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The new pandemic virus SARS-CoV-2 emerged in China and spread around the world

in <3 months, infecting millions of people, and causing countries to shut down public life

and businesses. Nearly all nations were unprepared for this pandemic with healthcare

systems stretched to their limits due to the lack of an effective vaccine and treatment.

Infection with SARS-CoV-2 can lead to Coronavirus disease 2019 (COVID-19). COVID-19

is respiratory disease that can result in a cytokine storm with stark differences in

morbidity and mortality between younger and older patient populations. Details regarding

mechanisms of viral entry via the respiratory system and immune system correlates

of protection or pathogenesis have not been fully elucidated. Here, we provide an

overview of the innate immune responses in the lung to the coronaviruses MERS-CoV,

SARS-CoV, and SARS-CoV-2. This review provides insight into key innate immune

mechanisms that will aid in the development of therapeutics and preventive vaccines

for SARS-CoV-2 infection.

Keywords: SARS-CoV-2, COVID-19, innate immune responses, Coronavirus (CoV), Coronavirus (2019-nCoV)

outbreak

INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) reportedly emerged at a live
animal market in the Chinese city of Wuhan is currently causing a pandemic and negatively
affecting global health (1–3). There are more than 11 million confirmed SARS-CoV-2 infections
with an mortality rate that widely varies by country and region (4). Even in industrialized
countries, SARS-CoV-2 led healthcare systems approach the brink of collapse by overwhelming
their capacity and straining resources. Governments and local leaders ordered the shutdown of
cities, regions, countries leading to massive disruptions in the local and global economy. Unlike
previous Coronavirus (CoV) infections, the rapid global spread, high transmission rate, longer
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incubation time, and disease severity of SARS-CoV-2
requires a better understanding of the epidemiology and
immunopathogenesis of this viral outbreak in order to learn
from this experience and to manage future pandemics.

SARS-CoV-2 is a highly pathogenic CoV (5) (case-fatality

rate of 3.6–3.8%) (4, 6) that is related to Severe Acute

Respiratory Syndrome CoV (SARS-CoV) (case-fatality rate of
14–15%) and the Middle East Respiratory Syndrome CoV
(MERS-CoV) (case-fatality rate of 34.4%), see also Table 1

(138, 139). SARS-CoV, SARS-CoV-2 and MERS-CoV target

the lower respiratory system, causing respiratory illnesses,

including severe pneumonia, acute lung injury (ALI) and
acute respiratory distress syndrome (ARDS) (140, 141). SARS-
CoV-2 infection results in higher hospitalization rates in the

elderly (>65) and persons with pre-existing conditions including
hypertension, diabetes and obesity compared to rates among

younger populations without pre-existing conditions (Table 1)

(142, 143). In addition to an age disparity, males with COVID-
19 appear to have higher risk for worse outcomes and death

(143, 144). Epidemiological research of the SARS and MERS

infections also showed that males had a highermortality rate than
females (144–146).

While SARS-CoV-2 is a novel coronavirus, several important

insights have already been made about its basic mode of
transmission. Virus particles are inhaled in respiratory droplets

expelled from the airways of infected individuals. Angiotensin-
converting enzyme 2 (ACE2), expressed on the ciliated bronchial
cells, endothelial cells, and type I and II alveolar cells, is the

host receptor for cell entry into the respiratory tract by both
SARS-CoV-2 and SARS-CoV (Table 1) (147–150). The spike
protein (S) of CoV is responsible for the entry of the virus
into the target cell (Figure 1) (147, 151). ACE2 is a type I
transmembrane metallocarboxypeptidase that plays a vital role
in the Renin-Angiotensin System (RAS) (152, 153), which in
turn is critical in maintaining blood pressure homeostasis as
well as fluid and salt balance in mammals. ACE2 is found in
vascular endothelial cells, in the renal tubular epithelium, and
in Leydig cells of the testes (154). Studies have shown that
ACE2 is expressed in gastrointestinal (GI) tissues, making it
a potential site for harboring SARS-CoV (155). This may be
one of the reasons for GI pathology reported in some patients
with COVID-19 and viral shedding in stool. In contrast, MERS-
CoV uses dipeptidyl-peptidase 4 (DPP4) as an entry receptor,
which is expressed on endothelial cells and some epithelial tissues
(Table 1) (19, 156).

Accumulating data suggest that the innate anti-viral
response and adaptive immunity may contribute to a
cytokine storm leading to systemic hyper inflammation
and exacerbation of the disease in patients with (a) co-
morbidities (b) older than 65 years of age (c) of the male
sex. The exact role of the innate immune system in disease
pathogenesis and prevention between the sexes and the
impact of age is not fully elucidated. In addition, the potential
dysregulation of the innate immune response by SARS-CoV
and SARS-CoV-2 is not completely understood which warrants
further research.

