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Abstract
Background: The proliferation of Plasmodium parasites resistant to antimalarial drugs 
poses a serious threat to human life and remains an obstacle to managing and eradicating 
Plasmodium falciparum. The surveillance of molecular markers has become necessary to 
monitor the spread of resistant haplotypes and discover emerging mutations.
Objective: This molecular epidemiological study aimed to evaluate the prevalence of known 
mutations in the drug resistance genes Pfcrt, Pfmdr1, Pfdhfr and Pfdhps in the Central Region 
of Ghana.
Design: A multi-centre cross-sectional study.
Methods: This prospective study utilised dried blood spots from individuals with P. 
falciparum-infection from five districts in the Central Region of Ghana. Selective Whole 
Genome Amplification (sWGA) and Single Nucleotide Polymorphisms (SNPs) in P. falciparum 
chloroquine transporter genes (Pfcrt), P. falciparum multidrug resistance 1 (Pfmdr1),  
P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase 
(Pfdhfr) were analysed.
Results: Whole genome sequencing was carried out on 522 samples. Of these, 409 (78%) samples 
were successfully sequenced. Six (6) of the sequenced samples were of co-infection of other 
parasite species with P. falciparum and excluded from the analysis. Analysis of the Pfcrt gene 
revealed 0.5% were CVIET (C72, V73, M74I, N75E, K76T) while the Pfcrt CVMNK (C72, V73, M74, 
N75, K76) wild-type haplotypes were 97% with (2.5%) (CV[M/I][N/E][K/T]) being mixed haplotypes. 
In the Pfmdr1 gene, monoclonal haplotypes; NFD (N86, Y184F, D1246) and YFN (N86Y, Y184F, 
D1246N) occurred at 44% and 9.8%, respectively, whereas mixed- haplotypes (N[Y/F]D and [N/Y]
[Y/F]D) were 23.5% and 0.3%, respectively. Combined Pfdhfr/Pfdhps genes yielded about 88% 
Pfdhfr IRNI (N51I, C59R, S108N, I164) + Pfdhps A437G haplotypes (conferring partial resistance 
to Sulphadoxine-Pyrimethamine (SP)) while 9% of the parasites had Pfhdfr IRNI + Pfdhps 
A437G + K540E haplotypes (conferring full resistance to SP). The wild-type haplotype, Pfdhfr (N51, 
C59, S108, I164) and Pfdhps (S436, A437, K540, A581, A613) was not observed.
Conclusion: The findings show a low prevalence of CVIET and relatively higher rates for 
Pfmdr1 NFD and parasites with Pfdhfr IRNI (N51I, C59R, S108N, I164) + Pfdhps A437G 
haplotypes. These observations advocate for enhanced surveillance which is inimical to 
malaria management in an endemic area.

Keywords:  Central Region, Ghana, P. falciparum chloroquine transporter (Pfcrt), P. falciparum 
dihydrofolate reductase (Pfdhfr), P. falciparum dihydropteroate synthase (Pfdhps), P. falciparum 
multidrug resistance 1 (Pfmdr1)
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Introduction
Resistance of Plasmodium parasites to chloroquine 
and fansidar (Sulphadoxine-Pyrimethamine (SP)) 
antimalarial medications has hampered malaria 
case treatment, leading to a global switch to arte-
misinin-based combination therapy (ACT) for 
the treatment of uncomplicated falciparum 
malaria.1 In Sub-Saharan Africa, chloroquine and 
fansidar (SP) resistance were reported to have 
been imported from Southeast Asia.2

Currently, Artemether–lumefantrine (AL) and 
artesunate–amodiaquine (AS-AQ) are the most 
widely utilized ACTs in all African countries 
including Ghana.3,4 Interestingly, in vitro and ex 
vivo susceptibility assays have documented else-
where that these two drugs appear to exert con-
flicting selection pressures on single nucleotide 
polymorphisms (SNPs) in the Plasmodium falcipa-
rum multidrug resistance transporter 1 (Pfmdr1) 
gene.5,6

