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Abstract: To discover novel high-penetrant risk loci for hereditary colorectal cancer (hCRC) and
polyposis syndromes many whole-exome and whole-genome sequencing (WES/WGS) studies have
been performed. Remarkably, these studies resulted in only a few novel high-penetrant risk genes.
Given this observation, the possibility and strategy to identify high-penetrant risk genes for hCRC
and polyposis needs reconsideration. Therefore, we reviewed the study design of WES/WGS-based
hCRC and polyposis gene discovery studies (n = 37) and provide recommendations to optimize
discovery and validation strategies. The group of genetically unresolved patients is phenotypically
heterogeneous, and likely composed of distinct molecular subtypes. This knowledge advocates for
the screening of a homogeneous, stringently preselected discovery cohort and obtaining multi-level
evidence for variant pathogenicity. This evidence can be collected by characterizing the molecular
landscape of tumors from individuals with the same affected gene or by functional validation in
cell-based models. Together, the combined approach of a phenotype-driven, tumor-based candidate
gene search might elucidate the potential contribution of novel genetic predispositions in genetically
unresolved hCRC and polyposis.

Keywords: colorectal tumors; genetic predisposition; missing heritability; molecular diagnosis;
molecular biomarkers; rare variants

1. Introduction

Colorectal cancer (CRC) is the third most commonly occurring cancer in men and the second most
commonly observed cancer in women in Western society [1]. While the majority of individuals with
CRC are not genetically predisposed, a predisposition to CRC may be considered when an individual
is diagnosed with CRC at a young age (<50 years), when close relatives of the proband are affected
with (colorectal) cancer, or when an individual has developed multiple adenomas in the colorectum.
The presence of multiple adenomas (cumulative number of >10) at a young age (<60 years) is clinically
diagnosed as polyposis.

The exact contribution of heritable factors to CRC and polyposis is still not fully understood.
In the early 2000s Nordic twin- and family studies indicated that 12–35% of CRCs are potentially
linked to heritable factors [2,3]. Later, estimates for heritability of CRC decreased to about 15% of
all CRC cases [4,5]. At present, it is estimated that about 5–10% of all CRC and polyposis cases are
explained by rare pathogenic variants in high-penetrant risk genes [2,6–8]. Next to identification of rare
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high-penetrant risk genes contributing to the heredity of CRC, it is estimated that common variants
(minor allele frequency (MAF) in the general population >1%) may explain about ~12% of the relative
risk for CRC [8–11].

The sum of these estimations covers largely the reported heritability in twin studies, but a
substantial group of patients that fulfill the clinical criteria for hereditary CRC (hCRC) and/or polyposis
are considered to remain without a genetic diagnosis [12–15]. It is important to resolve this missing
heritability as a genetic diagnosis may favor a patient’s disease prognosis, surveillance and counseling,
but may also have large implications for family members in disease prevention. It was anticipated
that the rapid developments of next-generation sequencing (NGS) would aid in reducing the missing
heritability for CRC and polyposis. However, despite numerous NGS studies, little additional
high-penetrant novel risk genes for hCRC and polyposis have been found in the past decade. Over the
years, various hypotheses for the missing heritability in hCRC and polyposis have been proposed and
include the contribution of environmental factors and epigenetics, but also technical and methodological
limitations of previous research [13,14]. To have a better insight into the reasons why NGS studies
have not been able to resolve more high-penetrant risk genes for CRC and/or polyposis, we reviewed
the strategies that have led to the identification of currently well-established hCRC and polyposis
predisposing genes and all whole exome- and genome-based NGS studies aimed at the discovery of
novel hCRC and polyposis risk genes. Each study was reviewed for its experimental setup to identify
its methodological strengths and limitations of candidate gene discovery. Based on our findings and
with the latest knowledge of hereditary cancer, we have formulated improvements for future research
aimed at unraveling the genetic predisposition of unresolved hCRC and/or polyposis syndromes.

