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Received: 21 June 2022

Accepted: 7 July 2022

Published: 9 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

Structural Insights into Substrate Binding and Antibiotic
Inhibition of Enterobacterial Penicillin-Binding Protein 6
Mohd Zulkifli Salleh , Kirnpal Kaur Banga Singh * and Zakuan Zainy Deris *

Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia
Health Campus, Kubang Kerian 16150, Malaysia; m.z.salleh@usm.my
* Correspondence: kiren@usm.my (K.K.B.S.); zakuan@usm.my (Z.Z.D.)

Abstract: Shigella sonnei remains the second most common cause of shigellosis in young children and
is now increasingly dominant across developing countries. The global emergence of drug resistance
has become a main burden in the treatment of S. sonnei infections and β-lactam antibiotics, such
as pivmecillinam and ceftriaxone, are recommended to be used as second-line treatment. They
work by inhibiting the biosynthesis of the peptidoglycan layer of bacterial cell walls, in which the
final transpeptidation step is facilitated by penicillin-binding proteins (PBPs). In this study, using
protein homology modelling, we modelled the structure of PBP6 from S. sonnei and comprehensively
examined the molecular interactions between PBP6 and its pentapeptide substrate and two antibiotic
inhibitors. The docked complex of S. sonnei PBP6 with pentapeptides showed that the substrate bound
to the active site groove of the DD-carboxypeptidase domain, via hydrogen bonding interactions
with the residues S79, V80, Q101, G144, D146 and R240, in close proximity to the catalytic nucleophile
S36 for the nucleophilic attack. Two residues, R240 and T208, were found to be important in ligand
recognition and binding, where they formed strong hydrogen bonds with the substrate and β-lactams,
respectively. Our results provide valuable information on the molecular interactions essential for
ligand recognition and catalysis by PBP6. Understanding these interactions will be helpful in the
development of effective drugs to treat S. sonnei infections.

Keywords: Shigella sonnei; penicillin-binding protein 6; pentapeptide binding; antibiotic inhibition;
homology modelling; molecular docking

1. Introduction

Shigella sonnei is one of the four causative agents of shigellosis, an intestinal infection
that is also known as bacillary dysentery. The species is considered as the second most com-
mon cause of diarrhea in young children in rapidly industrializing countries and together
with Shigella flexneri, the species is responsible for more than 90% of the global shigellosis
cases [1]. Although S. sonnei is traditionally isolated most commonly in developed countries,
the species is now increasingly dominant and undergoing an unprecedented global spread
across developing countries in Asia, Latin America, and the Middle East [2]. S. sonnei has
an evolutionary advantage over S. flexneri and shows an extraordinary ability to acquire
antimicrobial resistance genes, such as extended-spectrum beta-lactamase (ESBL) genes,
from other pathogenic bacteria, most particularly Klebsiella spp. and Escherichia coli [3,4].

The global emergence of drug resistance, limiting the choice of effective antimicrobial
drugs for shigellosis treatment, has become the main burden in the treatment of S. sonnei
infections. In 2005, the WHO published guidelines for the treatment of shigellosis with
a recommendation of ciprofloxacin as the first-line antimicrobial therapy for children. In
cases of resistance to ciprofloxacin, pivmecillinam and ceftriaxone were recommended as
the second-line treatment in all age groups, whereas azithromycin was recommended to be
used exclusively in adults [5]. Antibiotics such as ampicillin, tetracyclines, chloramphenicol,
nalidixic acid and trimethoprim/sulfamethoxazole were highlighted as inappropriate due
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to increasing antimicrobial resistance [5,6]. β-lactam antibiotics, such as pivmecillinam,
an active prodrug of mecillinam (extended-spectrum penicillin) and ceftriaxone, a third-
generation cephalosporin, work by inhibiting the biosynthesis of the peptidoglycan layer of
bacterial cell walls, in which the final transpeptidation step in the peptidoglycan synthesis
is facilitated by penicillin-binding proteins (PBPs), also known as DD-transpeptidases [7,8].
Mecillinam binds exclusively to PBP2 in Enterobacteriaceae and is usually used synergically
in combination with other β-lactam antibiotics that bind to other PBPs, such as cefsulodin
(PBP1s) and aztreonam (PBP3) [9]. Similarly, ceftriaxone mimics the D-alanyl-D-alanine
moiety and binds to PBPs to inhibit the cross-linking of the peptidoglycan polymers.