Genomic surveillance provides a rapid and effi-
cient monitoring tool for studying drug resistance 
patterns. Through genetic surveillance, the K76T 
mutation in the chloroquine (CQ) transporter of 
P. falciparum (Pfcrt) was found to be associated 
with CQ resistance, while single nucleotide poly-
morphisms in the Pfmdr1 genes select for drug 
resistance of ACT partner drug resistance.7–9

In Africa, SNPs in codons N86, Y184 and D1246 
of Pfmdr1 are the most prevalent, and various 
haplotype combinations result in decreased sensi-
tivity to multiple drugs. For instance, AQ alone 
and AS-AQ have been shown to select for Pfmdr1 
86Y, Y184 and 1246Y (the YYY haplotype) is 
associated with parasite recrudescence and rein-
fection following reduced sensitivity to amodi-
aquine while the AL combination selects for N86, 
184F and D1246 (the NFD haplotype) associ-
ated with an increased tolerance of lumefan-
trine.10,11 There are reports of other Pfmdr1 
mutations, such as S1034C and N1042D, else-
where but infrequent in Africa.9,12

Single nucleotide polymorphisms in the P. falcipa-
rum dihydropteroate synthase (Pfdhps) and P. falci-
parum dihydrofolate reductase (Pfdhfr) genes have 
been shown to cause resistance to the combina-
tion of SP drugs.13 Key factors in the development 
of resistance to pyrimethamine in vitro are specific 
amino acid alterations at codon 108 (S108N), 
51(N51I) and/or 59(C59R) and 164(I164L) on 

the Pfdhfr gene.13–16 Regarding the Pfdhps gene, 
point mutations S436A/F, A437G, K540E, A581G 
and A613T/S provide resistance to Sulphadoxine 
in vitro.17 Novel mutations such as K540T and 
K540N have been reported in Pfdhps in Indonesia, 
Cameroon, and India.14 Even though K540T has 
not been explicitly implicated in resistance to 
Sulphadoxine,14 K540N has previously been asso-
ciated with lower levels of sulpha drug resistance.18 
Combinations of several mutations in both Pfdhps 
and Pfdhfr are used to distinguish between differ-
ent levels of SP resistance.19,20 Here, we use the 
nomenclature partial, complete/full and super 
resistance to describe the three levels of resistance, 
which are represented by Pfdhfr codons 51, 59, and 
108, plus Pfdhps codons 437), (Pfdhfr codons 51, 
59, and 108, plus Pfdhps codons 437 and 540) and 
(Pfdhfr codons 51, 59, and 108 and Pfdhps A437G 
K540E A581G) respectively.20,21 The observed 
resistance in A437G is enhanced by the mutations 
Pfdhps K540E, Pfdhps A581G and Pfdhps A613S.20

In Ghana, malaria still persists in the southern 
(coastal) and middle (forest) belts and remains the 
leading cause of morbidity and mortality.22,23 
Studies on the molecular markers of resistance 
showed an increasing trend in the prevalence of 
haplotype Pfmdr1 N86-F184-D1246 from 2003 to 
2010.24 In another study in the Western region of 
Ghana, frequencies of the point mutations impli-
cated in the emergence of antifolate resistance were 
reported to be very high at codons 108, 59 and 51 
on the Pfdhfr gene and moderate prevalence at 
codons 540 and 437 on the Pfdhps gene. However, 
a synergistic analysis of mutations in both genes 
yielded about 13.0%, quadruple mutations in the 
sample set at codons I51, R59, N108 and G437 
(IRNG) and 3.7% at codons I51, R59 N108 and 
E540 (IRNE).13 Similarly, the percentages of the 
Pfdhfr 51I, 59R, 108N and Pfdhps 437G mutant 
alleles reported in selected regions in Ghana were 
reported to be high in several other studies.25,26 In 
the central region, the percentage prevalence of 
mutations in Pfcrt and pfmdr1 stood at 29% for 
chloroquine resistance mutations in 2017, Cape 
Coast27 and 66.36% prevalence of Pfcrt K76 in 
2021.8 Reports on the high prevalence of Y184F of 
the Pfmdr1 gene was also reported in 2017.28

Considering the high prevalence of malaria in the 
Central Region of Ghana23,29 amidst all interven-
tions against the disease as well as the paucity  
of genetic data on the spread of resistance to cur-
rent chemotherapy in Ghana, it is imperative to 
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determine the prevalence of known drug-resist-
ance-related point mutations in Pfcrt, pfmdr1, 
Pfdhfr and Pfdhps in clinical isolates from the cen-
tral region.

