaviors were recorded and then analyzed to
extract the fatigue-related features, such as Percentage of Eyelid Closure over the Pupil
(PERCLOS) [8], the manipulation of the steering wheel [9], etc. Some studies demonstrated
the correlation of the physiological parameters of the driver with driving attention, such
as the high-frequency electrocardiogram (ECG) component [10] and the EEG (electroen-
cephalogram) signals of the frontal areas [11]. The trajectory and the state of the vehicle,
such as the speed, acceleration, and driving direction can also be utilized for distraction
detection [12]. Studying the mechanism and the influential factors of attention can help
to accurately evaluate the driver’s alert state, replace the passive safety control strategy
by active monitoring, improve the driving safety and effectively reduce the occurrence of
traffic accidents.

The cognitive studies on attention included the behavioral [13], psychological [14,15],
and neuroimaging schemas [16,17] both in subjects with attention-related disorders such
as attention deficit hyperactivity disorder (ADHD) [18] and in normal people. Attention is
characterized as the ability to effectively block outside distractions while focusing on a single
object or task, which is a general function of the whole brain. The neuroimaging studies
indicated that several neural networks were involved in attentional functions [19], among
which three subsystems were specifically conceptualized, which were alerting, orienting and
executive control [20]. Alerting is defined as reaching and maintaining a state that is highly
sensitive to incoming stimuli, which would activate the anterior attention system, including
the frontal cortex, posterior parietal cortex, and thalamus [20]. Alerting subsystem maintains
the alert state and acts on the posterior attention system to support visual orienting. The
orienting subsystem screens information from alert input to divert attention to the selected or
focused stimulus, which is related with the activities of the frontal eye field, superior parietal
cortex, temporal parietal junction, frontal eye fields, and superior colliculus [21]. The executive
control subsystem monitors and resolves conflicts between thoughts, feelings, and responses,
and plays a crucial role in attention, decision-making and complex conflict processing [20].
Currently, the most used paradigm to study the executive control function is the task-cuing
paradigm. In this paradigm, the subjects would perform two or more types of tasks randomly
under the instruction of a cue, which would be presented before or at the same time each
target appears and prompt the type of task to be performed. The performance efficiency, such
as RT and error rate, and the neuroimaging indexes, such as the EEG signal and the functional
magnetic resonance imaging (fMRI) signal [19,22], would be recorded and compared between
task switching and task repetition conditions. Results indicated that the response was slower,
and the error rate was usually higher under the task switching condition, which was called the
switch cost. Switch cost is an important indicator to quantify the function of executive control.
Theoretical accounts of executive control assumed that multiple components were involved
in activating a task-set, including paying attention to new cue-task connections, inhibiting
the expression of previous task setting rules, shifting attention to relevant stimulus attributes,
activating a goal representation, reconstructing the task’s S–R (stimulus response) rules, setting
response criteria and store task settings in working memory [23–27]. The switch cost was
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believed to occur during the active task setting reconstruction process. Better capability of
the task setting reconstruction and complex cognitive processes optimization would result
in the reduction of switching cost, which implied the higher efficiency of executive control
function in cognitive processes coordination [25–27]. The switch cost, to some degree, is
the behavioral manifestation of the executive control function. The spatiotemporal activities
of the brain, on the other hand, laid the psychophysiological foundation of the executive
control function. Several brain areas, including the prefrontal cortex, temporal cortex and
anterior cingulate gyrus [18,22,28], were involved. Their activities varied among people with
different attentional states, such as stronger activation of the dorsal anterior cingulate cortex,
middle temporal gyrus, precuneus, lingual gyrus, precentral gyrus and insula in ADHD
patients compared with the healthy adults under the task switching condition [18]. Besides,
the psychological experiments demonstrated that the attentional state and CSIs were closely
related. For example, the switch cost would increase if the CSI was too short [29,30]. The
dynamic relationship between switch cost and brain activities is important to evaluate the
executive control function, and is worthy of further research.

The executive control functions should be closely related to the driving performance.
To test this hypothesis, quantitatively analyze the behavioral manifestations of the executive
control functions, and explore the underlying cognitive mechanism, a total of 35 subjects
were recruited to participate in a simulated driving experiment and a task-cuing experiment.
The dataset including their driving behavior and EEG signals were acquired. The subjects
were divided into three groups according to their driving performance (aberrant driving
behaviors, namely lapses and errors). The performance efficiency and brain activation
characteristics under different task transition types and CSI levels in different groups were
analyzed. The results demonstrated the close relationship between driving performance
and executive control efficiency. The fronto-parietal network participated in the executive
control process and had a specific function in task setting construction and working memory
maintenance.

2. Materials and Methods
2.1. Method Overview

The main research work was organized as follows: (i) simulated driving experiment
and task-cuing experiment; (ii) systematic clustering (SPSS20.0, United States) to divide the
subjects into different groups based on the driving performance; (iii) three-way repeated
measures ANOVA for behavioral and EEG data among different groups of subjects; (iv) one-
way repeated measures ANOVA and paired T-test to analyze differences between CSI and
task transition types under different groups; (v) one-way ANOVA and two independent
sample T-test to test the differences among different groups.