PBPs are classified into two subgroups, high-molecular mass (HMM) and low-molecular
mass (LMM) [8,10]. Most bacteria possess several PBPs. For instance, E. coli possesses
twelve PBPs, in which five of them are HMM PBPs and seven are LMM PBPs [8]. There
are two primary D-Ala-D-Ala carboxypeptidases in E. coli, namely PBP5 and PBP6, which
account for 85% of all PBPs in the organism [11,12]. PBP5 and PBP6 are LMM PBPs, which
are involved in the cleavage of the peptide bond between two D-alanines of the peptido-
glycan structure. All PBPs contain unique conserved motifs S-X-X-K, S-X-N and K-T-G,
forming the active sites essential for the substrate catalysis [8,11]. The S-X-N motif, for
example, is important in deacylation of the acyl–enzyme complex of the E. coli PBP5 and is
modulated by its adjacent loop, formed by residues 74–90. Deletion of the loop, which has
extensive contacts with the motif, completely abolished the carboxypeptidase activity [13].
The majority of D-Ala-D-Ala carboxypeptidases have been studied using PBP5 as a model
system [13–20]. The crystal structures of PBP6 from E. coli have been determined previously
with the antibiotic ampicillin and with a peptidoglycan substrate fragment containing the
full pentapeptide [12]. The structures provide insights into the molecular interactions, vital
for ligand binding and catalysis by D-Ala-D-Ala carboxypeptidases.

More importantly, a similar 43.8-kDa outer membrane-associated protein from S. sonnei
has been shown to uniquely recognize immunoglobulin A (IgA) and IgG from patients
previously infected by the bacterium, and interestingly, the protein did not cross-react with
sera from patients that have been infected with other enteric infections [21]. Identification of
such an antigenic protein that is specifically recognized by host antibodies would, therefore,
guide us in the development of a new, fast and highly sensitive antigen-based test for
specific detection of S. sonnei infections. In addition, it provides vital information on human
immune responses against shigellosis. Albeit important, molecular characterization and
structural details of the antigenic protein are scant.

Our mass spectrometry analysis showed that the 43.8-kDa antigenic protein from
S. sonnei is PBP6. In this study, we constructed the 3D-model of the 43.8-kDa antigenic
protein from S. sonnei using protein homology modelling. We analyzed further the molecu-
lar complex of the protein with its substrate, peptidoglycan fragment containing the full
pentapeptide, and expounded structurally in detail the molecular interactions between
the protein and its potential antibiotic inhibitors, namely pivmecillinam and ceftriaxone,
which are recommended by the WHO to be used to treat S. sonnei infections [6]. The results
showed that the antigenic protein is a D-Ala-D-Ala carboxypeptidase and shares similar
architecture particularly with PBPs 5/6 from E. coli [12]. These findings provide valuable
information on the molecular interactions important for ligand recognition and catalysis by
the protein. Moreover, our molecular docking revealed that the next-generation β-lactam
antibiotics bind strongly to the active site of the protein. Understanding these interactions
will be helpful to the development of effective drugs to treat S. sonnei infections.

2. Methodology
2.1. Protein Identification

The 43.8-kDa protein from S. sonnei has been shown to uniquely cross react with human
IgA and IgG [21]. However, the 3D structure of this protein is yet to be determined. Our
previous mass spectrometry analysis using matrix-assisted laser desorption/ionization-
time of flight (MALDI-ToF) revealed that the 43.8-kDa protein from S. sonnei is PBP6.



Life 2022, 12, 1022 3 of 14

The protein sequence of the 43.8-kDa protein from S. sonnei (GenBank: CSE36004.1)
was used and compared using BLAST (Basic Local Alignment Search Tool), available
at https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 15 May 2022), against the non-
redundant protein sequences database and multiple sequence alignment was carried out
using Clustal Omega on Jalview [22] to examine sequence homology among the bacterial
species. The results showed that the antigenic protein was a PBP6 with a D-Ala-D-Ala car-
boxypeptidase architecture and had a high degree of similarity with PBP6 from E. coli [12]
and other Shigella species.

