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MicroRNA-mediated responses to long-
term magnesium-deficiency in Citrus
sinensis roots revealed by Illumina
sequencing
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Abstract

Background: Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly
on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards.
For the first time, we investigated Mg-deficiency-responsive miRNAs in ‘Xuegan’ (Citrus sinensis) roots using Illumina
sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance.

Results: We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results
suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root
respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-
regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus
(miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and
miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and
miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA
repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and
miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus
Mg-deficiency tolerance.

Conclusions: We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485,
miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on
the miRNA-mediated adaptation to nutrient deficiencies in higher plants.
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Background
Magnesium (Mg)-deficiency, a common problem in
many agricultural crops, occurs most frequently in
strongly acidic, sandy soils, where Mg is very prone to
leaching [1]. Citrus are grown mainly on acidic and
strong acidic soils and Mg-deficiency is responsible for
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the poor fruit quality and the reduction in fruit yield in
some Citrus orchards [2]. According to our investigation
in 2011, over 90% and 77% of Citrus grandis orchard
soils from Pinghe county, Fujian province had a pH less
than 5.0 and a soil exchange Mg content less than the
optimum range, respectively [3]. What’s worse, crop Mg-
deficiency, which is becoming more and more popular
due to soil acidification and improper farmer practices
such as intensive crop production systems and highly
fortified rotation, has been considered to be an urgent
agricultural problem [3, 4]. Although Mg is one of the
most important nutrients in higher plants and plays
essential roles in numerous cellular processes such as
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chlorophyll biosynthesis, gas exchanges [2, 5–7], con-
formational stabilization of proteins, nucleic acids, cell
walls and membranes [8], partitioning and utilization of
photoassimilates [7, 9], activation of enzymes [9, 10] and
reactive oxygen species (ROS) generation [9]. Despite
the important roles of Mg in higher plants, Mg has been
less paid attention by agronomists and botanists relative
to the other nutrients and is considered to be “the
forgotten element” [4, 11]. Therefore, it is very important
to elucidate the molecular mechanisms on Mg-deficiency
impairments and tolerance in higher plants. To our
knowledge, such data are rare [10, 12, 13].
Evidence demonstrates that microRNA (miRNA)-me-

diated posttranscriptional regulation of gene expression
plays a role in plant adaptive responses to deficiencies of
phosphorus (P), potassium (K), nitrogen (N), sulfur (S),
manganese (Mn), boron (B), zinc (Zn) and iron (Fe)
[14–20]. Numerous differentially expressed miRNAs
have been isolated from P-starved Arabidopsis, white
lupin, Medicago truncatula, common bean, rice, barley,
tomato and soybean [21–25]. The roles of P-deficiency-
induced up-regulation of plant miR399 and miR827 in
the maintenance of P homeostasis via inhibiting their
targets ubiquitin-conjugating enzyme E2 24 (UBC24) and
N limitation adaptation (NLA), respectively have been
well characterized [14, 23, 26, 27].
Nitrogen-deficiency-induced alterations of miRNA

profiles have been reported on several higher plants
including maize, Arabidopsis, soybean, common bean
[20, 24, 25, 28, 29]. Several N-deficiency-responsive
miRNAs have been characterized in some details. For
example, root modulation under N-deficiency was
coordinated by miR160, miR167 and miR171 and root
growth was promoted by down-regulating miR167
expression and up-regulating miR160 and miR171 ex-
pression [24, 28]. N-deficiency-induced down-regulation
of miR169 has been demonstrated to be an adaptive
strategy of plants to N-starvation via N-uptake and
remobilization [24, 30].
Despite the vital roles of K in higher plants, little is

known about K-deficiency-responsive miRNAs. In a study,
Yan et al. [31] examined K-deficiency-induced alterations
in expression of miR444a and its targets (i.e., MADS-57,
MADS-27b, MADS-27a and MADS-23) in rice roots, and
found that miR444a was slightly down-regulated and
MADS-23 was greatly up-regulated.
In addition, many differentially expressed miRNAs

have been identified in B-deprived C. sinensis roots
and leaves [17, 18], Cu-starved [32] and Fe-deficient
[33] Arabidopsis, S-deprived Brassica rapus [34],
Mn-limited Phaseolus vulgaris [25] and Zn-deficient
Sorghum bicolor [35].
Although the effects of nutrient deficiencies on

miRNA expression in higher plants have been explored
by some workers, most of these studies have been paid
to herbaceous plants. Little is known about Mg-
deficiency-induced alterations of miRNA expression in
woody plants. Previously, we examined Mg-deficiency-
responsive miRNAs in C. sinensis leaves revealed by
Illumina sequencing and identified 71 down- and 75
up-regulated miRNAs, implying the potential roles of
miRNAs in Citrus Mg-deficiency tolerance [36]. On
this basis, we used Illumina sequencing to sequence
two small RNA libraries from Mg-sufficient (control)
and -deficient C. sinensis roots in order to distinguish
the differences in Mg-deficiency-induced alterations of
miRNA profiles between C. sinensis roots and leaves
and to obtain some miRNAs presumably responsible
for Citrus Mg-deficiency tolerance.

Results
Root dry weight (DW) and root and leaf Mg
Root DW and root and leaf Mg levels were lower in
0 mM Mg-treated seedlings than in 1 mM Mg-treated
ones, and Mg level in leaves from 0 mM Mg-treated
seedlings was much less than the sufficient range (Fig. 1)
[37]. Based on these data and our previous reports
[6, 12], these seedlings submitted to 0 and 1 mM Mg
were regarded as Mg-deficient and -sufficient (control),
respectively.

Illumina sequencing and miRNA annotation
Using high-throughput sequencing, we got 20,726,716
(22,139,574) raw reads from sRNA library constructed
from control (Mg-deficient) roots. After the adaptors,
low quality tags and contaminants being removed, the
control and Mg-deficient root sRNA libraries generated
20,325,777 (5,561,214) and 21,783,568 (6,124,980) clear
reads (unique reads), respectively (Table 1). As shown in
Fig. 2, the majority of the clear reads fell within the
range of 18–25 nt. The most abundant clear reads were
24 nt length, followed by 21, 22, 23 and 20 nt length.
This agrees with the previous data obtained on leaves,
roots [17, 18] and fruits [38] of C. sinensis, and fruits
and flowers of Citrus trifoliata [39]. Therefore, these
data obtained via high-throughput sequencing of sRNA
libraries are reliable. Mg-deficiency increased and
decreased the abundances of 24 and 21 nt reads,
respectively.
Here, 13,624,836 clean reads (3,077,845 unique reads)

from Mg-sufficient roots and 14,510,776 clear reads
(3,378,231 unique reads) from Mg-deficient roots were
mapped to C. sinensis genome (JGIversion1.1, http://
phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_C
sinensis) using SOAP [40]. Thereafter, we used the un-
annotated 5,050,734 and 5,550,820 unique reads from
Mg-sufficient and -deficient roots, respectively to predict
novel miRNAs (Table 1).