2.2. Subjects and Experiment Design

A total of 35 right-handed healthy adults (26 males and 9 females; 4 undergraduates,
28 postgraduates, 2 PhD candidates and 1 PhD) with no history of neurological disease
were recruited, ranging in age from 21 to 46 (24.9 ± 5.7) years. Their visions were normal
or corrected normal. All subjects had a Chinese C1 type (small car) driver’s license with 1
to 17 (3.7 ± 3.1) driving years. They signed the written informed consent. The research was
granted by the ethical review committee of Wuhan University of Technology. All subjects
participated in two experiments: the simulated driving and the task-cuing experiment.

The simulated driving platform was built by Unity3D (Unity Technologies, Austin, TX,
USA) and the Logitech G29 driving simulator (Logitech, Zurich, Switzerland), as shown
in Figure 1a. The simulated driving scenario was an approximately 7 km circular orbital
road, including slopes, turns, bridge holes, and other elements. Subjects were instructed to
sit comfortably wearing the 64-channel Ag/AgCl electrode EEG cap (actiCHamp, Brain
Products GmbH, Gilching, Germany), focus on driving along the road, and perform the
operation of twisting the steering wheel or braking. The electrodeposition of the EEG
electrode cap is shown in Figure 1b. Before the experiment, all subjects had enough time



Sensors 2021, 21, 1763 4 of 19

(15 min or so) to familiarize themselves with the driving scene, brake pedal, acceleration
torque, and steering wheel sensitivity to prepare for the experiment. During the driving
process, each subject was required to complete three driving tasks at a speed limit of
70 km per hour, and each driving task included four laps. After each task, the participants
took a short break of five minutes to avoid driving fatigue. The Logitech G29 provided
similar force feedback of the steering wheel and brake as real driving. No subjects reported
discomfort or driving sickness.

1 
 

 

 

 

 

 

Figure 1. (a) Simulated driving platform; (b) EEG (electroencephalogram) cap electrode location map.

The task-cuing experiment was designed by E-Prime3.0 (Psychology Software Tools
Inc., Sharpsburg, PA, USA) and presented on a 19-inch liquid crystal display (LCD) monitor
with a screen resolution of 1600*900 (Figure 2). The task-cue was a white picture of a circle
or triangle (6 cm × 6 cm) in a black background. The stimulus was a random number from
1 to 9 (except for 5) in red or green. The subjects sat in front of the screen with their sightline
on the screen center, wore the EEG cap (actiCHamp, Brain Products GmbH, Gilching,
Germany), and were instructed to respond to two types of tasks according to the task-cue.
Task A: If the task-cue was a triangle, the subjects needed to judge the color of the number,
and press “1” for red or “2” for green. Task B: If the task-cue was a circle, the subjects
needed to judge the size of the number, and press “1” for numbers smaller than 5 or “2”
for bigger than 5. There is also a task transition type that needed to be reminded about the
trials. The task was either repeated or switched relative to the previous trial. According
to the execution instructions of the task-cue, the participants were required to distinguish
the color or size of the number. If the current task was different from the previous one,
the current trial was classified as a switching trial; if the current task was the same as the
previous one, the current trial was classified as a repeat trial. This factor was checked to see
whether or not the switching trial has an impact on executive control over the repeat trial.

All subjects conducted seven sessions of the task-cuing experiment. Each session
contained 42 trials, in which two kinds of tasks appeared randomly and evenly. The
occurrence of different events in the same task was different, which was 2:1 of red to green
ratio, and 2:1 of bigger-than-5-number to smaller-than-5-number ratio. In each trial, a “+”
was shown for 100 ms, then an empty screen for 250 ms, followed by the cue for 100 ms
and then the stimulus. The CSI between the cue and the stimulus was set at seven levels,
i.e., 200 ms, 400 ms, 600 ms, 800 ms, 1000 ms, 1200 ms, and 1400 ms, which distributed
randomly and evenly in each session. The stimulus would not disappear until the subjects
pushed a button. After the reaction of the subjects, an empty screen would be shown for
500 ms.
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Figure 2. A single trial presentation process and task operation rules of the task-cuing experiment.

All subjects practiced before the formal experiment to get familiar with the task
protocols. During the experiment, they could take a short break between two sessions.

2.3. Data Acquisition

In the simulated driving experiment, the driving data and EEG data were recorded
simultaneously. The driving data, including the vehicle position and the steering wheel
rotation angle, were acquired by the C# scripts based on Unity3D. The EEG data was
collected at 1000 Hz by the Biopac actiCHamp Amplifier and BrainVision PyCorder (Brain
Products GmbH, Gilching, Germany). The cap worn by the subjects was referenced to the
FCz electrode according to the international 10–20 system protocol. The whole driving
process of the vehicle on the screen was recorded by Apowersoft (Apowesoft, Hong Kong,
China). For the task-cuing experiment, the behavioral data, including the RTs and error
rates of the subjects were recorded by the E-DataAid module of E-Prime. The task transition
type of each trial except the first one was defined as either repeated or switched relative to
the previous trial, i.e., task repetition or switching.

2.4. Analysis of Behavioral Data

The driving performance of the subjects was evaluated according to the recorded
screen video in the driving process. Specifically, the errors (severe accidents of driving out
of the road or car collisions in which situation the vehicle was out of control and needed to
be reset to the normal state by the experimenter) and lapses (moderate accidents resulted
in off-road but under-control vehicle) made during the simulated driving experiment were
counted. Systematic clustering was applied to these two types of errors to divide the
subjects into different groups.