This study is meant to unearth the rate of para-
sites resistant circulating in the study sites and 
add to the P. falciparum genetic data reported 
within the region and throughout the country aid-
ing in policy direction.

Materials and methods

Selection of study areas and sampling period
This multicentre cross-sectional study was done 
in Agona West (AW), Assin Central (AC), 
Gomoa East (GE), Abura-Asebu-Kwamankese 
(AAK), and Cape Coast (CC). The optimum 
allocation method was used to choose three dis-
tricts at random from the wooded districts (AW, 
AC, and GE) and two districts from the coastal 
districts (AAK and CC). From these districts, 

study participants with malaria (RDT positive) 
were concurrently recruited from the respective 
district hospitals (Figure 1). The study partici-
pants were randomly selected by systematically 
selecting patients with malaria on each clinic day. 
Study participants were recruited from September 
2020 to February 2021.

Study design
This was a cross-sectional study conducted in the 
Central Region of Ghana. Malaria samples were 
obtained from study participants residing in ran-
domly chosen districts within the region.

Criteria for study population selection
In all districts, participants who started oral or par-
enteral antimalarial medication before receiving 
microscopy results were excluded. Furthermore, 
research participants who had ever left Ghana, to 
countries in Central and Northern Africa or South-
East Asia, were equally excluded (Figure 1). Lastly, 

Figure 1.  Flow chart for participant recruitment and sample selection for genotyping.
RDT- Rapid Diagnostic Tests.

https://journals.sagepub.com/home/tai


Volume 12

4	 journals.sagepub.com/home/tai

Therapeutic Advances in 
Infectious Disease

the inclusion of laboratory-confirmed Plasmodium 
infection along with the participant and parental 
consent was crucial.

Sample size determination and blood sample 
sampling procedure
According to our previous research, 38.2% of 
cases of malaria were confirmed by microscopy 
out of 2495 (62.5%) suspected malaria cases.23 
Thus, using Cochrane’s formula; n = z2p(1 − p)/d2, 
where n = sample size, z = confidence level at 95% 
(standard value of 1.96), d = error margin at 5% 
(standard value of 0.05), a minimum sample size 
of 363 was reached calculated, setting the power 
of the study at 80%. At the end, 1525 participants 
were recruited. The large study participants used 
in this study were to cater for false negative 
microscopy results, non-falciparum Plasmodium, 
missing samples, samples with missing data and 
samples with very low parasitaemia (<500 para-
sites/µL) which do not yield enough genomic 
DNA for sequencing. At the end, 522 samples 
were eligible for sequencing.

Criteria for selecting samples for genotyping
The criteria for selecting a sample for genotyp-
ing were parasitaemia > 500 parasites/µL. In 
addition, samples must not be haemolysed. 
Further, samples should be haemoglobinated 
enough to produce clear and thick blood spots 
(Figure 1).

Laboratory procedures
Blood sample collection, malaria screening and 
preparation of dried blood spots.  Blood samples 
were taken from study participants suspected  
of malaria. Four millilitres of whole blood  
were drawn into an Ethylenediaminetetraacetic 
acid (EDTA) tube and mixed uniformly. Initially, 
CareStart mRDT (Access Bio, Somerset, USA) 
was used to test the samples to identify malaria-
positive cases of malaria parasites. Parasitaemia 
was determined as earlier published.30,31 In sum-
mary, 6 μL of whole blood was used to prepare 
thick blood films, air dried, stained with 10% 
Giemsa for 10 min, and examined using the light 
microscope. Four dried blood spots were made 
from the detectable microscopy samples accord-
ing to the Malaria Genome Laboratory protocols 
of the Wellcome Sanger Institute (WSI).