http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Csinensis
http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Csinensis
http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Csinensis
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Fig. 1 Root DW (a), root (b) and leaf (c) Mg concentrations in response
to Mg-deficiency. Bars represent mean ± SD (n = 5 for root and leaf Mg
and 9 for root DW). Different letters above the bars indicate a significant
difference at P < 0.05
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Identification and prediction of root miRNAs
As shown in Additional file 1, we identified 733
known miRNAs in C. sinensis roots. To avert false
results due to the use of low abundant miRNAs,
these known miRNAs with a transcript per million
(TPM) value <10 in both Mg-sufficient and -deficient
roots were not utilized for further analysis [17, 41].
The remained 300 miRNAs with a TPM value ≥10 in
Mg-sufficient and/or -deficient roots were utilized for
Mg-deficiency-responsive miRNA analysis (Additional
file 2). As shown in Additional file 3, we obtained 71
up- and 54 down-regulated known miRNAs from Mg-
deficient roots.
As shown in Additional files 4, 5, and 6, we identified

181 novel miRNAs in both Mg-sufficient and -deficient
roots, and 30 up- and 15 down-regulated novel miRNAs
in Mg-deficient roots with a TPM value ≥ ten in Mg-
deficient and/or -sufficient roots.

Validation of sequencing data by stem-loop qRT-PCR
The expression levels of 27 Mg-deficiency-responsive
miRNAs were assayed by stem-loop qRT-PCR. Except
for miR1222, the expression patterns of all miRNAs
obtained by stem-loop qRT-PCR and Illumiona sequen-
cing were similar (Fig. 3 and Table 2). Thus, the results
produced by Illumiona sequencing were reliable.

Prediction and GO analysis of targets for Mg-deficiency-
responsive miRNAs
Here, we predicted 239 and 130 target genes from the
46 known and 15 novel Mg-deficiency-responsive-miR-
NAs, respectively (Additional files 7 and 8). As shown
in Fig. 4a, the targets for known (novel) Mg-deficiency-
responsive miRNAs were associated with 12 (nine) bio-
logical processes. The most abundant three GO terms
were response to stress, transport and protein process
for known miRNA targets and response to stress, regu-
lation of transcription and transport for novel miRNA
targets, respectively. On the basis of the molecular
function, the highest percentages of three groups for
known and novel miRNA targets were nucleic acid
binding, other activity and kinase activity, and other
activity, metal ion binding and transporter activity,
respectively (Fig. 4b). As shown in Fig. 4c, the targets
for known (novel) Mg-deficiency-responsive miRNAs
were related to 12 (eight) cellular components. The
most abundant component for known and novel miR-
NAs was nucleus.

Validation of target genes by qRT-PCR
As shown in Table 2, 105 targets for 11 up- and 16
down-regulated miRNAs were validated by qRT-PCR.
As expected, we found that 65 (61.9%) targets and their
corresponding miRNAs displayed opposite trends in ex-
pression profiles in Mg-deprived roots, suggesting that
miRNAs might play a role in gene regulation by cleaving
mRNAs. However, 34 (32.4%) targets displayed the same
expression profiles with their corresponding miRNAs in
Mg-deficient roots or were not significantly affected by
Mg-deficiency. The remaining 6 (0.06%) targets were not
detected in roots. It is worth mentioning that 4 target
genes (i.e., range1.1g005482m, orange1.1g004896m,
orange1.1g005075m and orange1.1g008078m) belonging
to auxin responsive factor (ARF) family have been
validated by us in C. sinensis [42], suggesting that the
target prediction was accurate.

Discussion
Little is known about the possible roles of miRNAs in
plant Mg homeostasis [36, 43]. Here, we first



Table 1 Summary of sRNA sequencing data from Mg-sufficient and -deficient Citrus sinensis roots
Mg-sufficiency Mg-deficiency

Unique sRNAs Total sRNAs Unique sRNAs Total sRNAs

Raw reads 20,726,716 22,139,574

Clear reads 5,561,214(100%) 20,325,777(100%) 6,124,980(100%) 21,783,568(100%)

Mapped to genomic 3,077,845(55.34%) 13,624,836(67.03%) 3,378,231(55.15%) 14,510,776(66.61%)

Exon antisense 47,462(0.85%) 176,617(0.87%) 50,014(0.82%) 177,516(0.81%)

Exon sense 105,888(1.90%) 358,233(1.76%) 117,753(1.92%) 372,942(1.71%)

Intron antisense 65,331(1.17%) 281,377(1.38%) 71,109(1.16%) 294,537(1.35%)

Intron sense 88,455(1.59%) 520,695(2.56%) 94,926(1.55%) 557,578(2.55%)

miRNA 54,043(0.97%) 3,125,403(15.37%) 53,522(0.87%) 3,364,650(15.45%)

rRNA 125,351(2.25%) 2,205,674(10.85%) 157,937(2.58%) 2,558,877(11.74%)

repeat 1384(0.02%) 3652(0.02%) 1587(0.03%) 3946(0.02%)

snRNA 2722(0.05%) 9423(0.05%) 3188(0.05%) 10,142(0.05%)

snoRNA 1667(0.03%) 6123(0.03%) 1833(0.03%) 6354(0.03%)

tRNA 18,177(0.33%) 767,772(3.78%) 22,291(0.36%) 660,793(3.03%)

Unannotated sRNAs 5,050,734(90.82%) 12,870,808(63.32%) 5,550,820(90.63%) 13,776,233(63.24%)
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investigated the Mg-deficiency-induced alterations of
miRNA profiles in Citrus roots and obtained 101 up-
and 69 down-regulated miRNAs (Additional files 3
and 6), demonstrating that miRNAs might be
involved in Mg-deficiency responses. We obtained
similar amount of miRNAs (71 miRNAs) with
decreased expression, but less amount of miRNAs (75
miRNAs) with increased expression from Mg-deficient
C. sinensis leaves compared with Mg-deficient C.
sinensis roots [36]. Moreover, most of these miRNAs
were isolated only from Mg-deprived roots or leaves,
only 30 Mg-deficiency-responsive miRNAs were
shared by the two. Among the 30 overlapping miR-
NAs, only 15 miRNAs displayed similar expression
trends in Mg-deprived roots and leaves (Table 3).
Thus, great differences existed in Mg-deficiency-
induced alterations of miRNA profiles between roots
and leaves. This agrees with our report that the
Length of sRNAs (nt)
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Fig. 2 Small RNA length distribution from Mg-deficient and -sufficient
C. sinensis roots
physiological and biochemical responses to long-term
Mg-deficiency greatly differed between C. sinensis
roots and leaves [7].
We observed that miR158 was induced in Mg-