The behavioral data in the task-cuing experiment, including the RTs and the error rates
under different conditions (group category, task transition type, and CSI) were analyzed.
The differences in task activation among the subjects were tested using a 3 (group category:
group 1, group 2, group 3) × 2 (task transition type: task repetition, task switch) × 7 (CSI:
200 ms, 400 ms, 600 ms, 800 ms, 1000 ms, 1200 ms, 1400 ms) repeated measures ANOVA
(SPSS20.0, United States).

2.5. Analysis of EEG Data

The preprocessing of the EEG data was carried out using the EEGLAB toolbox (Swartz
Center for Computational Neuroscience, San Diego, CA, USA) in MATLAB (R2013b,
MathWorks, Natick, MA, USA). The signal in Fp1 and Fp2 channels were removed from the
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subsequent statistical analysis due to the disturbance of the electrooculogram (EOG). TP9
and TP10 were selected as the re-reference electrodes. Bandpass filtering (0.1–35 Hz) was
applied to remove the noise. By extracting data epochs (200 milliseconds before stimulation
to 1500 ms after stimulation) from the continuous EEG signal and data averaging, event
information was obtained and event-related potential (ERP) images were created. Finally,
independent component analysis (ICA) was applied to remove eye artifacts (including
the signal artifacts due to the movement of the eyeball, ocular muscles, and eyelid), ECG
artifacts, electromyography (EMG) artifacts, and other noises.

By behavioral data analysis, the EEG data were also analyzed by 3 × 2 × 7 repeated
measures ANOVA. The F values in the analysis result of variance were extracted to draw the
topographic maps, the interactions and single-factor effects were analyzed. Paired T-test
(testing for activation differences between different task transition types), one-way repeated
measures ANOVA (testing for activation differences under different CSI conditions), one-
way ANOVA (test the differences among three groups) and two independent sample T-test
(testing for activation differences between any two groups) were used to explore the effects
of various factors on the implementation of executive control mechanisms.

3. Results
3.1. Behavioral and EEG Characteristics of Different Groups of Subjects
3.1.1. Grouping Results

The 35 subjects were divided into different groups according to their aberrant be-
haviors (errors and lapses) using the systematic clustering (“bottom-up” aggregation,
Euclidean distances, shortest distance algorithm). Initially each subject belonged to the
different categories. Then, the pair of subjects with the shortest distance were merged into
one category. The distance between this category and the other categories were calculated
and merged the two nearest categories. Continue this procedure until all the categories
were merged into one. Three categories were set in advance and the subjects were classified
according to the pedigree cluster diagram. The clustering results based on the driving
data are shown in Figure 3. Subject 7, 17, 21, 23, 27 and 28 were classified as group 1,
subject 1, 8, 10, 14, 15, 16, 19, 24, 25, 26, 29, 30, 32, 33, and 34 were classified as group 2, and
the rest were classified as group 3. There was no significant difference in genders, ages,
driving years and education levels among the three groups (χ2 = 4.836, P = 0.089; F = 0.149,
P = 0.862; F = 0.102, P = 0.903; χ2 = 2.978, P = 0.561 respectively). The average numbers of
errors, lapses and all aberrant driving behaviors (summed numbers of lapses and errors)
in group 1, group 2 and group 3 were (7.67 ± 5.75, 20.5 ± 1.61, 28.17 ± 6.85), (9.73 ± 3.83,
10.87 ± 2.29, 20.6 ± 4.32) and (2.93 ± 2.58, 2.86 ± 1.75, 5.79 ± 3.51) respectively. The mean
occurrence of the errors, lapses and total occurrence in the three groups were significantly
different (F = 12.152, 170.065 and 64.951 respectively). The post hoc pair-wise comparison
indicated significant difference of lapses (T = 9.202, 20.644, and 10.515), and all the aberrant
driving behaviors (T = 3.065 of group 1 vs. group 2, 9.789 of group 1 vs. group 3, and 10.084
of group 2 vs. group 3, all P < 0.01). The occurrence of errors was significantly different
between group 2 and group 3 (T = 5.709, P < 0.01). The difference of the errors in group
1 vs. group 2 and group 3 was not significant (T = −0.969, P = 0.345; T = 1.941, P = 0.102
respectively).