Plasmodium DNA extraction and species identifi-
cation.  Selective whole genome amplification 
(sWGA) was employed in this study to enrich to 
preferentially amplify P. falciparum DNA over 
human DNA background as described in Oyola 
et  al.32 A BDS 600PLUS robotic puncher 
(Microelectronic System, Brendale, Australia) 
punched 6–8 dried blood spots (DBS) into 
Eppendorf™ Deepwell™ plate of 96 wells (Fisher 
Scientific, UK). P. falciparum genomic DNA was 
extracted from DBS using the QIAamp DNA 
Investigator Kit (Qiagen, CA, USA) following 
the kit manufacturer’s instructions. At least 5 ng 
of DNA were obtained per sample, for whole 
genome sequencing.

Library preparation and sequencing of the genome 
of P. falciparum.  The reaction mix consisted of 
the following: template DNA, 1 × bovine serum 
albumin, 1 mM dNTP, 2.5 μM of each amplifica-
tion primer, (primers used for this study are avail-
able at https://www.malariagen.net/wp-content/
uploads/2023/10/GbS01_Tag_plate_preparation.
pdf) 1 × Phi29 reaction buffer, and 30 units of 
Phi29 polymerase enzyme (New England Bio-
labs). Isothermal amplification conditions (35°C 
for 5 min, 34°C for 10 min, 33°C for 15 min, 32°C 
for 20 min, 31°C for 30 min, 30°C for 16 h before 
denaturing Phi29 polymerase enzyme at 65°C. 
After being cleansed with 200 μL of 80% ethanol, 
the purified XP amplicons were eluted using 
50 μL of elution buffer. DNA libraries were cre-
ated using New England Biolabs’ NEBNext® 
Ultra™ DNA library preparation kit (New Eng-
land Biolabs) before being sequenced on an Illu-
mina HiSeq 2500 DNA sequencer. This protocol 
has been published.32,33

Genetic analysis of gene alleles.  Standard Illu-
mina QC was applied to the sequence data derived 
from every sample and each dataset was indepen-
dently analysed by mapping sequence reads to the 
3D7 reference genome using Burrows-Wheeler 
Aligner.32 Prior to that, Torrent Suite pipeline soft-
ware was used to de-multiplex and filter the raw 
reads using conventional quality filtering parame-
ters. Read quality was assessed using the Torrent 
Suite FastQC plugin v0.10.1, and high - quality 
reads were aligned to the reference genome.34 In 
the analysis of the genomic data, only successfully 
sequenced data obtained from each of the sample 
was analysed for Pfcrt, Pfdhfr, Pfdhps, Pfmdr1 
genes.

https://journals.sagepub.com/home/tai
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Data processing and statistical analysis
The data was organised in Microsoft Excel 2016 
and imported into SPSS Version 24 software 
(Chicago, IL, USA) for analysis. Descriptive sta-
tistics (numbers and corresponding percentages) 
were carried out.

Ethics approval and consent to participate
This study received ethical approval from Ghana 
Health Service Ethics Review Committee (GHS-
ERC Number: GHSERC017/03/20). In addi-
tion, the parent or legal guardian of each child 
provided a written informed consent and a child 
assent form. Written self-consent was obtained 
from study participants 18 years and over.

Results

Sequencing success rates
Out of 522 samples, 409 (78%) were successfully 
sequenced. Successful sequencing was where the 
entire amino acids denoting Pfdhps, Pfcrt, Pfdhfr, 
and Pfmdr1 haplotypes were present. Of the 409 
samples that successfully sequenced parasites, six 
(6) were excluded from the analysis due to co-
infection of other parasite species with P. falcipa-
rum. Therefore, analysis described in this 
publication is based on the successful sequencing 
of SNPs within 403 Pfcrt, Pfmdr1, Pfdhps and 
Pfdhfr genes. In this section, putative markers of 
antimalarial drug resistance focused on amino 
acid changes in Pfcrt M74, N75, K76; Pfdhfr N51, 
C59, S108 and I164; Pfdhps S436, A437, K540, 
A581 and A613; Pfmdr1 N86, Y184 and D1246. 