deprived roots (Table 2). Similar results have been
obtained on Mg-deficient C. sinensis leaves [36], P-
deficient tomato roots and leaves [22], and B-starved C.
sinensis roots and leaves [17, 18]. As expected, its target
gene SPFH (stomatins, prohibitins, flotillins and HflK/
C)/Band 7/PHB domain-containing membrane-
associated protein family (AT5G62740) was repressed in
Mg-deprived roots. Wang et al. [44] found that Arabi-
dopsis phb3–3 mutants were less sensitive to salt-stress-
induced inhibition of primary root growth. Thus, the
down-regulation of AT5G62740 might contribute to
Citrus Mg-deficiency tolerance via alleviating Mg-
deficiency-induced inhibition of root growth (Fig. 1a).
Gehl et al. [45] observed that the basal tissue respiration
rate in stomatin-like protein 1 (slp1) knockout Arabidop-
sis roots was reduced by 30% compared with wild-type.
In addition, miR2919 expression was induced and its
target: phosphoenolpyruvate carboxylase 3 (PEPC3) was
inhibited in Mg-deprived C. sinensis roots (Table 2).
Therefore, root respiration might be decreased in
Mg-starved C. sinensis roots. This agrees with our
reports that the abundances of pyruvate decarboxylase
(gi|255,579,310) and phosphoglycerate kinase (gi|332,195,235)
in glycolysis and the activities of key enzymes in glycolysis
and tricarboxylic acid (TCA) cycle were reduced in Mg-
deprived C. sinensis roots accompanied by decreased accumu-
lation of carbohydrates and lower respiration [7, 12].
Both root miR6278 and its targets: NB-ARC domain-

containing disease resistance protein involved in disease
resistance and DnaJ/Hsp40 cysteine-rich domain
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superfamily protein (AT3G14470.1) were induced by Mg-
deficiency. In addition, NB-ARC domain-containing
disease resistance protein (AT4G27220.1) targeted by
miR780 was induced in Mg-depprived roots (Table 2).
Similarly, the abundances of Grp94 (HSP; gi|23,477,636)
and disease resistance protein (gi|227,438,123) was in-
creased in Mg-starved C. sinensis roots [12]. Thus, disease
resistance might be elevated in these roots with increased
levels of Ca and K [46], which contribute to plant disease
resistance [47, 48].
MiR414 mainly targets transcriptional regulators includ-

ing MYB, bZIP family transcription factors, WRKY and
scarecrow and might have key roles in plant growth and
development [49]. As expected, miR414 was up-regulated
and its target gene: poly(A) polymerase 1 was inhibited in
Mg-deprived roots (Table 2). This was also supported by
our reports that the abundances of transcription factor
homolog BTF3-like protein (gi|33,945,882), spliceosome
RNA helicase BAT1 (gi|226,528,292) and RNA polymer-
ase β chain (gi|90,403,817) were lowered in Mg-deficient
C. sinensis roots [12].
We found that miR1847 was inhibited in Mg-deprived

roots (Table 2). This agrees with the results obtained on
B-deficient roots [17] and disagrees with the data ob-
tained on B-deficient leaves [18]. As expected, its target
genes: ribosomal protein S3 family proteins were up-
regulated in these roots. In addition, VALRS targeted by
miR6485 were induced or was little affected in Mg-
starved roots (Table 2). Thus, protein biosynthesis might
not be lowered in Mg-starved roots, as shown by
unchanged concentration of total soluble proteins in
Mg-deprived C. sinensis roots [7, 12]. Also, the reduced
dilution due to the decrease in root DW (Fig. 1a) might
account for the unchanged protein level.
MiR5176 was induced in Mg-deprived roots (Table 2),

as found on B-starved C. sinensis roots [17]. DNA mis-
match repair (MMR) system is required for the correc-
tion of DNA biosynthetic errors [50]. MUTL-homologue
1 (MLH1) participates in DNA MMR, correcting DNA
damage and insertion-deletion loops arising from DNA
replication [51]. MLH1 targeted by miR5176 were
induced rather than inhibited in Mg-deprived roots
(Table 2). Thus, MMR system might be up-regulated in
these roots, thus enhancing Citrus Mg-deficiency toler-
ance via correcting DNA biosynthetic errors. Similarly,
DNA repair and meiosis protein (Mre11) targeted by
miR5261 was induced in Mg-deprived roots (Table 2).
Plant leucine-rich repeat receptor-like kinase proteins

play crucial roles in abiotic stresses [52]. MiR5198 and
its target gene: leucine-rich receptor-like protein kinase
(LR-RLK) family protein were repressed and induced in
Mg-starved roots, respectively (Table 2). Similarly,
leucine-rich repeat receptor-like protein kinase
(ACN59310.1) was up-regulated in Mg-starved C.



Table 2 qRT-PCR analysis of predicted target genes for selected Mg-deficiency-responsive known miRNAs in C. sinensis roots
miRNA Fold change

of miRNA
Accession Homology Target genes Potential roles Relative

change of
target genes

miR158 9.23711361** orange1.1g022993m AT5G62740.1 SPFH/Band 7/PHB domain-containing
membrane-associated protein family

Stress response 0.73**

miR1222 −13.23073355** orange1.1g037429m AT4G27220.1 NB-ARC domain-containing disease
resistance protein

Disease resistance
protein

ND

miR2919 6.01101607** orange1.1g002089m AT3G14940.1 Phosphoenolpyruvate carboxylase 3 Carbohydrate
metabolism

0.53**

miR3437 3.97352136** orange1.1g040557m AT1G56140.1 Leucine-rich repeat transmembrane
protein kinase

Transmembrane
signal transduction

0.65**

miR7821 4.13197145** orange1.1g010745m AT1G29760.1 Putative adipose-regulatory
protein (Seipin)

Triacylglycerol
accumulation and
LD proliferation

0.95

miR394 −5.44692358** orange1.1g000114m AT1G20960.1 U5 small nuclear ribonucleoprotein
helicase, putative

mRNA processing 1.48

miR414 3.01957377** orange1.1g004767m AT1G17980.1 Poly(A) polymerase 1 mRNA processing 0.76

orange1.1g006232m AT1G17980.1 Poly(A) polymerase 1 mRNA processing 0.72**

miR418 2.16768709** orange1.1g003146m AT1G20780.1 Senescence-associated
E3 ubiquitin ligase 1