2.2. Protein Homology Modelling

BLAST search was performed again using the sequence of the 43.8-kDa protein from S.
sonnei against the Protein Data Bank (PDB) database to search for suitable templates used
in the protein homology modelling. A total of 9 PBP structures (PDB accession numbers:
3IT9 [12], 1NZO [13], 5J8X [15], 1HD8 [16], 6NTZ [14], 5TR7, 3A3J [17], 5FSR [23] and
4K91 [18]) were selected and used in the multiple sequence alignment prior to homology
model construction using EasyModeller 4.0 [24]. The target sequence was aligned with
templates and used to generate three models with the best discrete optimized potential
energy (DOPE) scores. The best model was selected, optimized and subsequently used
in the loop refinement tool, as implemented in EasyModeller 4.0 [24]. Verify3D [25] and
PROCHECK [26] were used to verify the protein model with its 3D profiles and evaluate
the stereochemical quality of the model by Ramachandran plot, respectively. Both pro-
grams were available at UCLA SAVES v6.0 (https://saves.mbi.ucla.edu/, accessed on
20 May 2022).

2.3. Protein and Ligand Molecular Docking

PBPs are key players in the peptidoglycan biosynthesis and remodeling of bacterial
cell walls, as well as in drug resistance mechanisms [8,10]. As the name suggests, PBPs
are the main targets of the β-lactam antibiotics and antibiotics such as pivmecillinam and
ceftriaxone were recommended by the WHO for the treatment of shigellosis [6]. In order to
understand the mechanism of inhibition exhibited by these β-lactam antibiotics, detailed
intermolecular interactions between the antibiotic inhibitors and PBP6 from S. sonnei are
crucial. Using the structures of pivmecillinam and ceftriaxone, retrieved from PubChem and
converted into mol2 files, protein-ligand docking analysis was performed using AutoDock
Vina, as implemented in UCSF Chimera [27]. Molecular docking simulations were executed
at the catalytic active sites S36, K39, S102, N104, K205 and G207, by adopting the docking
grid size of 28 × 30 × 28 Å along three axes, covering all the essential passive residues
centered at the 9.24, −23.08, −1.27 Å regions, to provide enough space for the ligand
conformations. At least 10 conformations were generated, and the model with the least
binding energy and RMSD was chosen for further analysis. All generated docked structures
were visualized using CCP4mg [28].

3. Results
3.1. Identification of the 43.8-kDa Protein from Shigella sonnei

A previous study has shown that the 43.8-kDa outer membrane-associated protein
from S. sonnei was able to uniquely recognize IgA and IgG from patients previously
infected by the bacterium [21]. In order to identify and characterize the protein, mass
spectrometry analysis using MALDI-ToF was carried out and the BLAST search against the
non-redundant protein sequence database was performed to determine the protein type.
Results from the BLAST search showed that the 43.8-kDa protein has high similarity with
over 99% sequence identity and 100% query coverage with D-Ala-D-Ala carboxypeptidases
(also known as PBP6) of E. coli, S. flexneri, Shigella boydii and Shigella dysenteriae. A multiple
sequence alignment was carried out, comparing PBP6 from S. sonnei with its orthologs
from other closely related bacterial species and the result showed that the protein is highly
conserved, with a high degree of sequence homology (Figure 1). This is expected, as
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S. sonnei and other Shigella species are closely related and genetically similar to their
ancestor E. coli [29].
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Figure 1. Mass spectrometry analysis and sequence alignment of D-Ala-D-Ala carboxypeptidase
from Shigella sonnei and its orthologs. Mass spectrometry analysis was performed using MALDI-ToF
technique, which generated three tryptic-digested peptides (891, 2096 and 2388 Da). Multiple
sequence alignment was carried out using Clustal Omega on Jalview [22]. The protein sequence is
highly conserved across the bacterial species. However, D-Ala-D-Ala carboxypeptidase from S. sonnei
is 7 residues longer than D-Ala-D-Ala carboxypeptidases from Escherichia coli, Shigella boydii, Shigella
dysenteriae and Shigella flexneri. The 7-residue sequence is probably a non-coding region. Variations
across the bacterial species are highlighted as white on black. The three tryptic-digested peptides
are underlined.