Different amino acid polymorphisms in the same 
genetic loci made it possible to find that 47 differ-
ent parasite clones were circulating in the study 
sites. Table 1 Shows the distribution of success-
fully sequenced genes by districts.

Distribution of Pfcrt gene mutations
The Pfcrt SNPs were successfully sequenced in 
403 samples. Of this number, 391/403 (97%) had 
the wild-type CVMNK (C72, V73, M74, N75, 
K76) haplotype, 2/403 (0.5%) were of CVIET 
(C72, V73, M74I, N75E, K76T) haplotype, 
while the rest 10/403 (2.5%) had mixed haplo-
types /infections (CV[M/I][N/E][K/T]). No hap-
lotype of SVMNT was found.

Prevalence of mutant haplotypes in Pfmdr1 genes
Regarding the Pfmdr1 gene, 336 parasites were suc-
cessfully sequenced at all three loci, namely, amino 
acid positions N86, Y184 and D1246. Of the num-
ber of parasites successfully sequenced, 75 (22.3%) 
were of the NYD (N86, Y184, D1246) wild type, 
while the rest had mutations. The majority of the 
parasites (44.05%) had a single mutation NFD 
(N86, Y184F, D1246) haplotype while the YFN 
(N86Y, Y184F, D1246N) triple mutation was 
9.8% (33/336). The rest (23.8%) were mixed hap-
lotypes (N[Y/F]D and [N/Y][Y/F]D) (Figure 2).

Prevalence of Pfdhfr mutations
Regarding the Pfdhfr gene, 359 parasites were 
successfully sequenced for all four amino acids 
that make up the Pfdhfr haplotype. The amino 

Table 1.  Distribution of successfully sequenced genes by districts.

District Pfdhps Pfcrt Pfdhfr Pfmdr1

Abura-Asebu-Kwamankese 39 (12.4) 57 (14.1) 48 (13.4) 44 (13.1)

Agona Swedru Municipality 21 (6.7) 29 (7.2) 24 (6.7) 27 (8.0)

Cape Coast Metropolis 61 (19.4) 73 (18.1) 67 (18.7) 61 (18.2)

Assin Central Municipality 128 (40.8) 154 (38.2) 139 (38.7) 132 (39.3)

Gomoa East District 65 (20.7) 90 (22.3) 81 (22.6) 72 (21.4)

Total 314 (77.9) 403 (100) 359 (89.1) 336 (83.4)

Source: Authors analysis.
Data are presented as numbers and proportions.
n, number of genes.
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acids are located at positions 51, 59, 108 and 164. 
Some parasites (1.4%, 5/359) had the wild-type 
haplotype (N51, C59, S108 and I164). The rest 
(98.6%) had various mutations. The triple mutant, 
IRNI, was in the majority (76.6%, 275/359). The 
dominant double mutant haplotype was NRNI 
(N51, C59R, S108N, I164) at a rate of 5.8% 

(21/359). Figure 3 contains the other mutant hap-
lotypes in mixed haplotype infections. 

Prevalence of Pfdhps mutations
The haplotype for the P. falciparum dihydropter-
oate synthase gene (Pfdhps) has five amino acids 
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Figure 2.  Distribution of the Pfmdr1 gene haplotypes at amino acid positions N86, Y184, D1246.
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at positions 436, 437, 540, 581 and 613. Of the 
total parasites sequenced, 314 were fully 
sequenced for all five amino acids. The wild-type 
Pfdhps haplotype is represented as S436, A437, 
K540, A581, and A613, denoted as SAKAA hap-
lotype. The most prevalent haplotype was 
SGKAA (A437G) at a rate of 32.8% (104/314). 
The dominant double and triple mutant haplo-
types AGKAA and AGKAS are prevalent in 
19.4% (61/314) and 6.7% (21/314). The only 
quadruple mutant haplotype was AGKGS with a 
prevalence of 0.6% (2/314) (Figure 4). Figure 5 
presents the distributions of mutant haplotypes in 
mixed haplotype infections.