Ubl conjugation
pathway

0.78

miR6150 8.95879131** orange1.1g009434m AT5G62810.1 Peroxin 14 Protein import into
peroxisome matrix,
docking

3.91**

orange1.1g009573m AT5G62810.1 Peroxin 14 Protein import into
peroxisome matrix,
docking

2.36*

orange1.1g018459m AT3G28715.1 ATPase, V0/A0 complex,
subunit C/D

ATP hydrolysis coupled
proton transport

0.82

miR6278 8.85634619** orange1.1g005896m AT3G14470.1 NB-ARC domain-containing
disease resistance protein

Disease resistance
protein

1.63**

orange1.1g030696m AT5G17840.1 DnaJ/Hsp40 cysteine-rich domain
superfamily protein

Stress response 1.56**

miR1847 −2.21361107** orange1.1g026316m AT5G35530.1 Ribosomal protein S3 family protein Translation 2.76**

orange1.1g026835m AT5G35530.1 Ribosomal protein S3 family protein Translation 1.84*

orange1.1g029201m AT2G31610.1 Ribosomal protein S3 family protein Translation 1.91

miR6028 −2.29912898** orange1.1g005923m AT2G33580.1 LysM-containing receptor-like kinase 5 Transmembrane
signal transduction

0.67**

orange1.1g034040m AT5G42990.1 Ubiquitin-conjugating enzyme 18 Protein ubiquitination ND

orange1.1g021729m AT4G29100.1 Basic helix-loop-helix (bHLH)
DNA-binding superfamily protein

Transcription factor ND

orange1.1g026539m AT1G79020.1 Enhancer of polycomb-like
transcription factor protein

Transcription regulation ND

orange1.1g045123m AT4G35800.1 RNA polymerase II large subunit mRNA synthesis ND

orange1.1g003175m AT4G14700.1 Origin recognition complex 1 DNA synthesis
and replication

0.57**

orange1.1g006076m AT3G46790.1 Tetratricopeptide repeat
(TPR)-like superfamily protein

6.01**

orange1.1g029970m AT3G49940.1 LOB domain-containing protein 38 6.05**

orange1.1g028357m AT2G45850.2 AT-hook motif nuclear-localized
protein 9 (AHL9)

Transcription factor 6.12**

miR5176 4.58746604** orange1.1g005789m AT4G09140.1 MUTL-homologue 1 DNA mismatch repair 3.21**

orange1.1g008397m AT4G09140.1 MUTL-homologue 1 DNA mismatch repair 2.87**

orange1.1g010846m AT4G09140.1 MUTL-homologue 1 DNA mismatch repair 3.13**

orange1.1g012406m AT4G09140.1 MUTL-homologue 1 DNA mismatch repair 5.39*

Liang et al. BMC Genomics  (2017) 18:657 Page 6 of 16



Table 2 qRT-PCR analysis of predicted target genes for selected Mg-deficiency-responsive known miRNAs in C. sinensis roots
(Continued)

miR7121 4.74373348** orange1.1g005267m AT1G71400.1 Receptor like protein 12 Hormone-mediated
signaling pathway

0.66**

orange1.1g005542m AT1G71400.1 Receptor like protein 12 Hormone-mediated
signaling pathway

0.77**

orange1.1g008628m AT1G71400.1 Receptor like protein 12 Hormone-mediated signaling
pathway

1.76**

orange1.1g002167m AT5G27060.1 Receptor like protein 53 Hormone-mediated signaling
pathway

5.01**

orange1.1g012980m AT5G53390.1 O-acyltransferase (WSD1-like) family protein Lipid and fatty-acid
metabolism

0.86

orange1.1g013532m AT5G53390.1 O-acyltransferase (WSD1-like) family protein Lipid and fatty-acid
metabolism

0.72**

orange1.1g027358m AT5G03080.1 Phosphatidic acid phosphatase (PAP2)
family protein

Dephosphorylation 0.53**

orange1.1g027353m AT5G03080.1 Phosphatidic acid phosphatase (PAP2)
family protein

Dephosphorylation 0.56**

miR6190 −3.61190068** orange1.1g029300m AT5G64200.1 Ortholog of human splicing factor SC35 SR protein 2.65**

orange1.1g017284m AT5G34850.1 Purple acid phosphatase 26 Phosphate ion
homeostasis

1.82**

orange1.1g002842m AT4G01810.1 Sec23/Sec24 protein transport family
protein

Intracellular
protein transport

1.64**

miR6446 −3.77151631** orange1.1g016909m AT5G09300.1 Thiamin diphosphate-binding fold
(THDP-binding) superfamily protein

Lipid and fatty-acid
metabolism

3.23**

orange1.1g023827m AT5G09300.1 Thiamin diphosphate-binding fold
(THDP-binding) superfamily protein

Lipid and fatty-acid
metabolism

2.56**

orange1.1g001557m AT5G20280.1 Sucrose phosphate synthase 1F C-compound and
carbohydrate metabolism

3.51**

orange1.1g002665m AT5G20280.1 Sucrose phosphate synthase 1F C-compound and
carbohydrate metabolism

3.93**

miR6485 −4.69704327** orange1.1g001969m AT5G20730.2 Transcriptional factor B3 family protein /
auxin-responsive factor AUX/IAA-related

Transcription factor 1.41*

orange1.1g011274m AT3G22810.1 Plant protein of unknown function (DUF828)
with plant pleckstrin homology-like region

1.68**

orange1.1g031218m AT1G07400.1 HSP20-like chaperones superfamily protein Stress response 0.88

orange1.1g009779m AT1G08960.1 Cation exchanger 11 Transport 0.57**

orange1.1g029454m AT5G51160.1 Ankyrin repeat family protein 0.20**

orange1.1g013633m AT1G28560.1 SnRNA activating complex family protein Auxin signaling pathway 2.27**

orange1.1g017698m AT1G28560.1 SnRNA activating complex family protein Auxin signaling pathway 1.33**

orange1.1g042988m AT5G62850.1 Nodulin MtN3 family protein Transport 0.59**

orange1.1g007868m AT1G72650.2 Myb family transcription factor TRFL6 Transcription factor 4.39**

orange1.1g046667m AT2G38940.1 Phosphate transporter 1;4 Phosphate transport 0.91

orange1.1g001289m AT1G14610.1 Valyl-tRNA synthetase / valine-tRNA
ligase (VALRS)

Protein biosynthesis 1.75**

orange1.1g001303m AT1G14610.1 Valyl-tRNA synthetase / valine-tRNA
ligase (VALRS)

Protein biosynthesis 1.99**

orange1.1g001757m AT1G14610.1 Valyl-tRNA synthetase / valine-tRNA
ligase (VALRS)