RESPIRATORY EPITHELIAL CELL AND
RESIDENT INNATE IMMUNE CELL
RESPONSES TO RESPIRATORY VIRAL
INFECTIONS

The cells of the airway epithelium are the first line of
defense, providing a mechanical barrier (mucociliary escalator)
that expels particles and pathogens via cilia, mucus, and
induced coughing (157, 158). This barrier includes cells of
the pulmonary epithelium and tissue-resident macrophages
and dendritic cells (DCs). The macrophages and DCs express
pattern recognition receptors (PRRs) that can detect molecules
from pathogens (Pathogen-Associated Molecular Patterns—
PAMPs) or molecules released from damaged cells (Damage
or Danger-Associated Molecular Patterns—DAMPs) (158–160).
In the lung, there are two populations of macrophages,
alveolar and interstitial macrophages (161). In addition to these
macrophages, DCs play a vital role in facilitating the host defenses
against respiratory diseases (162–164). DCs can be divided
into plasmacytoid (pDC) and myeloid types (mDC) (165–167).
Macrophages and the twoDC subtypes trigger antiviral responses
by generating a substantial amount of type I interferon and these
cells play important roles in immune surveillance in the airways
and the distal lung (74, 168–172). During steady state, the DC
density in lung associated tissue declines from the trachea to
the alveoli (173) while the representation of cells in macrophage
compartment seemsmore complex (174). If a virus infects airway
epithelial cells, the viral RNA would be sensed via intrinsic innate
receptors, including RIG-1, MDA5, NLRP3 inflammasome, and
the RNA sensing TLRs 7 and 8. In the case of influenza A
infection, triggering the PRRs causes a strong induction of type
1 interferon (IFN) in epithelial cells (175, 176). In other viral
infections, such as Respiratory Syncytial Virus (RSV), alveolar
macrophages are the predominant source of type 1 IFNs (161).
Furthermore, respiratory epithelial cells and lung macrophages
are capable of secreting a broad range of chemokines like IL-
8, Macrophage inflammatory protein-1 (MIP-1), RANTES and
cytokines including TNF-α, IL-6, IL-1β that influence the types
of immune cells being recruited to the area in response to acute
viral infections (177, 178).

Macrophages, depending on their polarization status of either
M1 or M2, and in a similar way as airway epithelial cells, can
further elicit a Th1 or Th2 response (158, 161, 178). In the
case of influenza virus infection, the magnitude of epithelial cell
response can be proportional to the amount of virus which result
in paracrine induction of IFN λ (175). Not only can airway
epithelial cells produce a large array of cytokines/chemokines
in response to an acute viral infection, but, depending on
the magnitude of PRR engagement and the combination of
PAMPs and DAMPs triggered, these epithelial cells can modulate
the type of chemokines/cytokines produced and influence the
influx of innate and adaptive immune cells (158, 160). The
response to different viral infections is generally similar, however,
the response can be tailored in timing, magnitude and the
induced gene signatures in response to each virus (179). Unlike
RSV and MERS-CoV, which both productively infect alveolar
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TABLE 1 | Comparison of Immune pathogenesis between highly pathogenic coronaviruses and other significant respiratory viral infections.

SARS-CoV MERS-CoV SARS-CoV-2 Influenza virus (IV) Parainfluenza virus

(PIV)

Respiratory syncytial

virus (RSV)

Rhinovirus (RV)

Receptor/s ACE2 (7) DPP4 (8) ACE2 (9)

DPP4 (10)

α-2,3 linkage and α-2,6

linkage (11)

α2,3-linked sialic acids

(12)

CX3CR1 (13) ICAM-1, LDLR,

and CDHR3 (14)

Target

cells

Multiple cell types in

the lower respiratory

tract were found to be

infected, including type

I alveolar epithelium,

macrophages, and

putative CD34+ Oct-4+

stem/progenitor cells in

human lungs (15–17)

Ciliated bronchial

epithelial cells and type

II pneumocytes (7, 18)

Un-ciliated bronchial

epithelial cells and type

II pneumocytes (19–21)

Infect mostly human

type I and type II

pneumocytes and

alveolar macrophages

(22)

Respiratory, nasal,

corneal and intestinal

epithelial cells (23)

Club cells, ciliated cells,

type I and type II

alveolar cells (24)

Ciliated epithelial cells

of the upper and lower

respiratory tract (25)

The ciliated cells of the

human airway

epithelium are the main

target, it also infects

basal cells (26) and

immune cells, such as

Macrophages, B cells

CD4+ and CD8+ T

cells (27)

Upper and lower

airways epithelial

cell (28)

Mortality 11% (29) 34.4% (30) 3–4% (31) <0.1% (31) Unusual in developed

countries.

Preschool population in

developing countries

has considerable risk of

HPIV-induced death.

LRI causes 25 to 30%

of the deaths in this

age group and HPIV

causes at least 10% of

the LRI (32, 33)

Children <5

years—death

uncommon, estimated

at 100-500/year.

Among US adults, an

estimated 14,000

deaths/year (34)

–

Effected

age

While younger

individuals below 18

years of age experience

mild-moderate clinical

illness, elderly

individuals exhibit

worse outcomes after

infection with

SARS-CoV (35)

While younger

individuals below 18

years of age experience

mild-moderate clinical

illness, elderly

individuals exhibit

worse outcomes after

infection with

MERS-CoV (36, 37)

Patients aged ≥ 60

years showed heavier

clinical manifestations,

greater severity and

longer disease courses

compared with those

aged <60 years (38)

The influenza virus with

highest sRIR was

A(H1N1) for young

children, B for older

children,

A(H1N1)pdm2009 for

adults, and A(H3N2) for

the elderly (39)

Persons of any age (40) The highest burden of

RSV was observed in

young infants aged 3–5

months, whereas the

burden was also high in

those aged 12–20

months (41) and certain

adult populations.