Distribution of the Pfdhfr/Pfdhps haplotypes
Analysing SP resistance, 294 parasites had both 
Pfdhfr/Pfdhps genes fully sequenced. In these 
combined genes, the wild-type haplotype 
(51N-59C-108S 164I-436S-437A-540K-581A-
613A) was not identified. In monoclonal infec-
tions, the dominant mutations of the Pfdhfr/Pfdhps 
gene were the quadruple mutation – N51I-C59R-
S108N- 164I-436S-A437G- 540K-581A-613A 
(27.9%) associated with partial resistance to fan-
sidar. Only one double mutation in the Pfdhfr 
gene was found in 0.3% together with the wild-
type Pfdhps gene (Pfdhfr/Pfdhps NRNI-SAKAA). 

The dominant triple, quintuple, and sextuple 
mutations were Pfdhfr/Pfdhps NRNI-SGKAA 
(2.0%), Pfdhfr/Pfdhps IRNI-AGKAA (15.7%) 
and Pfdhfr/Pfdhps IRNI-AGKAS (5.4%) respec-
tively. Only two septuplet mutations (Pfdhfr/ 
Pfdhps IRNI-AGKGS) were found at (0.7%) 
(Table 2). A total of 41 different mutations in the 
Pfdhfr/Pfdhps genes were found in mixed haplo-
type infections. Forty of the parasites harboured 
Pfdhfr/Pfdhps IRNI-[S/A]GKAA haplotypes, 
while 65% (26/40) of them were found at a single 
frequency (Supplemental File 1).

Elucidating the mixed haplotypes
In the mixed haplotype infections, it was difficult 
to clarify the clones (wild-type or mutants) 
observed. It was rather easy to determine the 
clones present when the amino acid polymor-
phism occurred at only one gene locus. In Pfmdr1 
N[Y/F]D, the likely clones were NYD (a wild-
type clone) and NFD (a mutant clone). The same 
applied to Pfdhps [S/A]KAA, where SAKAA (wild 
type) and AAKAA (mutant), and Pfdhfr NC[S/N]
I (NCSI – wild-type and NCNI – mutant), could 
be the case. However, in the case of Pfcrt CV[M/I]
[N/E][K/T], Pfmdr1 [N/Y][Y/F]D and Pfdhps 
[S/A][G/A]KAA, it was difficult to tell whether a 
wild-type haplotype existed.
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Discussion
The prevalence of malaria in the Central Region 
of Ghana has been found to be high.23 For this 
reason, parasite mutations that have been associ-
ated with antimalarial drug resistance, known as 
putative antimalarial drug-resistant genes, were 
studied in the Central Region. The study focused 
on the Pfcrt, Pfmdr1, Pfdhfr and Pfdhps genes. Our 
findings revealed a low prevalence (3%) of Pfcrt 
mutations involving the chloroquine-resistant 
marker, K76T, as occurred in the CVIET (C72, 
V73, M74I, N75E K76T) haplotype. This find-
ing is quite interesting, as an extensive reverse 
mutation in chloroquine-resistant parasites has 
increased in prevalence in Ghana8,27 and else-
where.35 In 2020, the prevalence of chloroquine 
resistance in the Central and Eastern regions 
stood at 21% and 5%, respectively.27 In the same 
year, the prevalence was 11.6% in the Greater 
Accra Region of Ghana,7 an adjoining region to 
this study region. Also, Samples analysed from 
three other regions in Ghana (Greater Accra 
Region < Upper East Region-Navrongo < Bono 
East Region- Kintampo) produced a prevalence 
of 8% for Pfcrt K76T in 2018.25 The decline in 
chloroquine-resistant parasites observed in this 
study could be attributed to total withdrawal of 
chloroquine and continuous adherence to ACT 
in Ghana. Despite the high prevalence of chloro-
quine-sensitive parasites (97%) identified in this 
study, the reintroduction of chloroquine for the 

treatment of malaria should be considered care-
fully. Elsewhere, the genetic makeup of the para-
site and site-specific epidemiology may explain 
the differences between studies in Nigeria36 and 
Angola37 where the prevalence of chloroquine-
resistant haplotype was recorded at 61.1% and 
73%, respectively.