Protein biosynthesis 1.11

orange1.1g024117m AT2G47920.1 Kinase interacting (KIP1-like) family protein 0.21**

orange1.1g036588m AT4G20140.1 Leucine-rich repeat transmembrane
protein kinase

Transmembrane
signal transduction

4.54*

orange1.1g003591m AT5G05680.1 Nuclear pore complex protein NUP88 mRNA transport,
protein transport

1.59*
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Table 2 qRT-PCR analysis of predicted target genes for selected Mg-deficiency-responsive known miRNAs in C. sinensis roots
(Continued)

miR1044 −5.19771615** orange1.1g001378m AT1G10170.1 NF-X-like 1 Protein ubiquitination 2.00**

orange1.1g001376m AT1G10170.1 NF-X-like 1 Protein ubiquitination 2.61*

orange1.1g047796m AT2G38380.1 Peroxidase superfamily protein Stress response 1.97**

orange1.1g042193m AT5G03340.1 ATPase, AAA-type, CDC48 protein Cell cycle, cell division,
protein transport,
transport

4.02*

orange1.1g019546m AT2G40340.1 Integrase-type DNA-binding
superfamily protein

Abscisic acid signaling
pathway

0.60**

miR5198 −5.36879795** orange1.1g002063m AT1G72180.1 Leucine-rich receptor-like protein
kinase family protein

Transmembrane signal
transduction

1.84**

miR5029 −5.99278869** orange1.1g012168m AT5G53450.1 OBP3-responsive gene 1 0.03**

orange1.1g026587m AT4G31300.3 Proteasome subunit beta type-6 (PBA1) Protein ubiquitination 2.26**

orange1.1g029964m AT4G31300.3 Proteasome subunit beta type-6 (PBA1) Protein ubiquitination 2.21**

orange1.1g030788m AT4G31300.3 Proteasome subunit beta type-6 (PBA1) Protein ubiquitination 2.91**

orange1.1g014625m AT3G23510.1 Cyclopropane-fatty-acyl-phospholipid
synthase

Lipid and fatty-acid
metabolism

2.44**

orange1.1g018123m AT3G44160.1 Outer membrane OMP85 family protein Transmembrane transport 1.43*

miR5261 −6.08070339** orange1.1g018132m AT3G56930.1 DHHC-type zinc finger family protein 1.94**

orange1.1g010695m AT3G12640.1 RNA binding (RRM/RBD/RNP motifs)
family protein

mRNA processing 2.40**

orange1.1g011967m AT3G12640.1 RNA binding (RRM/RBD/RNP motifs)
family protein

mRNA processing 2.80**

orange1.1g031636m AT1G67620.1 Lojap-related protein 2.41**

orange1.1g033883m AT1G67620.1 Lojap-related protein 2.03**

orange1.1g004959m AT5G66850.1 Mitogen-activated protein kinase kinase
kinase 5

Intracellular signalling 1.97*

orange1.1g043928m AT2G36110.1 Polynucleotidyl transferase, ribonuclease
H-like superfamily protein

3′-5′ exonuclease activity 3.32**

orange1.1g037980m AT2G36110.1 Polynucleotidyl transferase, ribonuclease
H-like superfamily protein

3′-5′ exonuclease activity 2.17**

orange1.1g004713m AT5G54260.1 DNA repair and meiosis protein (Mre11) DNA damage,
DNA repair, meiosis

4.47**

orange1.1g010785m AT3G26020.2 Protein phosphatase 2A regulatory
B subunit family protein

Intracellular signalling 2.01*

orange1.1g000012m AT1G55860.2 Ubiquitin-protein ligase 1
(E3 ubiquitin-protein ligase UPL1)

Protein ubiquitination 2.05**

orange1.1g000013m AT1G55860.2 Ubiquitin-protein ligase 1
(E3 ubiquitin-protein ligase UPL1)

Protein ubiquitination 2.82**

orange1.1g029528m AT5G01520.1 RING/U-box superfamily protein Protein ubiquitination 4.05*

orange1.1g029508m AT1G22360.1 UDP-glucosyl transferase 85A2 Flavonoid biosynthetic
process

1.99**

miR3438 −9.31063262** orange1.1g000163m AT1G55325.2 RNA polymerase II transcription mediators 2.29

miR1151 −10.44661802** orange1.1g018149m AT5G49610.1 F-box family protein Protein ubiquitination 1.82*

orange1.1g018125m AT5G49610.1 F-box family protein Protein ubiquitination 2.69*

orange1.1g023739m AT2G41870.1 Remorin family protein 4.00**

orange1.1g027436m AT2G41870.1 Remorin family protein 2.11**

orange1.1g023033m AT2G36690.1 2-oxoglutarate (2OG) and
Fe(II)-dependent oxygenase
superfamily protein

Oxidoreductase 2.03*

orange1.1g026453m AT1G17020.1 Senescence-related gene 1 Oxidoreductase 2.31**

orange1.1g020233m AT2G36690.1 2-oxoglutarate (2OG) and
Fe(II)-dependent oxygenase
superfamily protein

3.73*

orange1.1g037473m AT5G07480.1 KAR-UP oxidoreductase 1 Oxidoreductase 1.92
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Table 2 qRT-PCR analysis of predicted target genes for selected Mg-deficiency-responsive known miRNAs in C. sinensis roots
(Continued)

miR6219 −11.91465055** orange1.1g010903m AT5G15130.1 WRKY DNA-binding protein 72 Transcription factor 1.65**

miR7708 −8.18079862** orange1.1g023136m AT1G06890.1 Nodulin MtN21 /EamA-like
transporter family protein

2.14**

miR780 −12.80878923** orange1.1g044623m AT5G17230.2 Phytoene synthase Carotenoid biosynthesis 2.15*

orange1.1g030826m AT2G26560.1 Phospholipase A 2A Lipid degradation ND

orange1.1g004573m AT4G27220.1 NB-ARC domain-containing
disease resistance protein

Disease resistance 1.58**

miR160 10.33203655** orange1.1g005482m AT4G30080.1 Auxin response factor 16 Auxin signaling pathway 4.54*

orange1.1g004896m AT2G28350.1 Auxin response factor 10 Auxin signaling pathway 22.94**

orange1.1g005075m AT4G30080.1 Auxin response factor 16 Auxin signaling pathway 4.01**

orange1.1g008078m AT1G77850.1 Auxin response factor 17 Auxin signaling pathway 2.90*