2. High-Penetrant Risk Genes Discovery in hCRC and Polyposis

Most genes associated with hCRC and polyposis were discovered in the late 1900s, far before
the NGS-era (Figure 1). In that time, linkage analysis of patients and families with early-onset CRC
and/or polyp formation led to the discovery of Lynch syndrome, Familial Adenomatous Polyposis
(FAP), and Hamartomatous Polyposis syndromes [16–25]. For these syndromes, genetic analysis of
familial cases was supplemented with the analysis of cancer cell lines and (sporadic) tumors. Mismatch
repair (MMR) associated genes MSH2 and MLH1 were discovered after the observation of linkage of
microsatellite markers in multiple kindreds and instability of microsatellite repeats in tumors of affected
relatives [20,21]. The observation that pathogenic variants in the MMR-genes MSH2 and MLH1 were
the cause of familial CRC [22,23] led to the identification of PMS2 as a cause for Lynch syndrome [24],
followed by MSH6 a couple of years later [25]. While the identification of these four genes explained
the majority of individuals with MMR-deficient CRCs with a strong familial aggregation, several
families remained without a genetics diagnosis, while their tumors revealed a deficiency of MSH2.
It took almost another year before, in 2009, it was found that 3′ deletions of EPCAM, located upstream
of MSH2, were involved in Lynch syndrome as well [26,27].
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For discovery of FAP, linkage analysis of families in which polyposis affected multiple generations
pointed toward the chromosome 5q21-22 region [17]. Additional analysis of tumors of sporadic CRC
patients indicated that the 5q21 locus was frequently lost in tumor cells, pointing at a role for genes in
this region in tumor development. Subsequently, germline pathogenic variants in APC, located in this
5q21 locus, were identified as the cause of the polyposis phenotype [19,28]. The observation of variable
severity among FAP patients with regard to age-of-onset and polyp number led to the establishment of
the ‘attenuated FAP’ (AFAP) phenotype. AFAP is linked to pathogenic variants outside the 3–15 exon
regions of APC [18,29–31]. In the early 2000s, molecular phenotyping of tumors of three FAP-suspected
siblings, but negative for germline pathogenic variants in APC, showed a shared increased rate of
somatic C:G > A:T transversions in APC in their tumors. This observation led to the discovery of
another adenomatous polyposis syndrome caused by biallelic pathogenic germline variants in the
base-excision repair (BER) gene MUTYH [32], also known as MUTYH-associated polyposis (MAP).
The discovery of more biallelic MUTYH-affected cases showed that MAP patients are equally associated
with a classical FAP phenotype (>100 polyps) and an AFAP phenotype (<100 polyps) [33,34].

TGF-β signaling proteins SMAD4 and BMPR1A, and AMPK-pathway activator STK11, were
discovered by linkage and co-segregation studies in the late 1990s [35–37]. These genes are found to be
associated with hamartomatous polyposis, characterized by juvenile polyps (for further reading; Zbuk
and Eng 2007 [38]).

Subsequently, advances in sequencing techniques such as massive parallel sequencing allowed
discovery approaches to change from targeted candidate gene sequencing to exome-wide and
genome-wide sequencing of larger patient cohorts to identify disease-causing genes in a more
hypothesis-free scenario. Over the past decade, multiple whole-exome and whole-genome
sequencing-based studies have been performed (n = 37), all with the general aim to discover rare
novel candidate risk genes for hCRC and polyposis (Table 1, Table S1). Thus far, these studies have
resulted in over a hundred candidate genes for hCRC and/or polyposis, for which the majority have
not been independently validated yet. Some genes are currently under debate as promising candidates
for hCRC and polyposis, such as RNF43, MSH3, RPS20 and MLH3 (Figure 1) [39–42], but still await
independent validation or additional functional evidence. However, it is remarkable that through all
NGS efforts, only few novel high-penetrant risk genes for hCRC and polyposis have been established
in the past decade, such as POLE, POLD1 and NTHL1 [43,44]. A detailed description of the established
and most promising candidate genes for hCRC and polyposis identified through NGS is reviewed
elsewhere [45,46].
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Table 1. Whole exome-based and genome-based rare high-penetrant risk gene discovery studies for hereditary colorectal cancer and polyposis syndromes up to
August 2020.

Author Key Gene(s) Inclusion Criteria Index Phenotype Inclusion Criteria Age Inclusion Criteria FH Size Discovery Cohort

Palles et al., 2013 [43] POLD1, POLE ≥10 colorectal tumors <60 years FDR or SDR with CRC 15 families
(20 cases)

Smith et al., 2013 [47] FANCM, LAMB4,
PTCHD3, LAMC3, REX2 Advanced CRC ≤35 years (18 cases) No, sporadic 50 cases

DeRycke et al., 2013 [48] CENPE, KIF23 Familial CRC NS ≥2 members affected 16 families
(40 cases)

de Voer et al., 2013 [49] BUB1, BUB3 Non-polyposis MMR-proficient CRC ≤40 years NS 33 cases

Gylfe et al., 2013 [50]

UACA, SFXN4, TWSG1,
PSPH, NUDT7, ZNF490,

PRSS37, CCDC18,
PRADC1, MRPL3,

ARK1C4

Familial CRC NS ≥1 FDR with CRC 96 cases

Gala et al., 2014 [42] RNF43 Sessile serrated adenomas NS If <5 SSAs, ≥1 FDR with
SSAs or CRC 20 cases

Rohlin et al., 2014 [51] No novel genes found,
POLE found Hereditary CRC n/a n/a 1 family (3 affected, 1

unaffected)