After chloroquine was withdrawn, and ACT was 
introduced in 2009,38 certain mutations in the 
Pfmdr1 gene were found to confer resistance to 
artemisinin partner drugs. In our study area, the 
alleles of the Y184F mutant were the most preva-
lent and resulted in a relatively high prevalence of 
Pfmdr1 NFD (N86, Y184F D1246) with a rela-
tively low prevalence of YFN (N86Y, Y184F, 
D1246N). Elsewhere, the Y184F mutation has 
been found to reduce the sensitivity of parasites to 
quinine, amodiaquine, chloroquine, mefloquine, 
and lumefantrine.39 In Ghana, artemether-lume-
fantrine is the drug of choice for the treatment of 
malaria. However, more than 75% of the para-
sites analysed in this study bore the Y184F muta-
tion in the YFN or NFD haplotypes. This 
observation is worrying for a country where anti-
malarial drug-resistant parasites have not yet been 
confirmed. The prevalence of Pfmdr1 Y184F in 
P. falciparum seems to be high, especially, in Africa. 
The prevalence was found to be 71.4% in Niger,40 
66.4% in Cote d’Ivoire,41 68.7% in Burkina Faso42 
and elsewhere, 70% in India.43
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Figure 5.  Mixed haplotype distribution in the P. falciparum dihydropteroate synthase gene (Pfdhps) at amino 
acid positions S436, A437, K540, A581 and A613.
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The analysis for the Pfhdfr/Pfdhps genes was also 
carried out. About 77% of the samples had triple 
Pfhdfr IRNI haplotype. This rate was higher than 
the rate (> 60%) reported by Amenga-Etego 
et  al.44 This study observed single to quadruple 
mutations, but Amenga-Etego et al. observed up to 
quintuple mutations. Mutations in the Pfhdfr/Pfdhps 
genes have been shown to render SP less effective 
against P. falciparum parasites. SP treatment was 
introduced in Ghana in 2003.45,46 Since then, it 
has been used to prevent malaria in pregnant 
women47 and children under 5 years.48 To pregnant 
women, SP is administered at five different times 
during the course of the pregnancy.49 Despite the 
use of SP to prevent malaria, the parasites are less 
sensitive to the drug to due to N51I, C59R, and 
S108N mutations in the Pfdhfr gene together with 
Pfdhps A437G (partial resistance), Pfdhps 
A437G + K540E (full resistance) and Pfdhps 
A437G + K540E + 581G/164L (super resist-
ance), as published elsewhere.21 The haplotype 
contributed by the Pfdhfr gene is IRNI, and that of 
Pfdhps A437G (partial), Pfdhps A437G + K540E 
(full), and Pfdhps A437G + K540E + A581G/
A581L (super). This study observed IRNI in 
approximately 77% of the parasites, while in the 
case of the Pfdhps gene, A437G was observed in 
SGKAA, AGKAA, SGEAA, AGKAS, FGKAS, 
AGKSA, and AGKGS in 99% of the monoclonal 
infections. In monoclonal infections, one (0.5%) 
Pfdhps A437G + K540E was observed, while in 
mixed haplotype infections, 12 (11%) parasites 
were found to harbour the mutations Pfdhps 
A437G + K540E. Analysis of mutations in Pfdhfr 
and Pfdhps genes revealed that about 88% and 9% 
of the parasites had putative haplotypes that have 
been found elsewhere to confer partial or full resist-
ance to SP, respectively.21 No super-resistant haplo-
type was identified. In Africa, the full resistant 
haplotype (IRNI-SGEGAA) was first identified in 
Kenya,50 therefore, this study will provide a recent 
report of the identification of this haplotype. SP 
failure in Kenya is attributable to this haplotype. 
Although these haplotypes have been found to con-
fer resistance to SP,21 this has not been proven in 
parasites in Ghana. Therefore, the clinical signifi-
cance of these haplotypes must be determined, in a 
prospective chemotherapeutic efficacy study.

Limitations
The major limitation of this study was our inabil-
ity to expand the complex mixed haplotype into 
individual parasite clones. This is because only 

amino acids detected at each gene were available 
to the team at the time of this publication. Malaria 
Genome Laboratory of the WSI did not provide 

Table 2.  Distribution of Pfdhfr/Pfdhps haplotypes 
associated with Sulphadoxine-pyrimethamine 
resistance in monoclonal infections.