The relative changes of target genes are the ratio of Mg-deficient to -sufficient roots. The value for relative change of target gene was a mean of three biological
replicates with two technical replicates; Target genes that had the expected changes in mRNA levels were marked in bold; * and ** indicate a significant
difference at P < 0.05 and P < 0.01, respectively. ND, not detected
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reticulata roots [13]. Thus, miR5198 might be involved
in Citrus Mg-deficiency responses.
Root miR780 was repressed by Mg-deficiency (Table 2),

as found on B-starved C. sinensis roots [17]. As expected,
its targets: NB-ARC domain-containing disease resistance
protein and phytoene synthase (PSY) were up-regulated in
Mg-starved roots (Table 2). Various transgenic plants
over-expressing bacterial or plant gene encoding PSY, a
major rate-limiting carotenoid (Car) enzyme, displayed in-
creased Car level [53, 54]. Therefore, Car biosynthesis
might be enhanced in Mg-starved C. sinensis roots, thus
increasing their antioxidant ability.
We observed that miR7121 and its target gene:

phosphatidic acid phosphatase (PAP2) family protein
was up- and down-regulated in Mg-starved roots,
respectively (Table 2). Nakano et al. [55] demon-
strated that the inhibition of PAP2 expression or
function conferred resistance to Ralstonia solana-
cearum via rapidly triggering plant defenses in Nicoti-
ana benthamiana. Thus, the down-regulation of PAP2
family protein might contribute to plant disease-
resistance.
As shown in Table 2, miR6190 was down-regulated

and its target genes [i.e., purple acid phosphatase 26
(PPAP26), Sec23/Sec24 protein transport family protein
and ortholog of human splicing factor SC35, also known
as serine/arginine-rich (SR) splicing factor SC35] were
up-regulated in Mg-deficient roots. SR proteins are
required for regulating alternative splicing. In higher
plants, great alterations in alternative splicing due to
various abiotic stresses demonstrate the roles of SR
proteins in the adaptation to environmental stress [56].
Induction of acid phosphatases (APases) by P-starvation
is a well-documented mechanism of plant P-deficiency
tolerance. Hurley et al. [57] demonstrated that AtP-
PAP26 was the major contributor to P-deficiency-
inducible APase activity. In addition, AtPPAP26 also
showed alkaline peroxidase (POD) activity. Mg-deficiency-
induced up-regulation of root PPAP26 (Table 2) agrees
with the report that AtPPAP26 was induced in P-deficient
Arabidopsis roots, shoots and suspension cells [58] be-
cause C. sinensis leaf, stem and root P levels were reduced
by Mg-deficiency [46]. Coat protein complex II (COPII)
vesicles play an essential role for the export of secretory
cargo from the endoplasmic reticulum (ER) to the Golgi
complex in all eukaryotes [59]. Mg-deficiency-induced up-
regulation of root gene encoding Sec23/Sec24 protein
transport family protein (Table 2), a subset of the COPII
components, agrees with our report that the abundance of
Sec23/Sec24 protein transport family protein was elevated
in B-deficient roots [60].
In Arabidopsis, miRNA160 negatively regulates the re-

pressor auxin response factor (ARF) family: ARF17 [61],
ARF16 [62] and ARF10 [63]. The repression of these
genes by miR160 is required for seed germination and
the normal development of roots, stems and leaves. Li
et al. [64] demonstrated that soybean miR160a nega-
tively regulated the progress of leaf senescence via
repressing its targets: ARF10, ARF16 and ARF17. We
found that miR160 was induced in Mg-deficient roots
(Table 2), as obtained on P-starved Lupinus albus roots
[65] and N-deficient maize roots [66]. Therefore, the
induction of root miR160 by Mg-deprivation might be
an adaptive response. Unexpectedly, its targets: ARF10,
ARF16 and ARF17 were up-regulated in Mg-deprived C.
sinensis roots (Table 2). Endogenous target mimics
(eTMs) can impede the interaction between miRNAs
and their authentic targets via binding to miRNAs [67,
68]. Lin et al. [69] demonstrated that eTMs repressed
miR160-mediated cleavage of ARF10, ARF16 and ARF17
during longan somatic embryogenesis. No negative
correlations were observed among the levels of miR160
and ARF10, ARF16 and ARF17 transcripts in longan
vegetative and generative tissues. Thus, the correlations



Nuc
lei

c a
cid

 b
ind

ing

Kina
se

 a
cti

vit
y

M
et

al 
ion

 b
ind

ing

Tra
ns

cr
ipt

ion
 fa

cto
r a

cti
vit

y

tra
ns

fe
ra

se
 a

cti
vit

y

Pro
te

in 
bin

din
g

Tra
ns

po
rte

r a
cti

vit
y

Nuc
lea

se
 a

cti
vit

y

Lig
as

e 
ac

tiv
ity

Oxid
or

ed
uc

ta
se

   
bin

din
g

ATPas
e 

ac
tiv

ity

Oth
er

 b
ind

ing
 

Oth
er

 a
cti

vit
y  

)
%(

egatnecre
P

0

7

14

21

28

35

Resp
onse

 to
 st

ress

 Transp
ort

Protein  m
etabolic

 proce
ss

Regulatio
n of tr

ansc
rip

tio
n

Deve
lopmental p

roce
ss

Nucle
ic 

acid
 m

etabolic
 proce

ss

Signal tr
ansd

ucti
on

Oxid
atio

n re
ducti

on

Carbohyd
rate m

etabolic
 proce

ss

Cellu
lar p

roce
ss

Lipid m
etabolic

 proce
ss

Other m
etabolic

 proce
ss

)
%(

egatnecre
P

0

5

10

15

20

25

30
Known
Novel

B

Nuc
leu

s

M
em

br
an

e

Chlo
ro

pla
st

Cyto
pla

sm

Com
ple

x

 P
las

m
od

es
m

a

Cyto
so

l

Cell
 w

all

Vac
uo

le

Extr
ac

ell
ula

r r
eg

ion

Golg
i a

pp
ar

at
us

Oth
er

s

)
%(

egatnecre
P

0

6

12

18

24

30

36

16.7

27.9

12.5
10.1

12.5

8.9
11.6

9.4

12.7

8.2

3.8
6.0

4.7
2.6 2.2

7.6

2.2

11.6

25.3

28.1

10.4
13.0

6.8 6.8 6.3 5.2 5.2 5.2
2.1 2.1 1.6 1.6

16.2

25.0

30.0 30.0

25.0

13.3

8.9
7.2

2.2 2.2 2.22.2 1.1 1.1
4.4

8.0

2.5
1.3

4.2

20.8

2.1
4.2

8.3
10.4

2.1

8.3

4.2

2.0

14.0

24.0

18.0

2.0 2.0

A

0 0 0

0 0

C

0 0 0 0
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between miR160 and its targets in C. sinensis roots can
be explained in this way.
Root miR6485 was repressed and its several target