3.2. Homology Model of D-Ala-D-Ala Carboxypeptidase (PBP6) from Shigella sonnei

Homology modelling builds 3D models of a protein using experimentally determined
structures of related proteins as templates. Albeit its importance in the peptidoglycan
biosynthesis, the structure of PBP6 from S. sonnei has not yet been determined. Due to its
high sequence similarity with other PBP6s from the Enterobacteriaceae bacterial family,
homology modelling was employed to construct the 3D structure of PBP6 from S. sonnei
in this study. Thus, a BLAST search was performed against the PDB database to search
for suitable templates and nine PBP5/6s from E. coli, Vibrio cholerae, Haemophilus influenzae
and Pseudomonas aeruginosa (Table 1) were selected as templates to model the structure
for the S. sonnei PBP6. Results from the BLAST search showed that the S. sonnei PBP6 has
high similarity with 100% sequence identity and more than 84% query coverage with the
selected templates. We modelled the S. sonnei PBP6, omitting the first 37 residues and the
last 22 residues. This is a common strategy used for PBP5/6 expression and crystallization,
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because it removes the N-terminal signal peptide and the C-terminal hydrophobic portion
of the protein [12].

Table 1. Templates used in the protein homology modelling and the BLAST search result against
PDB database with the 43.8-kDa protein from S. sonnei.

PDB ID Organism Title Sequence Coverage/Identity (%) E-Value

3IT9 Escherichia coli Chain A, crystal structure of PBP6 from
Escherichia coli in apo state 85.0/100.0 0.0

6NTZ Escherichia coli Chain A, crystal structure of Escherichia
coli PBP5-meropenem 88.0/64.4 4 × 10−168

5J8X Escherichia coli Chain A, crystal structure of Escherichia
coli PBP5 with 2C 86.0/65.0 3 × 10−161

1NZO Escherichia coli Chain A, crystal structure of wild type
PBP5 from Escherichia coli 84.0/65.2 2 × 10−158

1HD8 Escherichia coli
ChainA, crystal structure of a

deacylation-defective mutant of PBP5 at
2.3 Å resolution

84.0/64.9 3 × 10−157

5TR7 Vibrio cholerae
Chain A, crystal structure of a putative
D-alanyl-D-alanine carboxypeptidase

from Vibrio cholerae
84.0/55.8 1 × 10−128

5FSR Escherichia coli Chain A, crystal structure PBP6b from
Escherichia coli 84.0/49.6 2 × 10−115

3A3J Haemophilus
influenzae

Chain A, crystal structure of PBP5 from
Haemophilus influenzae 84.0/53.8 1 × 10−114

4K91 Pseudomonas
aeruginosa

Chain A, crystal structure of PBP5 from
Pseudomonas aeruginosa in apo state 84.0/47.3 7 × 10−104

Figure 2 shows the overall structure of PBP6 from S. sonnei; it forms two distinctive
domains, a large N-terminal DD-carboxypeptidase domain and a smaller β-sheet rich
C-terminal domain of unknown function (DUF). The two main domains are linked through
a short linker between the last α-helix of the DD-carboxypeptidase domain and the first
β-strand of the DUF (Figure 2b). As in PBP6 from E. coli, the overall structure of the S. sonnei
PBP6 consists of six α-helices and sixteen β-strands, in which the topology of the protein
resembles those of class A β-lactamases [12]. The DD-carboxypeptidase domain is formed
from five α-helices packed against a pseudopilin-like fold (a single α-helix packed against
five antiparallel β-strands) [30], with extensive loop regions that form the active site of the
protein. Evaluation of the stereochemical quality of the model by Ramachandran plot using
PROCHECK [26] indicated that >95.3% (287 residues) of the residues have psi and phi
angles in the most favored regions, with no residues in the disallowed region (Figure 2e).