Nieminen et al., 2014 [41] RPS20 Amsterdam/Bethesda FCCTX n/a n/a 1 family
(4 cases)

Schulz et al., 2014 [52] SEMA4A Amsterdam I FCCTX n/a n/a 1 family
(4 cases)

Esteban-Jurado et al., 2015
[53]

CDKN1B, XRCC4, EPHX1,
NFKBIZ, SMARCA4,

BARD1
Familial CRC 1 ≥1 relative diagnosed <60

1
≥3 affected, ≥2 in

consecutive generations
29 families
(43 cases) 1

Tanskanen et al., 2015 [54]

ADAMTS4, CYTL1,
SYNE1, MCTP2,

ARHGAP12, ATM,
DONSON, ROS1

Non-syndromic early-onset CRC <40 years NS 22 cases

Wei et al., 2015 [55] HNRNPA0 and WIF1 Multiple early-onset cancer n/a n/a 1 family (4 affected, 4
unaffected)

Zhang et al., 2015 [56] EIF2AK4, LRP5, BUB1 Familial CRC without polyposis ≤55 years If ≥40 years, ≥1 FDR with
CRC

21 families
(23 cases)
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Table 1. Cont.

Author Key Gene(s) Inclusion Criteria Index Phenotype Inclusion Criteria Age Inclusion Criteria FH Size Discovery Cohort

Weren et al., 2015 [44] NTHL1 Multiple adenomatous polyps NS NS 51 cases
(48 families)

Segui et al., 2015 [57] FAN1 Amsterdam I MMR-proficient CRC n/a n/a 1 family
(3 cases)

Ngeow et al., 2015 [58] SMAD9 HPS n/a n/a 1 family
(1 case)

Arora et al., 2015 [59] ERCC6, WRN CRC or polyposis (≥10 polyps) <50 years ≥1 relative with CRC 25 cases

Goldberg et al., 2015 [60] MCM9 Multiple mixed polyposis and
metastatic CRC n/a n/a 1 family (1 cases, 1

unaffected)

Rohlin et al., 2016 [61] No novel genes found,
GREM1 and POLE found AFAP/atypical polyposis n/a n/a 1 family (4 affected, 4

unaffected cases)

Spier et al., 2016 [62] DSC2, PIEZO1 Colorectal adenomatous polyposis NS NS 7 cases

Thutkawkorapin et al.,
2016 [63]

DZIP1L, IGSF10,
NOTCH1, SF3A1,

GAL3ST1
Familial rectal- and gastric cancer n/a n/a 1 family

(3 cases)

de Voer et al., 2016 [13] PTPN12, LRP6 non-polyposis MMR-proficient CRC ≤45 years NS 55 cases

Esteban-Jurado et al., 2016
[64]

BRCA2/FANCD1,
BRIP1/FANCJ, FANCC,
FANCE, REV3L/POLZ

Familial CRC 1 ≥1 relative diagnosed <60
1

≥3 affected, ≥2 in
consecutive generations

40 families
(74 cases) 1

Chubb et al., 2016 [65] POT1, POLE2, MRE11 CRC ≤55 years ≥1 FDR with CRC 1006 cases

Adam et al., 2016 [40] MSH3 ≥20 synchronous or ≥40
metachronous colorectal adenomas NS NS 102 cases

Schubert et al., 2017, 2018
[66] MIA3 Amsterdam I MMR stable

familial CRC n/a n/a
1 family (3 cases WES, 2
cases WES/WGS, 1 cases

WGS)

Martín-Morales et al.,
2017 [67] SETD6 Amsterdam I FCCTX ≥1 relative diagnosed <50 ≥3 affected (≥1 FDR), ≥2

in consecutive generations
1 family (2 cases, 1

unaffected)

Bellido et al., 2018 [68] BRF1 Amsterdam I hereditary CRC n/a n/a 1 family (3 CRC cases, 1
BC case)

Franch-Expósito et al.,
2018 [69] TTF2, TMEM158 Familial CRC 1 ≥1 relative diagnosed

<601
≥3 affected, ≥2 in

consecutive generations
WES: 38 families (71
cases), WGS: 1 case 1
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Table 1. Cont.