These include the

elderly, persons with

cardiopulmonary

diseases, and

immunocompromised

hosts (42)

RV was more

frequently

detected in

younger children

and infants than in

older children (43)

R0—the

reproduction

number*

In the range of 2–4 (44) Saudi Arabia:

0.45–0.98 (Only one

study reported 1.9–3.9)

South Korea: 2.5–8.1

and <1 in later period

or with control

intervention (45)

Between 2 and 2.5 (31) Between 1.28 and 1.8

(46)

– 0.92–1.33 for RSV-A

and 1.04–1.76 for

RSV-B (47)

1.2–1.83 (48)

(Continued)
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TABLE 1 | Continued

SARS-CoV MERS-CoV SARS-CoV-2 Influenza virus (IV) Parainfluenza virus

(PIV)

Respiratory syncytial

virus (RSV)

Rhinovirus (RV)

Incubation

period

Mean, 5 days; range, 2

to 10 days (49)

5 to 7 days; range, 2 to

14 days (50)

Mean, 5 days; range,

2–14 days (51)

2 days; range, 1 to 4

days (52)

2–7 days (53) 4–6 days (54) Mean, 1.9 days

(52)

Serial

interval

time (the

time

between

successive

cases)

Mean, in Singapore 8.4

days (55)

12.6–14.6 days (45) 5–6 days (56) 3 days (31) – 3.2 days (47) –

Comorbidities Diabetes, other

comorbidities (chronic

obstructive pulmonary

disease, cancer,

cardiac disease), and

age of 60 years or older

(57) acute renal

impairment and

proteinuria (58)

Diabetes mellitus,

hypertension, ischemic

heart disease,

congestive heart failure,

end-stage renal

disease and chronic

kidney disease (59)

>60 years and those

with comorbid

conditions, such as

diabetes, hypertension

and cardiovascular

disease (CVD) (60–62)

Asthma; diabetes;

heart, lung, and

neurologic diseases;

and pregnancy (63)

Immunocompromised

and elderly adults (25)

Older adults (64) adults

hospitalized with

cardiopulmonary

infections (65)

Asthma, chronic

medical

conditions,

malignancies, or

immunosuppression,

(66–68)

Immune responses

Macrophages Non-productive

infections (69)

Productive infections

(69)

CD169+ macrophages

could contribute to viral

spread, excessive

inflammation and

activation-induced

lymphocytic cell death

during SARS-CoV-2

infection (70)

Non-productive

infections more than

90% of resident AMs

were lost in the first

week after influenza,

while the remaining

cells had a necrotic

phenotype. Result in

significant morbidity

through several

pathways, including

facilitation of secondary

bacterial pneumonia

(71)

Productive infections

(72)

Productive infections

(73) one of the foremost

and only sources of

IFN-I, contributing to

the establishment of an

antiviral state in

neighboring cells (74)

Productive

infections

Rhinovirus

replication in

human

macrophages

causes activation

and nuclear

translocation of

NF-κB, leading to

TNF-α

production (75)

Monocytes SARS-CoV-infected

human monocytes

produce chemokines

that attract the

migration of

neutrophils,

macrophages, and

activated T

lymphocytes (76, 77)

MDMs were permissive

for MERS-CoV (78)

Decreased (79) Influenza infection

markedly inhibit the

monocyte chemotactic

response and depress

the phagocytosis (80)

Inefficient infection of

Immature MDDCs and

sub-optimal maturation

(81)

Inefficient infection of

Immature MDDCs and

sub-optimal maturation

(81)

Airway epithelial

cells direct

significant RV16

replication in

monocytic cells via

an ICAM1-

dependent

mechanism (82)

(Continued)
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TABLE 1 | Continued

SARS-CoV MERS-CoV SARS-CoV-2 Influenza virus (IV) Parainfluenza virus

(PIV)

Respiratory syncytial

virus (RSV)

Rhinovirus (RV)

DC SARS-CoV-infection

was abortive in MDDCs

(83)

Immature MDDCs were

permissive for

MERS-CoV infection,

while mature MDDCs

were not (78)

Activated dendritic cells

increased (84)

IV was internalized by

both myeloid DCs

(mDCs) and

plasmacytoid DCs but

only mDCs supported

viral replication (85)

Human Parainfluenza

Virus Type 2 Vector

induce DC maturation

without viral

replication/transcription

(86)

Infected DCs can

promote airway

obstruction, enhance

disease, and promote

more severe allergic

responses

A low cDC1:cDC2 ratio

correlates with

enhanced disease

severity (87)

Increase in type I

mDCs and a

decrease in

anti-viral type II

mDCs following

RV infection in

asthmatics (88)

Neutrophils Significantly fewer

neutrophils and

inflammatory

monocytes were

present in the lungs

(89)

Significant correlation

between MERS-CoV

viral load and

expression levels of

neutrophils

chemoattractant

chemokines IL-8

(CXCL8) (90)

Activated neutrophils

increased (84)

Increased neutrophil

influx (91)

Increased neutrophils

(92)

Neutrophil chemotaxis

and phagocytosis are

increased (93, 94)

Not defined

T cells Lymphopenia (95) MERS-CoV Efficiently

Infects and kill Primary

T Lymphocytes (96)

Lymphocytopenia (79)

SARS-CoV-2 infects T

lymphocytes

High levels of

circulating

virus-specific CD4+ T

cells to two viral internal

proteins (nucleoprotein

and matrix) in the first

phase of infection are

associated with

subsequent

development of severe

IAV infection (97)

T cells are readily

infected by the PIV. The

capacity of the virus to

regulate T-lymphocyte

function may play an

important role in the

failure of the virus to

induce lifelong

immunity (98)

Infection with RSV

causes a dysregulated

antiviral immune

response with impaired

T cell function as well

as exaggerated

inflammation via

multiple mechanisms

(99)

Rhinovirus has the

unique ability to

bypass antigen

presentation and

directly infect and

activate human T

cells (100)

B cells Lack of peripheral

memory B cell

responses in recovered

patients with SARS

(101)

The long-term

persistence of

antibodies in most

patients might be

explained by the

MERS-CoV infection

inducing long-lived

memory B cells, which

in turn form

antibody-secreting

plasma cells that are

stored in the bone

morrow until

re-exposure to the

same virus or similar

epitopes (102)

B cells response

against SARS-CoV-2

are detected in the

blood around 1 week

after the onset of

COVID-19 symptoms

(103)