genes were up-regulated by Mg-deprivation (Table 2). Li
et al. [70] reported that ARF7 (AT5G20730) is necessary
for both auxin signaling and ethylene responses in
Arabidopsis roots. Okushima et al. [71] observed that
lateral root formation was badly damaged in Arabidopsis
arf7 arf19 double knockout mutant, concluding that
ARFs directly activated LATERAL ORGAN BOUNDAR-
IES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/
ASL) genes, thus regulating lateral root formation. Thus,
the induction of root transcriptional factor B3 family
protein/auxin-responsive factor AUX/IAA-related by Mg-
deficiency might play a part in Mg-deficiency tolerance
via maintaining lateral root formation. Similarly, SnRNA
activating complex family protein (SDR2), which is asso-
ciated with auxin-activated signaling pathway, was
induced in Mg-deprived roots (Table 2). Ohtani et al.
[72] reported that srd2 mutation repressed the expres-
sion of PIN-FORMED proteins, which might account
for the failure to generate an auxin gradient, thus leading



Table 3 List of Mg-deficiency-responsive known miRNAs shared
by both C. sinensis roots and leaves

MiRNA Fold change

Leaves Roots

miR6108 −10.67424131** 13.767751**

miR1851 12.01270484** 11.47852696**

miR917 11.96734516** 11.42532082**

miR5525 −10.87750643** 10.81431809**

miR158 −6.05735341** 9.23711361**

miR1077 11.84568538** 8.75152564**

miR779 −8.10749886** 8.40390779**

miR1168 6.26630003** 7.67556689**

miR7730 12.71420043** 7.66997733**

miR1512 4.98806257** 7.2149053**

miR1440 5.4977661** 6.69472111**

miR5782 −10.28908522** 5.9080234**

miR3520 4.1203203** 5.61646655**

miR5830 −4.18762998** 5.11294928**

miR395 10.30345436** 4.61153607**

miR5210 −3.03780053** 4.38945452**

miR3437 −4.38720917** 3.97352136**

miR5304 4.5270768** 3.11469877**

miR7485 2.08344945** 1.63183983**

miR5818 −4.95063483** 1.50697816**

miR1222 −2.88894979** −13.23073355**

miR6425 −5.81634371** −10.19869057**

miR3438 7.67399457** −9.31063262**

miR7708 −10.0710064** −8.18079862**

miR5290 4.73213099** −7.59506455**

miR6247 −9.56671537** −6.67041637**

miR2616 6.25578869** −4.06995485**

miR5286 6.7663942** −3.78538232**

miR6426 4.30631516** −1.65860955**

miR812 7.83035956** −1.64980601**

Data from Additional file 3 and Ma et al. [36]; **indicates a significant
difference at P < 0.01
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to different abnormalities in root morphogenesis in Ara-
bidopsis mutant. Nuclear pore complex protein NUP88
is necessary for systemic acquired resistance and R
protein-mediated defense [73]. The induction of root
NUP88 by Mg-deficiency (Table 2) agrees with the above
inference that that disease-resistance was improved in
Mg-deficient roots.
Root miR1044 was repressed and its target genes [i.e.,

NF-X-like 1 (NFXL1), POD superfamily protein and
ATPase, AAA-type, CDC48 protein] were induced by
Mg-deprivation except for integrase-type DNA-binding
superfamily protein (Table 2). Lisso et al. [74] observed
that AtNFXL1 was induced in roots under salt and os-
motic stress, and that both AtNFXL1-antisense plants
and atnfxl1–1 knock-out mutants had lower growth and
survival rates than wild-type plants when exposed to salt
or osmotic stress. CDC48, a member of AAA-ATPase
family proteins that provides energy for plant develop-
ment via regulating ATPase, is required for plant cell
division, expansion and differentiation [75]. Wang et al.
[76] suggested that the induction of PpCDC48II by low
temperature played a key role in cold-induced freezing
tolerance of Physcomitrella patens cells.
MiR5261 and its target genes were repressed and in-

duced in Mg-starved roots, respectively (Table 2). The
induction of root RNA binding (RRM/RBD/RNP motifs)
family protein by Mg-deficiency agrees with our report
that the abundance of RNA binding (RRM/RBD/RNP
motifs) family protein was elevated in B-deficient roots
[60]. A typical mitogen-activated protein kinase (MAPK)
cascade is composed of three sequentially activated pro-
tein kinases, namely MAPK, MAPK kinase (MAPKK)
and MAPKK kinase (MAPKKK). Stress-tolerance of
some plants such as Arabidopsis, tobacco and cereals
has been enhanced by genetically altering the abun-
dances and/or the activities of some MAPK components
[77, 78]. The induction of root protein phosphatase 2A
(PP2A) regulatory B subunit family protein by Mg-
deficiency (Table 2) agrees with the report that wheat
root PP2AbB"-α was up-regulated when exposed to
various abiotic stresses. Transgenic wheat lines over-
expressing TaPP2AbB"-α displayed better lateral root
development, especially under NaCl and mannitol
stresses [79].
Ubiquitination-proteasomal pathway has been shown

to function in plant senescence and in stress response by
facilitating the degradation of bulk proteins for N recyc-
ling [80]. Transgenic tobacco lines over-expressing a
maize gene encoding E3 ubiquitin ligase (UPL) displayed
increased drought tolerance accompanied by higher ac-
tivities of superoxide dismutase (SOD) and catalase,
more accumulation of proline and less accumulation of
malondialdehyde (MDA) and ROS when exposed to
drought stress [81]. Over-expression of TaFBA1 encod-
ing F-box protein conferred drought and oxidative stress
tolerance in tobacco plants via up-regulating the activ-
ities of SOD, catalase, ascorbate peroxidase (APX) and
POD, and lowering the levels of ROS and MDA [82, 83].
Thus, up-regulation of UPL1 and RING/U-box super-
family protein targeted by miR5261, NFXL1 targeted by
miR1044, F-box family protein targeted by miR1151 and
proteasome subunit beta type-6 (PBA1) targeted by
miR5029 in Mg-starved roots (Table 2) might confer
stress-tolerance, thus contributing to Mg-deficiency tol-
erance in Citrus plants. Similarly, the expression levels
of UPL5 (XP 003594229.1) and F-box family protein (XP
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003612153.1) in C. reticulata roots [13] and the
abundances of putative proteasome subunit alpha type
(gi|255,584,432) in C. sinensis roots [12] were elevated
by Mg-deficiency.