As expected from its sequence similarity, the overall structure of the S. sonnei PBP6
resembles that of PBP6 from E. coli [12], with a root-mean-square deviation (RMSD) of
0.3 Å between the Cα traces of two proteins (981 atoms aligned) (Figure 3). The loop
(residues 67–91) that formed the active site groove of the E. coli PBP6 is bent slightly
inwards, compared to the similar loop in the S. sonnei PBP6. The loop is important in
the activity of the carboxypeptidase, as it makes extensive contacts with the S-X-N motif,
essential in the deacylation of the acyl–enzyme complex [13]. Multiple sequence alignment
suggested that PBP 5/6 templates used in the protein homology modelling share a high
degree of sequence similarity. Like other PBPs, they also contain unique conserved motifs
S-X-X-K, S-X-N and K-T-G, forming the active sites that are essential for the substrate
catalysis [8,11]. These motifs also can be found in serine-based β-lactamases, such as AmpC
and TEM-1 [12]. In the case of the S. sonnei PBP6, the three sequence motifs are S-L-T-K,
S-G-N and K-T-G, where the first serine (S36) is the catalytic nucleophile and is located
within the loop between β2 and α1 of the DD-carboxypeptidase domain (Figure 3). In PBP2,
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S310 of the S-X-X-K motif is the site of acylation by both the peptide substrate and β-lactams,
and is important for the substrate binding and catalysis, where mutation at the position
310 to alanine has been shown to completely abolish the binding with ceftriaxone [31].
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electrostatic surface plot of the S. sonnei PBP6. (e) The Ramachandran plot of the protein 3D model.
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Figure 3. Sequence alignment and superimpositions of PBP6 from S. sonnei and the templates used
in the protein modelling. Multiple sequence alignment using Clustal Omega on Jalview [22], which
showed a high degree of sequence similarity among the templates. The three sequence motifs S-L-T-K,
S-G-N and K-T-G (underlined) are conserved in all proteins and the catalytic active binding sites S36,
K39, S102, N104, K205 and G207, located in a groove (bottom panel) within the DD-carboxypeptidase
domain, are labelled with a star (top panel).

3.3. Molecular Docking of PBP6 from Shigella sonnei with Its Pentapeptide Substrate and
β-Lactam Antibiotic Inhibitors

Crystal structures of PBP6 from E. coli have been previously reported [12]. The study
describes the structural basis of interactions between PBP6 and its peptidoglycan substrate
fragment containing the full pentapeptide in a pre-acylation complex; this is the first for a
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PBP as well as with its antibiotic ampicillin inhibitor, which provide valuable information on
the molecular interactions vital for ligand binding and catalysis by DD-carboxypeptidases
in general. Most importantly, the protein–substrate complex structure provides a template
for models of cell wall biosynthesis by PBPs and in addition, the protein–inhibitor complex
structure presents substantial evidence for the molecular recognition by β-lactam antibiotics
for PBPs [12].

In order to demonstrate the intermolecular interaction between PBP6 from S. sonnei
and its peptidoglycan substrate, we established in silico binding analysis and molecular
docking between the two molecules, based on the previously reported structures of E. coli
PBP6 [12,23]. The full pentapeptide used in this study was extracted from the crystal
structure of E. coli PBP6 (PDB: 3ITB) [12] and a docking simulation was performed at the
active sites of PBP6. The structure revealed that the pentapeptide was aligned in the active
site groove of the DD-carboxypeptidase domain, in a similar fashion to that of the E. coli
PBP6 (Figure 4). The docked complex of S. sonnei PBP6 with pentapeptides showed that
the substrate bound to the active site groove via hydrogen bonding interactions with the
residues S79, V80, Q101, G144, D146 and R240 (Figure 4a). Although the substrate was not
in direct contact with the catalytic active sites of PBP6, the functionally important residues
of PBP6 that formed the active site groove interacted with the substrate. These flexible loops
may undergo conformational changes upon binding, which may bring the pentapeptide
closer to the catalytic active sites of PBP6, particularly the catalytic nucleophile S36 that
lies within the loop between β2 and α1 of the DD-carboxypeptidase domain and is in
close proximity to the substrate. This may subsequently activate the acylation of the
pentapeptide, ultimately leading to the transpeptidation of peptidoglycan biosynthesis.
However, as for the E. coli PBP6, S40 has been shown to form a hydrogen bond with the
D-Ala residue of the pentapeptide (Figure 4b) [12].
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Figure 4. PBP6 complex structures with the pentapeptide substrate. (a) Interfacial contacts between
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bonding interactions with residues S79, V80, Q101, G144, D146 and R240 of the S. sonnei PBP6.
The electrostatic surface of the complex is in the right panel. (b) Interfacial contacts between the
E. coli PBP6 (PDB: 3ITB) with the pentapeptide substrate [12]. Ribbon view of the substrate (green) in
the active site groove of the E. coli PBP6 (gold), which made contacts with residues S40, G81, R194,
T212 and M208. R194 establishes both a salt bridge and a water-mediated hydrogen bond with the
pentapeptide. The electrostatic surface of the complex is in the right panel.