Pfdhfr/Pfdhps gene 
mutations

Total number of 
Pfdhfr/Pfdhps 
genes successfully 
sequenced N = 294 (%)

Wild types (Pfdhfr  
NCSI – Pfdhps SAKAA)

0

Single Mutation

  NCSI-AAKAA 2 (0.68)

  NCSI-SGKAA 1 (0.34)

Double Mutation

  NRNI-SAKAA 1 (0.34)

Triple Mutation

  NRNI-SGKAA 6 (2.04)

  IRNI-SAKAA 1 (0.34)

Quadruple Mutation

  IRNI-SGKAA 82 (27.89)

  NRNI-AGKAA 5 (1.70)

  IRNI-AAKAA 3 (1.02)

  ICNI-AGKAA 2 (0.68)

Quintuple Mutation

  IRNI-AGKAA 46 (15.65)

  IRNI-SGEAA 1 (0.34)

  NRNI-FGKAS 1 (0.34)

Sextuple Mutation

  IRNI-AGKAS 16 (5.44)

  IRNI-FGKAS 3 (1.02)

  IRNI-AGKSA 1 (0.34)

Septuplet Mutation

  IRNI-AGKGS 2 (0.68)

Distribution of Pfdhfr/Pfdhps haplotypes at amino acid 
positions 51N-59C-108S 164I-436S-437A-540K-581A-613A).
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the sequence reads but the amino acids detected 
at each gene loci of the gene target of interest. 
Secondly, the drug-resistant haplotypes reported 
herein are a result of a survey of molecular mark-
ers but not the result of therapeutic efficacy stud-
ies. Further, this publication does not have the 
Kelch 13 polymorphisms associated with antima-
larial drug resistance. Finally, sequencing failure 
was observed among 113 (21.6%) of the 522 par-
asites. The reasons for the sequencing failure were 
not investigated.

Conclusion
The study offers valuable information on the 
genetic alterations caused by the therapeutic and 
preventive interventions used in the Central 
Region of Ghana. The resurgence of parasites 
with CQ (Chloroquine) sensitivity confirms the 
reverse mutation of CQ-resistant genes that were 
seen in Ghana. However, reintroduction of CQ 
for malaria treatment should be done cautiously 
since the parasite could easily become resistant in 
the face of poor therapeutic practices. Significantly 
prevalent were haplotypes carrying the Pfmdr1 
Y184F mutated allele commonly associated with 
decreased sensitivity to Artemether partner drug 
lumefantrine. Pfmdr1 D1246N were observed, 
which requires further investigations and will pro-
vide additional information for understanding 
their effect on susceptibility to artemisinin part-
ner drugs. Furthermore, the very low prevalence 
of mutations Pfdhfr I164L, Pfdhps K540E and 
Pfdhps A581G must be monitored and contained, 
as these mutants can lead to the generation of full 
and super-resistant haplotypes, compromising 
the efficacy of SP use for intermittent preventive 
treatment during pregnancy (IPTp) and seasonal 
malaria chemotherapy in the region.
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Appendix

Abbreviations
ACT	 artemisinin-based combination 

therapy
DBS	 dried blood spot
Pfcrt	 P. falciparum chloroquine resistance 

transporter
Pfdhfr	 P. falciparum dihydrofolate-reductase
Pfdhps	 P. falciparum dihydropteroate 

synthetase
Pfmdr	 P. falciparum multi-drug resistance
mRDT	 Malaria rapid diagnostic test
SNPs	 single nucleotide polymorphisms
sWGA	 Selective Whole Genome 

Amplification

Amino acid designations
A	 alanine
C	 cysteine
D	 aspartic acid
E	 glutamic acid
F	 phenylalanine
G	 glycine
I	 isoleucine
K	 lysine
L	 leucine
M	 methionine
N	 asparagine
R	 arginine
S	 serine
T	 threonine
V	 valine
Y	 tyrosine
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