Conclusions
For the first time, we used Illumina sequencing to
identify 71 known and 30 novel miRNAs with increased
expressed, and 54 known and 15 novel miRNAs with
decreased expression in Mg-deficient C. sinensis roots,
demonstrating that miRNAs might be involved in Citrus
Mg-deficiency tolerance. Through integrating our
findings with the previous data, we put forward a
potential scheme for the responses of miRNAs to Mg-
deficiency in Citrus roots (Fig. 5). Here, we obtained
several novel Mg-deficiency-responsive miRNAs (i.e.,
miR5261, miR158, miR6190, miR6485, miR1151 and
miR1044) possibly responsible for Citrus Mg-deficiency
tolerance. Our findings results not only increased our
knowledge on the functions of plant miRNAs under
nutrient deficiencies, but also established foundation to
improve Mg-deficiency tolerance via manipulating the
actions of miRNAs.

Methods
Citrus sinensis Seedling culture and long-term Mg-
deficient treatments
Seedling culture and long-term Mg-deficient treatments
were carried out as described previously [12]. In short,
15-week-old ‘Xuegan’ [Citrus sinensis (L.) Osbeck] seed-
lings, which were grown in 6 L pots (two seedlings per
pot) filled with clean river sand in a greenhouse under
natural photoperiod at Fujian Agriculture and Forestry
University, Fuzhou, were supplied every other day until
dripping with nutrient solution at a Mg concentration of
Fig. 5 A potential scheme for responses of C. sinensis roots miRNAs to Mg-de
LYK5: LysM-containing receptor-like kinase 5; PEX14: Peroxin 14; RBFP: RNA bin
RPS3: Ribosomal protein S3 family protein; WRKY72: WRKY DNA-binding prote
0 mM (Mg-deficiency) or 1 mM (Mg-sufficiency, control)
from MgSO4. S at the nutrient solution was kept at a
constant level by adding equivalent moles of Na2SO4 in
replace of MgSO4. After 16 weeks, ~ 5-mm-long root
apices from new white fibrous roots were harvested and
immediately frozen in liquid N2, then stored at −80 °C
until extraction. The seedlings not being sampled were
used for the measurements of root DW, leaf and root Mg.

Root DW and root and leaf Mg
For each treatment, roots from nine seedlings (one seed-
ling per pot) were taken. Root DW was measured after
being dried at 70 °C to a constant weight (~ 48 h).
Fibrous roots and ~7-week-old leaves (midribs and peti-

oles removed) were harvested and then dried at 70 °C to a
constant weight. Dried roots and leaves were ground to
pass a 40 mesh sieve, finally digested with 1 N HCl [84].
Mg concentration in the solution was measured by atomic
absorption spectroscopy.

Root sRNAs library construction, high-throughput
sequencing, annotation and miRNA identification
Equal amounts of frozen root apices from five seedlings
(one seedling per pot) were pooled as a biological repli-
cate. There was one biological replicate for each treat-
ment. Approximately 0.1 g mixed frozen Mg-deficient or
control root apices were used to extract total RNA with
TRIzol reagent (Invitrogen, Carlsbad, CA). Construction
of sRNA libraries was performed as described by Lu
et al. [17]. Illumina sequencing was carried out with a
Solexa sequencer at the Beijing Genomics Institute
(BGI), Shenzhen, China.
Both sRNA annotation and miRNA identification were

made as described previously [17, 18]. After raw data be-
ing analyzed with a software developed by BGI, clean
ficiency. LRRTPK: Leucine-rich repeat transmembrane protein kinase;
ding (RRM/RBD/RNP motifs) family protein; RLP: Receptor like protein;
in 72
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reads were then utilized to assay length distribution.
Finally, the clear reads were mapped to C. sinensis gen-
ome (JGIversion 1.1, http://phytozome.jgi.doe.gov/pz/
portal.html#!info?alias=Org_Csinensis) using SOAP, only
perfectly mapped sequences were retained and analyzed
further. rRNAs, tRNAs, snRNAs and snoRNAs were
removed from the sRNAs sequences through BLASTn
search using NCBI Genebank database (http://
www.ncbi.nlm.nih.gov/blast/Blast.cgi/) and Rfam (12.0)
database (http://www.sanger.ac.uk/resources/databases/
rfam.html) (e = 0.01). The remaining sequences were
aligned with known plant miRNAs from miRBase 21
(http://www.mirbase.org/). Only the perfectly matched
sequences were considered to be conserved miRNAs.
Reads not being annotated were used for the prediction
of novel miRNAs using Mireap (http://sourceforge.net/
projects/mireap/), a software developed by BGI. Also,
both DNAMAN 8 (http://www.lynnon.com/pc/fra-
mepc.html) and MTide (http://bis.zju.edu.cn/MTide)
[85] were used for the prediction of novel miRNAs. Only
these miRNA candidates being simultaneously pre-
dicted by the three softwares were regarded to be
novel miRNAs.

Differentially expressed miRNAs and target prediction
Both the fold change between Mg-deficient and -suffi-
cient roots and the P-value were calculated from the
normalized expression of TPM [86]. A miRNA was
regarded to be differentially expressed when it had both
a P-value <0.01 and a log2-fold change >1.5 [17]. Target
prediction of miRNAs was carried out by RNAhybrid
according to the rules proposed by Schwab et al. [87]
and Allen et al. [88].

Categories of the potential targets predicted from Mg-
deficiency-responsive miRNAs
All target genes predicted from Mg-deficiency-responsive
miRNAs were mapped to GO terms in the database
(http://www.geneontology.org/), and gene numbers for
each term was calculated. All these targets were grouped
into three categories: biological process, molecular func-
tion, cellular component [17].

Validation of Mg-deficiency-responsive miRNAs by stem-
loop qRT-PCR and of target genes by qRT-PCR
Stem-loop qRT-PCR analysis of miRNAs was carried out
as described previously [18]. Stem-loop primers for re-
verse transcription and primers for qRT-PCR were sum-
marized in Additional file 9. qRT-PCR analysis of target
genes was carried out with an ABI 7500 Real Time Sys-
tem as described by Lu et al. [17]. The sequences of the
F and R primers used were given in Additional file 10.
Equal amounts of frozen root apices from five seedlings
(one seedling per pot) were pooled as a biological
replicate. For each treatment, there were three biological
replicates and two technical replicates. Relative miRNA
expression was calculated using ddCt algorithm. Actin
(AEK97331.1) was used as an internal standard and the
roots from Mg-sufficient seedlings were used as refer-
ence sample, which was set to 1.
Experimental design and data analysis
For each treatment, there were 20 pot seedlings in a com-
pletely randomized design. Experiments were carried out
with 3 replicates except for high-throughput sequencing
(n = 1), root and leaf Mg (n = 5), and root DW (n = 9).
Unpaired t-test was performed for the significant test
between two means (Mg-sufficiency and -deficiency).
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