Given the importance of the β-lactam antibiotics, such as pivmecillinam and ceftri-
axone, in the treatment of shigellosis, as recommended by the WHO as the second-line
treatment in all age groups [6], we sought to evaluate the molecular interactions between
PBP6 and these β-lactam antibiotics. The structures of pivmecillinam and ceftriaxone,
retrieved from PubChem, were used in the protein-ligand analysis, performed using
AutoDock Vina, as implemented in Chimera [27]. From the molecular docking simula-
tions, we found that both β-lactam antibiotics can fit into the active site groove of the
DD-carboxypeptidase domain, although in slightly different orientations, possibly owing
to their different structures (Figure 5). The docked complex of PBP6 with ceftriaxone,
a third-generation cephalosporin, showed that the β-lactam inhibitor bound to the groove
via hydrogen bonding interactions with the residues N104, D146, A163, T206 and T208;
completely shielded the catalytic nucleophile S36 from access by the substrate (Figure 5a).
Moreover, the cephem group of ceftriaxone was oriented in close proximity to S36, which
is important for nucleophilic attack of the β-lactam carbonyl by the serine residue and
may eventually may result in the opening of the β-lactam ring and formation of a stable
and long-lived acylated complex [8,10]. Furthermore, the active site N104 made contact
with the methoxyimino group of ceftriaxone via a hydrogen bond and additionally, T206
and T208 that flanked the active site G207 formed hydrogen bonds with the amino and
methoxyimino groups of ceftriaxone, respectively (Figure 5a).

However, unlike ceftriaxone—which was predicted to shield the catalytic site but
did not interact the catalytic nucleophile S36—pivmecillinam had direct contact with
S36 via the carbonyl group of its penam (Figure 5b). This is an important finding, as it
shows a direct interaction between the inhibitor and the catalytic nucleophile S36, which
is the key residue in the substrate catalysis. The serine hydrogen atom is involved in
hydrogen bonding contact (2.4 Å) with the carbonyl oxygen atom of the penam ring,
whereas the serine Oγ atom is involved in van der Waals contact (4.8 Å) with the carbonyl
carbon atom of the penam ring, poised with proper orientation for the nucleophilic attack
(Figure 5b). Compared to ceftriaxone, which formed five hydrogen bonds, pivmecillinam
established four hydrogen bonds with PBP6. The other three were with T208 and R204,
and these established strong hydrogen bonding interactions, predicted at 2.1/2.9 and
2.0 Å, respectively.