Activated B cells

differentiate into plasma

blasts, the population

begins to expand

rapidly in the lymph

node medulla and

secrete predominantly

class-switched

antibody, peaking

between 7 and 14 days

post-influenza infection

(104, 105)

There is an increase in

circulating B cells,

including mature

(CD19+ CD5+) and

precursor (CD19+

CD10+) cells, in infants

with RSV LRTI, and

CD20+ B cells and

IgM+, IgG+, and IgA+

plasma cells are

prominent in

postmortem lung tissue

from infants with fatal

RSV bronchiolitis

(106–108)

RVs enter and

form viral

replication centers

in B lymphocytes

and induce the

proliferation of B

cells (109)

(Continued)
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TABLE 1 | Continued

SARS-CoV MERS-CoV SARS-CoV-2 Influenza virus (IV) Parainfluenza virus

(PIV)

Respiratory syncytial

virus (RSV)

Rhinovirus (RV)

Antibodies Neutralizing antibody

responses, likely to the

S protein, begin to

develop by week 2, and

most patients develop

neutralizing antibodies

by week 3 (110, 111)

The response to

MERS-CoV generally

occurs through

antibody-mediated

immunity (112) the

neutralizing antibody

titers at 34 months of

infection in 86% of

human serum samples

were the same as

those after 13 months

of infection (113)

Currently, polyclonal

antibodies from

recovered

SARS-CoV-2-infected

patients have been

used to treat

SARS-CoV-2 infection,

but no

SARS-CoV-2-specific

neutralizing mAbs have

been reported (114)

Abs elicited against the

HA globular domain

during infection or

vaccination usually are

strain-specific, and

they will hardly

neutralize subsequent

influenza virus strains

(homosubtypic

protection) (115)

Antibodies to the two

surface glycoproteins,

F and HN are

neutralizing and serum

and nasal antibody to

either protein protects

against PIV infection

and ameliorates

disease (32, 116)

Maternally derived RSV

neutralizing antibodies

protect infants against

RSV hospitalization,

and when the infant

has recurrent wheeze.

However, high

maternally derived RSV

neutralizing antibody

levels were associated

with an increased risk

of recurrent wheeze

(117)

After an RV

infection, serum

neutralizing

antibody titers

increase for about

a year and high

preexisting

neutralizing

antibody titers

have been

associated with

resistance to

reinfection (118)

Cytokines IFN- γ, IL-10, IL-1β,

IL-6, and IL-12

increases

IL-4 decreases

IL-2 levels increased,

while others argued

that it decreased

(95, 119–121)

MCP-1, MIP-1α and

IL-8 chemokines and

the cytokine IL-12 are

expressed higher in

MERS-CoV infection

compared to

SARS-CoV infection

(83, 122, 123)

MERS-CoV induced

higher levels of IFN-γ,

IP-10, IL-12, and

RANTES than

SARS-CoV (83)

IL-1, IL-6, L-2, IL-7,

IL-10, G-CSF, IP-10,

MCP-1, MIP-1α, and

TNFα increased

(124, 125)

IL-6 and chemokines

CCL-2/MCP-1,

CCL-4/MIP-1β,

CXCL-8/IL-8,

CXCL-9/MIG, and

CXCL-10/IP-10 are

associated with

pathogenicity of both

avian (H5N1 and H7N9)

and human (pdmH1N1

and H3N2) viruses.

Chemokines

CCL-2/MCP-1,

CXCL-8/IL-8,

CXCL-9/MIG, and

CXCL-10/IP-10 are

also related with

mortality (126)

PIV serotypes differ in

their kinetics of

replication and cytokine

secretion in human

trachea-bronchial

airway epithelium. PIV1

replicated to high titer

yet did not induce

cytokine secretion until

late in infection, while

PIV2 replicated less

efficiently but induced

an early cytokine peak.

PIV3 replicated to high

titer but induced a

slower rise in cytokine

secretion. The T cell

chemoattractants

CXCL10 and CXCL11

were the most

abundant chemokines

induced (127)

IL-1, IL-6, IL-10, and

CCL5 are increased,

while IL-10 and IFN-γ

are decreased (124)

Different RV

strains can induce

different patterns

of cytokines and

chemokines (128)

Vaccine

candidates

No FDA approved

vaccine (129)

No vaccine (130) No vaccine is currently

available (131)

Inactivated Influenza

Vaccines (IIVs),

Recombinant Influenza

Vaccine (RIV4) and Live

Attenuated Influenza

Vaccine (LAIV4) (132)

No licensed vaccine

(25)

No vaccine but

Palivizumab is a

monoclonal antibody

recommended to be

administered to

high-risk infants and

young children. It is

given in monthly

intramuscular injections

during the RSV season

(54)

No clinically

effective rhinovirus

vaccine (133)

(Continued)
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macrophages (73, 180), seasonal influenza and SARS-CoV
usually lead to non-productive infections in these cells (181).
In addition, SARS-CoV infection of primary monocytes yielded
little virus, likely due to the suppressive effects of IFN-α (182).
Thus, the initial cell type(s) involved in propagating a viral
infection intensifies the complexity of the immune response.

Another key factor that determines the magnitude of the
immune response is the induction and rate of cell death.
Although related, MERS-CoV induces widespread cell death
when compared to SARS-CoV in human bronchial epithelial cell
cultures (183). However, the SARS-CoV open reading frame 3a
(ORF3a) protein can induced necrotic cell death in a variety of
cell lines (184). The same ORF3a protein can activate the NLRP3
inflammasome, leading to activation of NF-κB and elevated
secretion of active IL-1β in cell culture (185).