3.1.2. Effect of Task Transition Types, CSIs and Group on the Behavioral Data

The three-way repeated measures ANOVA on RTs (reaction times) analysis indicated
that the main effects of task transition type and CSI on RTs were significant (F (1, 32) = 35.531,
P = 0.000, and F (6, 192) = 7.769, P = 0.000 respectively). The main effect of group (F (2,
32) = 2.986, P = 0.065), the threesome interaction effect (F (12, 192) = 1.532, P = 0.115) and
pair-wise interaction effects (F (6, 192) = 1.541, P = 0.167; F (2, 32) = 1.233, P = 0.305; F (12,
192) = 0.772, P = 0.679) were not significant. Generally, in the three groups, the RTs were
basically smaller under the task repetition condition than those under the task switching
condition (Figure 4). The mean RT of group 1 (Figure 4a) was 799 ms and 909 ms for the
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task repetition and task switching condition respectively, of group 2 (Figure 4c) was 866 ms
and 980 ms respectively, and of group 3 (Figure 4e) was 744 ms and 809 ms respectively.
The RT in group 1 was shorter than that of group 2 but longer than that of group 3 (not
significant). In group 1, when the CSI was lower than 800 ms, the switch cost fluctuated
around 150 ms to 200 ms, as the CSI continued to increase, the switch cost first decreased
and then increased, reaching the minimum when the CSI was 1200 ms. In group 2, the
switch cost first increased along with the increasing of CSI and then fluctuated around
100 ms. In group 3, the switch cost fluctuated around 70 ms and reached minimum when
the CSI was 400 ms. The mean switch cost of RT in group 1, group 2 and group 3 was
110 ms, 114 ms and 65 ms respectively.

 

2 

Figure 3. Results of systematic clustering based on the driving data.
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3 

Figure 4. RT (reaction time) and error rate of the three groups as functions of task transition type and CSI (cue-stimulus
interval).

The main effect of task transition type on the error rates was significant (F (1, 32) = 6.154,
P = 0.019). The main effects of CSI and group (F (6, 192) = 0.546, P = 0.773; F (2, 32) = 2.673,
P = 0.084), the threesome interaction effect (F (12, 192) = 0.661, P = 0.787) and the pair-wise
interaction effects (F (6, 192) = 0.563, P = 0.759; F (2, 32) = 0.979, P = 0.387; F (12, 192) = 0.933,
P = 0.515) were not significant. The mean error rate of group 1 was 1.2% and 1.7% under
the task repetition and switching condition respectively; of group 2 was 2.9% and 4.8%
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respectively, and of group 3 was 2.7% and 2.9% respectively. Generally, for the three groups,
the error rates were smaller under the task repetition condition than that under the task
switching condition, and the error rate of group 2 was higher than the other two groups. In
group 1, the switch cost fluctuated around 0.5%, and the smallest absolute value appeared
when the CSI was 200 ms (Figure 4b). The switch cost of group 2 had a downward trend as
the CSI increased, except for an abnormal increase when the CSI was 1000 ms (Figure 4d). In
group 3, the switch cost generally decreased along with the increasing of CSI, but increased
when the CSI was 800 ms and 1400 ms, respectively (Figure 4f). The mean switch cost of error
rate in group 1, 2 and 3 was 0.6%, 1.9% and 0.1% respectively.

3.1.3. Effect of Task Transition Types, CSIs and Group on the EEG Data

The main effect of CSI on brain activity was significant in the most frontal and parietal
(Figure 5b, all electrodes except TP7, P7, PO7, O1, Oz and Iz), of group in the prefrontal
(AFz, AF3, AF4 and AF8), the frontal (F1, F2, F3, F4, F6, F7 and F8), the frontal-central (FC1,
FC2, FC4 and FC6), the central (Cz and C1) and the right fronto-temporal regions (FT8,
Figure 5c). The main effect of task transition type (Figure 5a), the threesome interaction
effect (Figure 5d) among group, task transition type and CSI was not significant. The
pairwise interaction effects were significant at several limited electrodes (AFz, F1, F2, T8
and PO4 in Figure 5e, FC2, Cz and C2 in Figure 5f).
 

4 

 

Figure 5. The main effects and interaction of group, task transition type and CSI in EEG data.

Considering the existence of the interaction effects, the post hoc comparison was
performed to test the simple effects of the task transition type, CSI and group.

In group 1 (Figure 6a), the repeat trials caused stronger activation in the left prefrontal
region (AF3) when the CSI was 800 ms, and the switching trials caused significantly
stronger activation in the right parietal cortex (P8) as the CSI increased to 1400 ms. The
difference in CSI was mainly concentrated in the prefrontal (AFz, AF7 and AF8), frontal (F1,
F3 and FC1), fronto-temporal (FT7 and FT8) central (C2, C4 and C6) and central-parietal
(CP2 and CP4) regions under the task repetition condition, and in the frontal (centered at
the F1 electrode), right fronto-temporal (FT8) and right central parietal (centered at the C2
electrode) regions under the task switching condition.

In group 2 (Figure 6b), the repeat trials caused stronger activation in the left central
parietal (CP1) and parietal regions (P1) when the CSI was 200 ms, the switching trials
caused significantly stronger activation in the right prefrontal region (AF8) when the CSI
was 1400 ms. The difference in CSI was mainly concentrated in the frontal (F2, FC2 and
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FC4), parietal (P6) and parietal-occipital (PO8) regions under the task switching condition,
while not significant under the task repetition condition.
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In group 3 (Figure 6c), compared to the switch trials, the repeat trials caused signifi-
cantly stronger activation in the parietal (Pz and P3) and parietal-occipital (POz and PO3)
regions when the CSI was 600 ms, and the switching trials caused significantly stronger
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in the right fronto-temporal (FT8), temporal (T8), temporal parietal (TP8), most central
frontal (a large area centered in the FCz electrode) regions when the CSI was 1400 ms. The
difference in CSI was mainly concentrated in the frontal (F1, F2, FC1 and FC2), central
(Cz, C1, C2 and C4) and central parietal (CPz, CP1, CP2 and CP4) regions under the task
repetition condition, and under the task switching condition, in most of the prefrontal,
frontal, parietal, temporal and parietal-occipital regions (up to AFz, down to POz, left to
FT7, and right to FT8 electrodes), which was the fronto-parietal network.