Similarly, the docked complex of PBP6 with ampicillin showed that the serine hy-
drogen atom is involved in hydrogen bonding contact (2.4 Å) with the carbonyl oxygen
atom of the penam ring of ampicillin, but compared to pivmecillinam, ampicillin had only
two hydrogen bonding contacts with PBP6. The other contact was a strong 1.8-Å hydrogen
bond with T208 (Figure 5c). Albeit more contacts between the two molecules, ampicillin
had fewer hydrogen bonds compared to pivmecillinam, which may explain the increasing
antimicrobial resistance reported for the antibiotic [6]. As in the case of the E. coli PBP6,
S40 has been shown to form a hydrogen bond with the penam ring of ampicillin in the
acyl–enzyme complex, but relative to the pre-acylation complex with the pentapeptide
substrate (Figure 4b), there are fewer contacts formed between PBP6 and ampicillin [12].
Additionally, the side chain of T212 is also involved in a hydrogen bond with the amide
group of ampicillin (Figure 5d).
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Figure 5. PBP6 complex structures with the β-lactam antibiotics. (a) Interfacial contacts between the
S. sonnei PBP6 (red) with ceftriaxone (green). The antibiotic made five hydrogen bonding interactions
with the residues N104, D146, A163, T206 and T208 of the S. sonnei PBP6. The electrostatic surface
of the complex is in the right panel. (b) Interfacial contacts between the S. sonnei PBP6 (red) with
pivmecillinam (green). There are four hydrogen bonds formed between pivmecillinam and the
residues S36, T208 and R240 of the S. sonnei PBP6. (c) Interfacial contacts between the S. sonnei
PBP6 (red) with ampicillin (green). There are two hydrogen bonding interactions formed between
ampicillin and the residues S36 and T208. (d) Interfacial contacts between the E. coli PBP6 (gold) with
ampicillin (green) in the acyl–enzyme complex (PDB: 3ITA) [12].
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4. Discussion

Elucidating the complex structures between the S. sonnei PBP6 and its substrates
would allow us to understand the molecular interactions and conformational changes,
important for ligand recognition and catalysis by the enzyme. Together with the previous
studies on other D-Ala-D-Ala carboxypeptidases, such as the E. coli PBP5 [14] and the
E. coli PBP6 [12], they provide insights on how β-lactam antibiotics, such as ceftriaxone
and pivmecillinam, inhibit PBPs by mimicking the peptidoglycan substrate. Our in depth
understanding of these biological mechanisms at the molecular level will be helpful to
guide us in the development of effective drugs to treat S. sonnei infections. S. sonnei has
been continuously becoming resistant to antibiotics and shows an extraordinary ability
to acquire antimicrobial resistance genes from other pathogenic bacterial species, such as
Klebsiella spp. and E. coli [3,4]. In this particular context, various studies have analyzed the
antimicrobial phenotypes and molecular mechanisms underlying resistance in Shigella spp.
For instance, a previous study has focused on genetic characterization and antimicrobial
resistance of Shigella spp., where ESBL genes, such as blaTEM-1, blaCTX-M, blaOXA-1, and
blaSHV-12, are found to be dominant in the S. sonnei isolates. Resistance to ampicillin is
the most common, in which 97.7% of the total 474 Shigella isolates are resistant to the
broad-spectrum antibiotic, whereas 26.0% of the isolates are resistant to ceftriaxone, the
third-generation cephalosporin [32]. Another study has reported that a resistance rate of
95.1% to ampicillin is observed among Shigella isolates, with 53.7% of the isolates carrying
ESBL genes [33]. This is worrying, as these studies indicate an alarming increase in the
ESBL production of Shigella spp. that confer the resistance to β-lactam antibiotics, such
as pivmecillinam and ceftriaxone, which are currently used as the second-line treatment
against shigellosis [5]. Even though PBPs are important targets for the β-lactam antibi-
otics, the molecular interactions between the S. sonnei PBP6 and its substrate, as well as
antibiotic inhibitors, have not been structurally evaluated. As the high-resolution 1.80-Å
crystal structure of the E. coli PBP6 in complex with the pentapeptide substrate has been
published [12], molecular interaction observations of the S. sonnei PBP6 are warranted.
Shigella spp. and E. coli are closely related and genetically similar species [29]. For example,
the S. sonnei PBP6 shares 99% sequence identity with PBP6 from E. coli (Figure 1). Thus,
using protein homology modelling, we modelled the structure of PBP6 from S. sonnei and
comprehensively examined the molecular interactions between PBP6 and its substrate
and inhibitors.