Cytokine profiles of macrophages activated by SARS-CoV
and MERS-CoV are different (180). Nonetheless, both MERS-
CoV and SARS-CoV, in human epithelial cell and fibroblast
culture, show a delay (24–30 h post-infection) in the induction
of proinflammatory cytokines (186), with slightly different
cytokine/chemokine profiles. This delay in cytokine induction
was confirmed in another study using the same epithelial cell
lines (187) as well as in human alveolar type II cells (18). In both
cell lines and primary alveolar type II cells, SARS-CoV induced
IFN-β, IFN-λ, CXCL10, CXCL11, IL-6, IP-10, and TNF-α (18,
187). MERS-CoV did not induce IFN-β but induced higher level
of IL-8 transcript in cell culture. However, no difference in IL-
8 production was observed between SARS-CoV and MERS-CoV
at 48 h post-infection (186). This was confirmed in-vivo using a
non-human primate model comparing the immune responses to
SARS-CoV infection between young adult cynomolgusmacaques
(3–5 yrs) and older macaques (10–19 yrs) (188).

Interestingly, the high induction of IL-8 was observed on a
transcript level in the older animals, while the younger once
showed higher levels of IFN-β transcript (188). In all animals, the
expression of IFN-β was inversely correlated with the pathology
score, supporting the role of IFN-β in controlling disease severity
(188) and introducing a potential area of research to define
age disparity observed in patients infected with SARS-CoV-2.
Both older age and male sex are important factors associated
with high mortality of SARS-CoV and SARS-CoV-2 infection
(189, 190). Many viruses have evolved to disrupt and subvert
the immune responses. A common virus that is well-known to
affect the lower airway and counteract the immune response
is RSV (178, 191). The RSV genome encodes non-structural
proteins NS1 and NS2 that can block type 1 IFN production and
signaling in cell cultures (191). Similar to RSV, the Measle virus
V protein blocks IFN-α and β signaling by inhibiting Stat1 and
Stat2 signaling in cell lines (192), whereas MERS-CoVM protein
also suppresses type 1 IFN by inactivating IRF3 (193), leading to
the low expression of IFN-β.

In contrast to reports in epithelial cell lines or primary
alveolar type II cell culture and observations in non-human
primates, SARS-CoV nucleocapsid (N) protein and membrane
(M) protein, as well as nsp1, can suppress IFN response via
various mechanisms in cell lines (194–196). To bridge the
dichotomy of inhibition of IFN signaling in cell lines, and the
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FIGURE 1 | Potential Immune Pathogenesis of SARS-Cov-2. (A) Replication cycle of SARS-CoV-2: Spike protein on the SARS-CoV-2 binds to angiotensin converting

enzyme 2 (ACE2), a cell-surface protein. The virion releases its RNA. Some RNA is translated into proteins by the host cell’s machinery. Proteins and RNA are

assembled into a new virion in the Golgi and released. (B) The innate and adaptive immune responses to Coronavirus (CoV) infection. (I). Initiation of immune response

via PAMPs/DAMPS. The host innate immune system detects CoV infections by using pattern recognition receptors (PRRs) to recognize pathogen-associated

molecular patterns (PAMPs) and Damage (Danger)-Associated Molecular Patterns (DAMPs). (II) Activation of T-cells and B-cells via cytokines and activation of the

complement system. CoV infection leads to macrophages activation and release of inflammatory cytokines. This in turn activates T and B cells and promotes

differentiation. Multiple different T cell subsets (i.e., Th1 and Th17) are involved, releasing cytokines for immune response amplification. (III) Activation of Neutrophils

(NET formation) Neutrophils, attracted by chemokines/cytokines swarm to the site of infection. Subsequently activated neutrophils undergo degranulation and NET

formation releasing intracellular DAMPs, DNA, histones, neutrophil elastase that activate the PRRs of surrounding immune and non-immune cells to induce cytokine

secretion. Neutrophils and neutrophil extracellular traps (NETs) drive necroinflammation in COVID-19. The extracellular DNA released by NETs activates platelets and

aggregated NETs provide a scaffold for binding of erythrocytes and activated platelets that promote thrombus formation. (IV) Dendritic Cell mediated activation of

T-cells. DCs present viral antigens to T-cells inducing activation. (V) Cytokine and C5a led to influx of immune cells. Secrete chemokines, cytokines and complement

C5a attract immune cells. (C) Effects of CoV-mediated complement activation. SARS-CoV-2 has been shown to activate the lectin (MBL) complement pathway.

Antibodies (early stage IgM or at a later stage IgG) to the virus can activate the classic complement pathway. Both pathways converge at C3. C3 can be converted

into C3a and C3b. C3b mediates pathogen opsonization and activates the conversion of C5 into C5a and C5b. C5b mediates the formation of the membrane attack

complex, which leads to cell lysis. C3a and C5a promote immune cell recruitment to the site of infection.

IFN expression in vivo, cells recruited by the infection need to be
considered as a potential source. As previously discussed, infected
epithelial cells via paracrine signaling to neighboring cells and
resident macrophages, secrete chemokines and cytokines to
attract other immune cells.