For the difference among the three groups (Figure 7a), under the task repetition
condition, the brain activation differences were in the right frontal (F2, F4, F6, F8 and FC6)
and right fronto-temporal (FT8) regions when the CSI was 400 ms, in the right frontal-
central (FC6), left fronto-temporal (FT7 and FT9), central (Cz, C1, C2, C3, C4 and C6)
and central-parietal (CP1) regions when the CSI was 1000 ms, in the frontal-central (FC2),
right fronto-temporal (FT8) and central (Cz) regions when the CSI was 1200 ms, and in
most of the prefrontal and central regions (centered at the F1 electrode) when the CSI was
1400 ms. Under the task switching condition, the brain activation differences were in the
right parietal-occipital (PO8) region when the CSI was 400 ms, in the prefrontal (AFz and
AF4), frontal (F4), right parietal-occipital (PO8) and occipital (O2 and Iz) regions when the
CSI was 600 ms, in the prefrontal (AFz), right frontal (F2, F4, F6 and FC4), parietal (CP1, P1
and P5), left parietal-occipital (PO7) and occipital (O1) regions when the CSI was 800 ms,
in the prefrontal (AFz), frontal (F1, F2, F3, F5, FC2 and FC5), left fronto-temporal (FT7)
and central (Cz, C1 and C6) regions when the CSI was 1000 ms, in the frontal and central
parietal regions (part of the area centered at the Cz electrode) when the CSI was 1200 ms.
When the CSI increased to 1400 ms, the brain activation differences occurred in almost all
areas of the prefrontal, frontal, bilateral temporal and central parietal regions.

For the difference between group 1 and group 2 (Figure 7b), the brain activations in
group 1 were more intense, in the frontal (centered at the F2 electrode, CSI = 400 ms), central
parietal (CPz and CP1, CSI = 600 ms) and frontal-parietal (most areas of the frontal and pari-
etal regions, CSI > 800 ms) regions under task repetition condition, in the frontal (centered
at the F2 electrode, CSI = 600 ms), parietal (centered at the CP1 electrode, CSI = 800 ms and
1400 ms) and frontal-parietal (most areas of the frontal and parietal regions, CSI = 1000 ms
and 1200 ms) regions under task switching condition. The brain activations in group 2 were
stronger in the right parietal-occipital (PO8, CSI = 400 ms, 600 ms, 800 ms and 1000 ms)
and occipital (Iz, CSI = 600 ms) regions.

For the difference between group 1 and group 3 (Figure 7c), the brain activations in
group 1 were stronger, in the right central (C2, C4, FC4 and FC6, CSI = 400 ms) and bilateral
fronto-temporal (FT7 and FT8, CSI = 400 ms and 1000 ms) regions under task repetition
condition, in the parietal-occipital (centered at the PO3 electrode, CSI = 800 ms) and right
fronto-temporal (FT8, CSI = 1200 ms) regions under task switching condition. The brain
activation in group 3 was stronger in the frontal central region (FC2, CSI = 1400 ms) under
task switching condition.

As for the difference between group 2 and group 3 (Figure 7d), the brain activation
in group 3 was stronger, in the central (FC3, Cz and CP1, CSI = 1000 ms and 1200 ms)
and fronto-parietal (most areas of the frontal and parietal regions, CSI = 1400 ms) regions
under task repetition condition. Under the task switching condition, the brain activations
in group 2 were stronger in the left parietal (P7, CSI = 800 ms), parietal-occipital (PO7 and
PO8, CSI = 400 ms, 600 ms and 800 ms) and occipital (Oz, O1, O2 and Iz, CSI < 1000 ms)
regions. With the increase of CSI, the brain activation intensity and activation range in
group 3 gradually increased, and when the CSI was 1400 ms, the brain activation area
almost covered the entire frontal-parietal network.
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4. Discussion

In this work, a total of 35 healthy subjects were recruited to participate in a simulated
driving experiment and a task-cuing experiment. The subjects were divided into three
groups according to their driving performance. Then the performance efficiency and EEG
data acquired in the task-cuing experiment were compared among the three groups, and
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the effect of task transition types and CSIs was statistically analyzed. The performance
efficiency and the underlying cognitive mechanism of the executive control function, and
its relationship with the driving performance was investigated.