D-Ala-D-Ala carboxypeptidases, as is the case with PBP6, cleave the peptide bond
between the two terminal D-alanines of the pentapeptide stem during the cross-linking of
the peptidoglycan polymers, creating a mesh-like structure [8]. Like other PBPs, PBP6 also
contains active site sequence motifs that are vital for catalysis, including S-X-X-K, S-X-N
and K-T-G. The S-X-X-K motif is the site of acylation by both the peptide substrate and
β-lactams, and is important for the substrate binding and catalysis [8,11]. The acylation
involves the nucleophilic attack by serine at the carbonyl carbon of the penultimate D-Ala
residue in the pentapeptide substrate. Here, we showed that the pentapeptide substrate,
despite the fact that it did not make direct contact with the catalytic active sites of PBP6,
was positioned along the active site groove so that the functionally important residues that
formed the active site interacted with the substrate. Most importantly, the catalytic nucle-
ophile S36 that lies within the flexible loop between β2 and α1 of the DD-carboxypeptidase
domain is in close proximity to the substrate (Figure 4a). This flexible loop may undergo
conformational changes upon substrate binding and bring the pentapeptide closer to the
catalytic active sites of PBP6. The serine residue is important in the acylation of PBPs, where
mutation of S310 to alanine in PBP2 has been shown to completely abolish the binding
with ceftriaxone [31]. Structural conformational changes in the loop within the active site
groove play an important key element in the substrate binding and acylation. Mutations in
the β3–β4 loop of PBP2 have been shown to destabilize the high-affinity state containing
the inward conformation of the loop that is required for contact with ceftriaxone in the
active site, thereby conferring resistance to the antibiotic by a low-affinity drug-binding
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state [34]. Mutations also prevent bending of the β3–β4 loop and hinder the rotation of the
β3 strand essential to form the oxyanion hole for acylation, thus trapping ceftriaxone in a
noncanonical configuration [31].

It is widely accepted that nucleophilic attack of the β-lactam carbonyl by the catalytic
residue serine of transpeptidases causes the opening of the β-lactam ring and the formation
of a stable and irreversible acyl–enzyme complex [8,10]. However, a previous study has
shown that the acylation of the L,D-transpeptidase by the β-lactam nitrocefin is reversible,
which may lead to its limited antimicrobial activity [35]. Although L,D-transpeptidases
are structurally unrelated to D,D-transpeptidase PBPs and cleave L-Lys-D-Ala of the
tetrapeptide stem [36], they also interact with the β-lactam antibiotics and are acylated
by β-lactams, which may provide insights into its resistance mechanism in general. PBPs
recognize β-lactams as they mimic the acyl-D-Ala-D-Ala portion of the peptidoglycan
substrate. Together with the E. coli PBP6 [12], our S. sonnei PBP6 complexes with the
pentapeptide substrate, as well as the two β-lactam antibiotics, provide structural context
to understand this mimicry and additionally give insights into the inhibition mechanism of
β-lactams. Our structures (Figure 5) revealed that the functional β-lactam rings fit in closely
identical positions compared to the pentapeptide substrate (Figure 4a). The β-lactam rings
of all β-lactams studied here formed hydrogen bonds with T208, proving the importance
of this residue in ligand recognition and binding. Furthermore, pivmecillinam made a
hydrogen bond with R240, as did the substrate stem peptide. Although ceftriaxone did
not make any direct contacts with the catalytic nucleophile S36, unlike pivmecillinam
and ampicillin did, all of them were positioned in close proximity to the catalytic residue,
allowing PBP6 to recognize and react with the β-lactams, forming an acyl–enzyme complex
in the same way as it did with the pentapeptide substrate.

5. Conclusions

Elucidating the complex structures between the S. sonnei PBP6 and its ligands not
only provides information on their intermolecular interactions but can also be utilized to
develop high-affinity and specialized PBP6 inhibitors. Like other PBPs, PBP6 recognizes
β-lactams as they mimic the D-Ala-D-Ala moiety. From our molecular docking simulations,
we found that the pentapeptide substrate and the β-lactam antibiotics can fit into the
active site groove of the DD-carboxypeptidase domain, in close proximity to the catalytic
nucleophile S36 for the nucleophilic attack. Two residues, T208 and R240, were found to be
important in ligand recognition, where they made strong hydrogen bonds with β-lactams
and pentapeptides, respectively. Our current computational analysis provides valuable
information on the molecular interactions essential for ligand recognition and catalysis by
PBP6. Understanding these interactions will be helpful in the development of new effective
drugs to treat S. sonnei infections. Further in vitro studies using the S. sonnei PBP6 are
warranted to ensure the specificity of the intermolecular interactions between the protein
and its ligands.
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