In general, monocytes/macrophages are recruited by CCL3
(MIP-1a), CCL2 (MCP-1), and neutrophils are recruited by IL-8

(CXCL8), CXCL2, and CXCL5 chemokines, all of which can be
secreted by airway epithelial cells (178, 197, 198). Bothmonocytes
and neutrophils are also recruited by complement fragment
(anaphylatoxin) C5a (Figure 1). Both Influenza and SARS virus
can induce acute lung injury (ALI) which is accompanied by
high levels of C5a, leading to the influx and activation of innate
immune cells (199) (Figure 1).
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Serum samples and lung tissue of SARS patients showed
high-level expression of CXCL10 (IP-10), which is also
found to be induced by SARS-CoV in the epithelial cell
line Calu-3 (200). Significant neutrophil, macrophage and
CD8 T-cell infiltration can be found in the lung of SARS
patients by immunohistochemistry (76, 77, 201). In addition
to post-mortem lung histology analysis in patients with
SARS-CoV, experiments using Rhesus macaques infected with
SARS-CoV found monocyte and macrophage recruitment.
The accumulation of pathogenic inflammatory monocyte-
macrophages (IMMs) was also observed in a SARS-CoV mouse
model. The accumulation of IMMs resulted in heightened
lung inflammatory cytokine/chemokine levels, extensive vascular
leakage, and impaired virus-specific T cell responses (202).

A strong infiltration of CD68 and Mac387 positive
monocytes/macrophages were found in the human and
animals lung samples (203, 204). Macrophages further stimulate
fibroblasts to deposit extracellular matrix leading to pulmonary
fibrosis (205), which was also observed in patients who recovered
from SARS (206, 207). Autopsy samples acquired from patients
with SARS-CoV-2 patients contained viral nucleocapsid protein
(NP) positive CD68+ macrophages in the capillaries of the
spleen and in lymph nodes, indicating that SARS-CoV-2 might
migrate into the spleen and lymph nodes through macrophages.
This study also found that CD169+ macrophages appear to
mediate SARS-CoV-2 into these tissue sites, contributing to
virus dissemination (208). Similar to SARS-CoV-2, SARS viral
particles and genomic sequences were detected in monocytes,
macrophages as well as within different organs of SARS patients
(15). SARS-CoV was shown to infect both immature and
mature human monocyte-derived DCs by electron microscopy
and immunofluorescence. The detection of negative strands
of SARS-CoV RNA in DCs suggests viral replication, but no
increase in viral RNA was observed (209). As mentioned above,
there was no perceivable increase to SARS-CoV replication
in primary monocytes (182). Another study looked at SARS-
CoV and MERS-CoV replication in human macrophages,
human monocyte-derived macrophages, and dendritic cells
(MDDCs) and found that both viruses replicated poorly.
MERS-CoV induced IFN-λ1, CXCL10, and MxA mRNAs in
both macrophages and MDDCs, however, SARS-CoV was
unable to induce such responses (69). Interestingly, depletion
of inflammatory monocyte-macrophages in the mouse model
partially protected from lethal SARS infection (210). These data
suggest that monocytes, macrophages and dendritic cells have
essential roles in CoV infection. The severity of disease and
the response to these viruses seems to be dependent on the
induced cytokine/chemokine profiles and the amplification of
the immune response by the recruited cells. Growing evidence
of dysregulation of an innate anti-viral response originates
from studies using clinical samples (211) and murine models
(202, 212, 213).

In addition to dysregulated cellular responses, the
complement system may play an important role in SARS-
CoV-2 infection (Figure 1). Evidence comes from SARS
infected patients who had lower levels of mannan binding
lectin (MBL) in serum compared to healthy controls (214).

The SARS patients with a higher frequency of MBL gene
polymorphisms were associated with lower serum levels or
deficiency of MBL (214). It is still unknown if this is also true
for COVID-19 patients, which requires further investigation.
In cell culture experiments SARS-CoV was able to bind and
activate the complement cascade and block viral infection (214).
Preliminary findings in a limited number COVID-19 patients
found significant deposits of the membrane attack complex
(MAC), C4d and MBL-associated serine protease (MASP)2 in
the microvasculature indicating sustained, systemic activation
(215). The SARS-CoV-2 spike protein was co-localized with
C4d and MAC (215). In a non-peer reviewed publication by
Gao et al., MERS-CoV, SARS-CoV and SARS-CoV-2N protein
are able to bind to MASP-2 leading to enhanced complement
activation (216) (Figure 1). In a later phase of the infection,
the complement system might be also triggered via antibodies
bound to the virus (Classic activation pathway, Figure 1). This
excessive complement activation might play a role in multi
organ damage in severe COVID-19 cases (217). In a MERS-CoV
mouse model the blockade of the C5a-C5aR axis alleviated
not only lung damage but also spleen damage (218). Mice
treated with a monoclonal antibody to C5a showed reduced
lung infiltration of CD68+ cells and significantly lower cytokine
levels of IL-1 β, TNF-α, INF-γ and IL-12 (218). Complement
blockade might be an important way to curb part of the
immune dysregulation associated with COVID-19. Overall,
we need to look closer at the role of the complement system,
the recruited innate immune cells and their combined role in
pathogenesis, viral clearance and the eventual resolution of
the infection.

THE ROLE OF NEUTROPHILS

The most abundant leukocytes, neutrophils, play a critical
role in clearing viral infections. Neutrophils, attracted by
chemokines/cytokines released by tissue-resident macrophages
and DCs, swarm to the site of infection. They recognize and
release bioactive compounds, including cytokines, chemokines
and ROS, as well as NOS in the very early phase of the
infection (219, 220). Neutrophils modulate other innate and
adaptive immune responses via cytokine/chemokine release
and cell death and, therefore, can ameliorate or exacerbate
disease progression. Neutrophils infiltrate tissues infected by
CoV, including SARS-CoV, Rat coronavirus (rCoV), and Mouse
Hepatitis Virus (MHV). A high neutrophil count in the
blood of SARS patients at the time of hospital admission
is associated with a poor prognosis (221, 222). Gao et al.
suggested that patients with SARS-CoV-2 pneumonia can be
stratified by neutrophil to lymphocyte ratio (NLR) and age
(216). Patients older than 50 years of age and having an
NLR ≥ 3.13 had more severe illness, so rapid access to
the intensive care unit is required (79, 223). Experiments in
mice showed that SARS-CoV disease severity in older mice
correlated with increased pulmonary inflammation and influx
of neutrophils (224, 225). Infection of rats with rCoV could
lead to neutrophil infiltrating into the respiratory tract early