4.1. Relationship between Driving Performance and Executive Control Efficiency

Driving is a very complicated procedure, which is composed of a series of behavioral
operations, and resulted from the dependable perception-decision-execution cycle of the
brain. The driving performance can be studied using the number of crashes, the number of
incorrect use of turn signals, overtaking distance, vehicle trajectory and speed, etc. [12,31].
Reason et al. [32] presented a useful theoretical model by using the risky driving behaviors
for the driving performance evaluation. Particularly three categories of aberrant behaviors
related to different cognitive and decisional processes were defined, i.e., errors, lapses
and violations. Errors were defined as failures to achieve the intended consequences of
planned actions (e.g., braking too quickly on a road with low friction), largely representing
information-processing deficits. Lapses were defined as failures of attention or memory
(e.g., attempt to drive away from traffic light in third gear), largely representing information-
sensory deficits. Violations were defined as deliberate violation of rules or failure to follow
safe driving practices (e.g., decide to continue driving at the red light). Enlighted by this
definition, we defined the errors and lapses in our work according to the severity of the
accidents and the controllability of the vehicle. The severe accidents were caused by a
series of mistakes made during the information processing procedure, while the moderate
accidents were usually resulted from negligence of the external information. Errors and
lapses constructed two dimensions to depict the aberrant driving behaviors in our driving
scene. Accordingly, the enrolled 35 subjects were divided into three groups. The driving
performance was the best in group 3 with the fewest errors and lapses. Group 1 had the
highest occurrence of lapses and medium occurrence of errors, and group 2 had the highest
occurrence of errors and medium occurrence of lapses.

Executive control refers to the coordination of multiple tasks to complete complex
cognitive control processes. task-cuing experiment is a common paradigm to study the
underlying mechanism of executive control function. The subjects needed to perform the
same task as the former one (task repetition) or quickly switch to another kind of task
(task switching). During the experiment, the subjects would maintain a specific cognitive
state and construct a task setting process involving perception, attention, memory, and
response [33]. Under the task repetition condition, the subjects only needed to implement
previously configured task settings. While under the task switching condition, the subjects
needed more effort to complete the configuration of a new kind of task. The executive
control demands were greater, due to the working memory requirements to maintain
multiple tasks in memory, the inhibition of the previous task, and the activation of the
current task [34]. Consequently the subjects’ response was usually slower and the accuracy
lower, which was considered as the switch cost phenomenon [30]. The switch cost could
be utilized as a quantitative indicator and was positively correlated with the subjects’
executive control efficiency [23,27]. In our work, the task transition type had the significant
independent impact on RT and error rate, which was significantly larger under the task
switching condition for all the groups. Though group effect was not significant, the average
switch costs of RTs and error rates in group 1, 2, and 3 were 110 ms and 0.6%, 114 ms
and 1.9%, and 65 ms and 0.1%, respectively (Figure 4), which indicated the best executive
control performance of group 3, and the worst of group 2. The behavioral performance of
group 3 in the task-cuing experiment revealed that group 3 obviously had better capability
to allocate the available attentional resources when the demands for the working memory
maintaining former information inhibition, and reconfiguration of the current task was
greater. This capability also resulted in better driving performance of group 3, which was
highly correlated with their attentional and cognitive states. Although the total number
of the abnormal driving behaviors of group 2 was lower than that of group 1, group 2
had the most errors, the largest switch cost, and the worst executive control function.
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This implied that in the two aberrant driving behaviors, error clearly better reflected the
executive control function. This would be further ascertained by the EEG results. CSI had
a significantly independent impact on RT (Figure 4). As CSI increased, the performance
efficiency (including RT and error rate) was significantly improved. The switch cost of
the error rate decreased as the CSI increased, especially in group 3. The impact of CSI
on behavioral performance and switch cost proved that the task setting reconstruction
process, i.e., the preparation effect for new trials [35], was an important source of switch
cost. During the experiment, once the task-cue appeared, the brain began to complete
the control conversion process from the initial abstract rule representation to the actual
representation [22]. When the CSI was short, this process cannot be well executed due to
the pressure and insufficiency of the preparation time, which would result in an unstable
characterization of the actual stimulus. Whereas when the CSI was longer, the conversion
process would be much smoother, and better performance efficiency could be achieved.

4.2. The Underlying Cerebral Network for the Executive Control Function

The brain activities under different task transition conditions reflected how the brain
was organized to fulfill the executive control function. As can be seen in Figure 5, generally
the main effect of task transition type on the EEG activities was not significant (Figure 5a).
However, it had the interaction effect with group factor in some electrodes (Figure 5e). The
following post hoc simple effect analysis indicated that group 1 (Figure 6a) had stronger
activation in AF3 (CSI = 800 ms), group 2 (Figure 6b) in CP1 and P1 (CSI = 200 ms), and
group 3 (Figure 6c) in Pz, P3, POz and PO3 (CSI = 600 ms) under the task repetition condition;
while group 1 had stronger activation in P8 (CSI = 1400 ms), group 2 in AF8 (CSI = 1400 ms)
and group 3 in most electrodes of the fronto-parietal network (CSI = 1400 ms) under the
task switching condition. These results suggested the different activation patterns during
the executive control procedure in three groups of subjects. The ANOVA results did reveal
the significant main effect of group on the EEG data, specifically in the prefrontal (AFz, AF3,
AF4 and AF8), the frontal (F1, F2, F3, F4, F6, F7 and F8), the frontal-central (FC1, FC2, FC4
and FC6), the central (Cz and C1) and the right fronto-temporal regions (FT8, Figure 5c),
which constituted the fronto-parietal network [17,29]. In general, the activation levels were
stronger and activation ranges in the fronto-parietal network were wider in group 3 under
the task switching condition. This was responsible for their better capability to reallocate the
attentional resources, which also proved that most of the brain regions of the fronto-parietal
network were required to complete the task setting process [33–35].