Frontiers in Immunology | www.frontiersin.org 9 August 2020 | Volume 11 | Article 1979

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ahmed-Hassan et al. Innate Immune Responses to Coronavirus

after inoculation, followed by the recruitment of macrophages
and lymphocytes (226). Infection of mice with a neurotropic
murine CoV (MHV-JHM) showed infiltration of neutrophils
into the brain as early as the first day after inoculation,
which then promoted the recruitment of other types of
inflammatory cells into the brain, likely through the loss of
the blood-brain barrier integrity (227). Gene expression analysis
in experimentally infected rhesus macaques with MERS-CoV
revealed the recruitment of neutrophils into infected lung tissue
(228, 229).

Angiotensin-converting enzyme inhibitors (ACE-Is) could
serve as a potential risk for fatal COVID-19 through the up-
regulation of ACE2 (230) and may provide a direct linkage
to neutrophils and disease progression. Investigators found
that ACE2 modulates IL-17-mediated neutrophil influx by
impacting STAT3 activity (231). Animal models used to study
the pathogenesis of SARS-CoV-2 have revealed important roles
of neutrophils in infection and confirmed findings observed
in patients. A new aspect in SARS-CoV-2 infection is the
potential role of neutrophil extracellular traps (NETs). The
process of NET formation is a specific type of cell death that
can be triggered under inflammatory conditions (232, 233),
such as GM-CSF+C5a, IL-8, IFN-α+C5a or other TLR response
mediators; all conditions present in severe SARS-CoV-2 infection
(232, 233). The NET formation has been observed in COVID-
19 patients and may contribute to thrombotic complications
in COVID-19 patients (234, 235). Microvascular injury and
thrombosis have been reported in COVID-19 patients, increasing
the likelihood that neutrophil NET formation might play a role
(215, 236, 237). NET formation was reported to be involved
in clot formation and thrombosis and can further increase
inflammation (232, 233). Therefore, neutrophils can attract
a second wave of immune cells to the site of infection by
cytokine/chemokine secretion as well as via NETosis (238, 239),
which included monocytes and natural killer cells. On the other
hand aggregated NETs were reported to limit inflammation by
degrading cytokines and chemokines and disrupting neutrophil
recruitment and activation (240). Despite the presence of
neutrophils in SARS-CoV-2-infected tissues, their role in the
clearance and/or immunopathology of the viral infection remains
unclear. Future studies on the responses of neutrophils to
SARS-CoV-2-infection or infected cells in vitro may elucidate
the role of neutrophils in the pathogenesis of respiratory

CoV infections.

THE POTENTIAL ROLE OF NATURAL
KILLER CELLS

Natural Killer (NK) cells are a heterogenic immune cell subset
that acts promptly to combat viral infections. They produce
significant amounts of IFN-γ, kill virus-infected cells, provide
direct support to other innate immune cells, and aid in the
adaptive immune response to counter viruses. NK cells express
activating receptors that detect viral antigens, enabling the
destruction of infected cells (241–244). Lectin-like receptor CD94
and killer immunoglobulin-like receptors, such as CD158b,

regulate the function of NK cells. A study of 221 patients with
SARS explored the relationship of the number of NK cells and the
expression level of their immunoglobulin-like receptor CD158b
in the peripheral blood to the severity of SARS (245). The overall
count of NK cells and CD158+ NK cells and the percentage
of CD158+ NK cells in patients with SARS were significantly
lower than counts in healthy subjects (245). A separate study
that analyzed lymphocytes and lymphocyte subsets in a cohort
of 38 patients with SARS observed reduced NK cell counts in 21
patients (55%) (246). Clinical reports reveal that children appear
to have a milder form of SARS-CoV-2, with peripheral blood
lymphocyte levels remaining in the normal range, suggesting
less immune dysfunction following the disease (247). This
could be attributed to healthy children expressing lymphocytes,
especially NK cells, in a greater quantity compared to healthy
adults (248). Interestingly, previous studies found rapid and
significant restoration of lymphocyte subsets including, NK cells,
in peripheral blood in patients recovering from the initial stages
of SARS infection (249). Although the primary mechanism for
the decrease in NK cells and other subsets during disease onset
remains unknown, their contribution to SARS-CoV-2 needs
further study especially from a treatment perspective.

THE CONTRIBUTION BY THE INNATE
LYMPHOCYTES

Innate lymphoid cells (ILCs) are a family of innate immune
cells that include ILC1, ILC2 and ILC3. Although ILC2 facilitates
lung repair after injury, the role of ILCs during respiratory viral
infection is not clearly defined (250). Evidence for the potential
involvement of ILC2 cells in the lung during viral infection
was reported in a murine model (251). This study found a
rapid accumulation of ILC2 cells in the lung after an influenza
virus infection, however their initial contribution to exacerbation
of the disease was limited (251). A recent study identified an
interaction between ACE2-expressing SARS-CoV-2 target cells
and ILCs in the colon (252). Thus, elucidating the role of ILC
subsets will be important in understanding the pathogenesis of
SARS, SARS-CoV-2 and MERS infections.

ROLES OF INTERFERONS IN
CORONAVIRUS INFECTION

There is distinct evidence indicating an important role of IFNs in
SARS and other CoV infections (201, 253). The sera of patients
with SARS revealed the presence of high levels of IL-1, IL-
6, INFγ, CCL2, CXCL10, and IL-8 and products of interferon
stimulated genes (254, 255). High expression levels of ISGs such
as CD58, IFNAR1, and IFNGR1 and IFN-stimulated chemokines
CXCL10 and CCL2 were observed in another cohort of SARS
patients and were correlated with the severity of pathogenesis
(256). Significant upregulation of CXCL10 gene expression was
observed in the severe phase of patients who died from SARS.
This data is corroborated by studies in patients with MERS
that found upregulation of CXCL10 in the serum of patients
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who developed pneumonia (254). CXCL10 and INFα were also
correlated with severity of disease (255).

The importance of IFN signaling in response to CoV infection
has been well-demonstrated in several knockout mouse models.
Type I, II, and III IFN signaling deficient mice have increased
susceptibility to mouse-adapted SARS-CoV strains (257, 258).
Studies using mice lacking the IFNAR1 and IFNLR1 or STAT1
identified higher SARS-CoV replication in the lungs and delayed
virus clearance (259, 260). Another study with MERS-CoV in
mice expressing the human DPP4 receptor showed a role for the
IFNAR1 in viral clearance and lung inflammation (112). These
mouse models suggest an important role of IFN response for
CoV clearance. This quick expanding medical literature is very
suggestive of an important role of IFN responses for CoV control
and clearance.

INNATE IMMUNE EVASION STRATEGY OF
HUMAN CORONAVIRUSES

Many viruses have evolved to disrupt and subvert the immune
response. RSV counteracts the immune response (178, 191);
as discussed earlier, the RSV genome encodes non-structural
proteins (NS1 and NS2) that are able to block type 1 IFN
production and signaling in cell cultures (191). Similar to
RSV, the Measle virus V protein blocks IFN-α and β signaling
by inhibiting Stat1 and Stat2 signaling in cell culture lines
(192). CoVs have developed several ways to escape from innate
immune pressure. MERS-CoV M protein suppresses type 1
IFN by blocking the IRF3 activation (193), explaining the
low expression of IFN-β. In various cell lines, SARS-CoV
nucleocapsid (N) protein, membrane (M) protein, as well as
nsp1, were reported to suppress IFN response (194, 196, 261).
The nucleocapsid protein (N) of SARS-CoV interferes with
the function of IRF3. Although it does not form a complex
with RIG-I or MDA5, RNA binding activity at the initial
recognition stage of viral RNA potentially contributes to immune
evasion (261, 262).

Aside from the HCoV, structural proteins, accessory, and
non-structural proteins (nsp) are involved in innate immunity
modulation. In both SARS-CoV and MERS-CoV, host mRNA
endonucleolytic cleavage is promoted by nsp1 protein, which
modifies capped non-viral RNAs (263, 264). Nsp1 in SARS-CoV
prevents host mRNA translation by interacting with the 40S
subunit of the ribosome; in turn, transcription and translation
of viral RNA is given preference over the host mRNA (263).
Another study found that additional SARS-CoV nsp1 residues
interfered with IFN-dependent signaling (265). IFN production
is affected by nsp3 proteins in SARS-CoV and MERS-CoV.
These proteins have both papain-like protease (PLpro) and
a PLP2 domain, and the PLpro domains in both SARS-CoV
and MERS-CoV downregulate mRNA levels of CCL5, INFβ,
CXCL10, and other pro-inflammatory cytokines (266). The
suppression of IFN responses by SARS-CoV PLpro is due to

the inhibition of phosphorylation of IFN-regulatory factor 3
(IRF3) and its subsequent translocation to the nucleus where it
enhances IFN gene transcription (267). MERS-CoV PLpro also
suppresses RIG-I and MDA5 and antagonizes IFN induction
(266, 268). In HCoV-229E and SARS-CoV suppression of IFN
responses, the keymolecule is a ADP-ribose-1-monophosphatase
macrodomain encoded within nsp3 (269). Accessory proteins
are not key in viral replication; however, in human CoV, this
group of proteins are involved in diverse cellular signaling,
including cell proliferation, apoptosis, and IFN signaling (270).
By downregulating phosphorylation and nuclear translocation
of IRF3, Open Reading Frame ORF3b and -6 interfere with
IFNβ synthesis and prevent IFNβ-induced activation of IFN-
stimulated response element (ISRE) in the promoter of ISG
in SARS-CoV (262). In cells transfected with ORF4a, -4b,
and -5 of MERS-CoV, IFNβ promoter-driven luciferase activity
is significantly reduced, and it may follow a similar pattern of
suppression of IRF3 nuclear translocation (141). Therefore, the
suppression of signaling events in infected immune and airway
epithelial cells, as well as the magnitude of suppression due to
elevated expression levels of these accessory proteins, needs to
be further elucidated to understand delayed or hyperimmune
responses and cytokine storm that occurs in CoV infection.

SUMMARY

In addition to revealing our unpreparedness of handling a
worldwide pandemic by a viral infection, COVID-19 exposed
our lack of understanding of the pathogenesis of diseases
as well as the host immunity. The interaction of the host
innate immune system and other factors including age, sex,
and pre-existing conditions need further investigation regarding
disease severity and morbidity of SARS/MERS and COVID-
19. Disease severity and its related progression are further
associated with dysregulation of multiple components of both
innate and adaptive immune responses leading to a cytokine
storm and severe pathology. For the development of a therapeutic
intervention, it is vital to elucidate the interplay among the
different layers of the innate immune response and their relation
to the clinical factors associated with increased morbidity and
mortality in CoV infection. Investments in basic science research
are needed to help elucidate the roles of different immune
cells, and their contribution to disease severity; it will pave
the way to prevent or abrogate CoV outbreaks and potentially
new viruses.
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