The activation comparison among three groups indicated that their difference was
stronger under the task switching condition, when the regions extended from a small area in
the frontal and central regions (centered at F2) to most areas of the fronto-parietal network
with increased intensity as well (Figure 7a). Under both task switch and task repetition
conditions, the activation degree of group 1 and group 3 was significantly stronger than
group 2 (Figure 7b,d). The weakest activation intensity of group 2 was responsible for their
worst performance of the executive control function and their highest occurrence of the
driving errors. The underlying regions of interest for the executive control functions and
their activity changes, along with the CSI were further analyzed. As for the comparison
between group 1 and 2 (Figure 7b), when the CSI was 200–800 ms, the activation range
and intensity varied and the difference was mainly concentrated in the prefrontal and
frontal regions (around F2). When the CSI was 1000–1200 ms, the difference was stable
in most brain regions including the prefrontal, frontal, central, temporal and superior
parietal regions. As for the comparison between group 2 and 3 (Figure 7d), the activation
difference was mainly concentrated in the frontal (centered at F2, CSI = 800 ms) and frontal-
central regions (centered at the FC1, CSI = 1200ms) under the task switching condition,
and occupied most of the fronto-parietal network under both conditions when the CSI was
1400 ms. In general, our results indicated the significant effect of the group factor in the
frontal-parietal network. Additionally, the instability of frontal region activation revealed
its specific role in executive control. It has been suggested that a superordinate fronto-
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cingulo-parietal network supporting cognitive control may also underlie a series of distinct
executive functions, including attention, signal recognition, behavior strategy formulation,
motion control, impulse control, and information feedback recognition [22,28,36]. In the
task-cuing experiment, during the period from the end of the previous trial to the end
of the next task-cue, there was a process of working memory maintenance of multiple
task settings, evaluation and reconstruction of the current task setting [22,37]. When the
task to perform was switched, the task settings needed to be updated and the extra work
was required to suppress the previous task setting, which resulted in stronger cerebral
activities. Consistent with the behavioral results, the better performance efficacy and
stronger activation of group 3 indicated their better capability to allocate the available
attentional resources, to express the external stimuli, and to process the information in the
nervous system, especially the fronto-parietal executive control network.

4.3. Effect of CSI Level on the Brain Activities

The main effect of CSI on EEG data was significant. Besides, CSI had the interaction
effect with groups in some channels (FC2, Cz and C2 in Figure 5f). The influence of CSI
levels on the executive control process can be also observed in the following post hoc
simple effect analysis. The among-CSI difference of the brain activation existed in mostly
the left prefrontal, frontal, right frontal-parietal and bilateral fronto-temporal regions
under task repetition condition and in fronto-parietal network (centered at FC2) under
task switching condition in group 1 (Figure 6a), in F2, FC2, FC4, P6 and PO8 under task
switching condition in group 2 (Figure 6b), in the frontal and central regions (a small area
centered at Cz) under the task repetition condition and in the fronto-parietal network
(most areas of frontal, central, bilateral temporal and parietal and parietal-occipital regions)
under task switching condition in group 3 (Figure 6c). The simple effect analysis indicated
that the activation degree and range of brain regions increased along with the increase of
CSI. The brain activation differences among different CSIs were mainly concentrated in
the fronto-parietal network, which was most strong in group 3, secondly strong in group
1, and the weakest in group 2 (Figure 6). The results indicated that subjects with better
attention status and better executive control efficiency were more sensitive to CSI.

In general, the increase of the CSI is helpful for the activation of the task settings
and the more effective conversion among different tasks. It is noted that when CSI was
1000 ms, the intensity and range of the brain activation were significantly increased in all
three groups and then remained at a high level (Figure 6). Additionally, 1000 ms seemed to
be also a key downtrend point of the switch cost, especially for the RT of group 2 and 3
(Figure 4). Both the performance efficiency and the underlying cognitive process reached an
optimal level at this CSI. An appropriate CSI might be helpful for the subjects to maintain
the balance of task setting reconstruction and S–R mapping expression. Both the task
setting reconstruction and S–R mapping expression relied on the working memory, which
was an iterative process including encoding, storage, recognition and recall. When the CSI
was relatively short, the task-cue processing and task setting reconstruction was needed
to be performed synchronously, there was no time for enough iterations, and resultantly,
the accuracy of the executive control function could not be guaranteed. On the other hand,
when the CSI was long, a series of iterations could be fulfilled. Besides, according to the
experience of the subjects, they might even have time for the rehearsal of the expected task.
Under this circumstance, the pre-task setting reconstruction process might have already
started before the stimulus, and the working memory load would remain at a high level.

Though there existed differences among the three groups, both frontal and parietal
regions were involved. The activities of the frontal cortex fluctuated along with the CSI. It
was activated when the CSI was 200 ms, and the activation seemed to be weakened when
the CSI increased to 400 ms in group 2 and group 3 (Figure 6b,c). As the CSI continued
to increase, the frontal activation increased again. The frontal cortex was responsible for
maintaining task settings, regulating and controlling task-related behaviors [16]. When the
CSI was short, the subjects did not have enough time to classify the stimulus and complete
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the task setting reconstruction process [38]. The time pressure and the conflict between task
setting and S–R mapping required the high degree of participation of the frontal region [29].
When the preparation time is sufficient, the time pressure was reduced, the conflict between
task setting and S–R mapping expression was reduced, and the requirement of the cognitive
control was also decreased. As a result, the activity of the frontal cortex was weakened.
When the CSI increased further, the activation of the frontal cortex was restrengthened,
which was related to the increased load of the working memory due to the prolonged time
of S–R mapping expression [29,34]. This can also explain the phenomenon that the activity
of the parietal cortex, which was sensitive to the conflict of S–R mapping [39], was stronger
when the CSI was larger. These results indicated the possible role of the frontal area in task
setting reconstruction and working memory maintaining, and of the parietal area in S–R
mapping expression.

4.4. Novelty and Limitations

In this research, a unified experimental and analytical schema for multimodal data in-
cluding the behavior, EEG activity and psychological performance was presented to explore
the underlying cognitive mechanism of attention in driving. Through the comparative
analysis of different groups of participants, the quantitative correlation between executive
control function and driving performance was established, and the spatiotemporal activity
of the brain during this procedure was revealed. The relationship between dangerous driv-
ing behavior and attention, along with CSIs and other parameters, was disclosed. Based on
the presented methods and the acquired results, the attentional state of the driver could
be monitored through EEG signals to avoid the distraction, and the dangerous driving
behaviors including errors and elapses could be prevented. Besides, the attentional and
behavioral characteristics of the drivers can be analyzed in advance and the subject-specific
driving style can be evaluated. Accordingly, different real-time online human-computer
interaction schemes can be provided for different kinds of drivers. Furthermore, the indi-
vidual’s driving performance and their EEG performance could be mutually corroborated,
which would supply new reference for driving training and administration. In general, the
presented schema supplies a new kind of intelligent human-computer interaction method,
and this active safety control would significantly improve the driving safety. Except for
driving, the research findings would be applied to other life risk activities.

The present study is limited principally by the unbalanced gender proportion, uneven
ages and driving ages of the subjects. Age, gender and educational background are all
the crucial factors affecting the executive control functions, performance efficiency, and
brain activities of the human [40,41]. A total of 35 subjects were studied and there are
only 6 subjects in group 1. Though the meaningful results were found and no significant
difference was detected for ages, genders, driving ages and education backgrounds among
the three groups, these results need to be replicated in much larger sample size and the
general population. Besides these factors, the other demographic factors of different groups,
such as the driving experience including the driving frequency and the load, might all
have significant effect on the cognition and behavior of the drivers. The definition of all the
related parameters and a larger sample size would be crucial to help consolidate a bigger
picture of our work. The individual’s driving performance and their EEG performance
could be mutually corroborated, which would supply new reference for driving training
and administration. However, in our work, their interaction dynamics cannot be analyzed
because of the insufficient repeated measures of the subjects from both the cognitive and the
behavioral sides. We would like to conduct a longitudinal cohort study and we believe that
very interesting and more robust results would be obtained. Second, the spatiotemporal
characteristics of the underlying brain function need to be further studied. In our work,
we analyzed the brain electrical activity mapping. As EEG is a kind of scalp electrical
signal and has a limited spatial resolution, the location of the anatomical areas might not
be very accurate. We observed the participation of the frontal and parietal regions in the
executive control process. However, deeper areas in the brain, such as the cingulate gyrus,
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which has been demonstrated to be a critical part of the fronto-cingulo-parietal network for
executive functions [28], cannot be located. The EEG source localization technique might be
helpful. The causal relationship among the regions and their dynamic activity can be further
analyzed by using the time series analysis methods, such as dynamic causal modeling [42].
Finally, the executive control function is one of the three sub-functions (altering, orienting
and executive control) of attention. According to our understanding, alerting and orienting
subsystems acted mainly in the information perception level. Compared with them, the
executive control subsystem acted mainly in the higher decision and control level. The
executive control function would have a direct relationship with the behaviors, such as the
switch cost of reaction time and error rate in the psychological experiment and driving
performance in the simulated driving experiment. Hence in this work, we focused on
the executive control function and found its positive correlation with these behavioral
performances. However, the other two sub-functions are also important for the whole
process, and their implication in the driving performance is worthy of study. Till now, the
relationship among these sub-functions and the underlying mechanism of attention is not
yet clear [43]. This warrants further synthetic research of the sub-functions of attention.
The driving performance of the drivers was evaluated based on two types of aberrant
driving behaviors, i.e., errors and lapses. Although this definition method was relatively
common in the research of human factors in engineering and driving behavior [31,32], it
was still a subjective judgment method. The objective data such as steering wheel angle
and driving route was planned to define abnormal driving behavior in the future research.

5. Conclusions

In this work, the simulated driving and task-cuing experiments were conducted, and
the correlation between driving performance and executive control function was analyzed.
The subjects with lower driving error rates had better performance efficiency as indicated
by the RT and error rate in the task-cuing experiment, which was related with their better
capability to allocate the available attentional resources, to express the external stimuli and
to process the information in the nervous system, especially the fronto-parietal executive
control network. The activation degree of the frontal area fluctuated, and of the parietal
area gradually increased along with the increase of CSI, which implied the possible role
of the frontal area in task setting reconstruction and working memory maintaining, and of
the parietal area in S–R mapping expression. This research provided evidence of a close
relationship between executive control functions and driving performance, which supplies
new reference for intelligent human-computer interaction and active safety control in driving.
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