Author Key Gene(s) Inclusion Criteria Index Phenotype Inclusion Criteria Age Inclusion Criteria FH Size Discovery Cohort

Yu et al., 2018 [70]

DDX20, ZFYVE26,
PIK3R3, SLC26A8, ZEB2,

TP53INP1, SLC11A1,
LRBA, CEBPZ, ETAA1,

SEMA3G, IFRD2 and FAT1

Amsterdam I/II non-polyposis
hereditary CRC ≥1 relative diagnosed <50 ≥1 FDR & 2 generations

affected
1 family
(3 cases)

Olkinuora et al., 2018 [39] MLH3 Adenomatous polyposis NS NS 40 cases

Thutkawkorapin et al.,
2019 [71]

BMPR1A, BRIP1, SRC,
CLSPN, SEC24B, SSH2,

ACACA, NR2C2, INPP4A,
DIDO1, ATP10B, PKHD1,

UGGT2, MYH13, TFF3

Simplex early-onset CRC <40 years NS 51 cases

Diaz-Gay et al., 2019 [72]
BRCA2, BLM, ERCC2,

RECQL(=WRN), REV3L
and RIF1

Familial CRC 1 ≥1 relative diagnosed <60
1

≥3 affected, ≥2 in
consecutive generations 18 cases 1

Toma et al., 2019 [73] FBLN2 Familial CRC/SPS NS ≥2 affected in consecutive
generations

16 families
(39 cases)

Jansen et al., 2020 [74] NOTCH2, RAB25 Familial CRC NS NS 5 families
(9 cases)

Toma et al., 2020 [75] SMO Familial CRC 1 ≥1 relative diagnosed <60
1

≥3 affected, ≥2 in
consecutive generations

18 families
(47 cases) 1

Bonjoch et al., 2020 [76] FAF1 Familial CRC 1 ≥1 relative diagnosed <60
1

≥3 affected, ≥2 in
consecutive generations

40 families
(75 cases) 1

Abbreviations: AFAP = Attenuated familial adenomatous polyposis, BC = Breast cancer, CRC = colorectal cancer, FCCTX = familial colorectal cancer type X, FDR = first degree relative, FH
= family history, HPS = hamartomatous polyposis, MMR = mismatch repair, NS = not stated in article, n/a = not applicable, SDR = second degree relative, SPS = serrated polyposis
syndrome, SSA = sessile serrated adenoma, WES = Whole-exome sequencing, WGS = Whole-genome sequencing. 1 Overlapping cohorts.
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3. Strategies for Identification of Rare High-Penetrant Risk Genes

To discover rare but distinct monogenetic causes in a -now known as a- phenotypic heterogeneous
group of hCRC and polyposis patients, robust discovery studies are needed. Up to August 2020,
we retrospectively identified 37 whole-exome sequencing (WES) and whole-genome sequencing
(WGS)-based studies that aimed to discover novel candidate risk genes for hCRC and/or polyposis
(Table 1). We reviewed these studies following the general setup of candidate discovery studies, which
cover cohort composition, variant discovery and prioritization, and variant validation (Table 1, Table S1).
Six studies based discovery on the same cohort that was enlarged over time [53,64,69,72,75,76].

3.1. Discovery Cohort

For the discovery of high-penetrant risk genes for hCRC and polyposis, family history (FH) and
inheritance patterns are key factors in variant discovery. We noted that among the 37 candidate
gene discovery studies, FH-based inclusion criteria varied from study to study. Some studies used
a relatively broad inclusion criterion such as “one first-degree relative or second-degree relative
with CRC” while others applied more stringent criteria “the presence of at least three relatives with
CRC, of which at least two in consecutive affected generations and at least one case diagnosed
with CRC before the age of 60” (Table 1: Inclusion criteria FH) [42,43,48,50,53,56,59,64,69,70,72,75,76].
Furthermore, phenotypic characteristics strongly associated with hereditary CRC and polyposis
syndromes, such as tumor types and age-of-onset strongly varied between, but also within cohorts
(Table 1: Inclusion criteria index phenotype; Table 1: Inclusion criteria age). The phenotypes that were
studied included either polyposis, familial colon and/or rectal cancer, or a mixture of the aforementioned
phenotypes. Age-based inclusion criteria were applied in twelve out of the 32 unique discovery
cohorts [13,43,47,49,53,54,56,59,64,65,67,69–72,75,76]. However, this age-based inclusion criterion was
heterogeneous ranging from an age at diagnosis ≤35 years [47] to diagnosis <60 years [43], to at
least one relative diagnosed <60 years [53,64,69,72,75,76]. The observed heterogeneity within these
NGS study cohorts is in contrast with the discovery studies that were performed before the NGS-era,
as discovery studies before the NGS-era were directed to families with multiple affected members
and a strong phenotype of hCRC and/or polyposis. The elaborate inclusion of a range of phenotypes
might have contributed to the limited number of high-penetrant risk genes discovered. Therefore,
future candidate gene studies may benefit by composing clinical homogenous cohorts with respect to
expected mode-of-inheritance and age-of-onset (Table 2).

Table 2. Summary of considerations for future candidate gene discovery studies.

Discovery Cohort Selection

• Clinical homogeneous cohorts based on the expected mode-of-inheritance and/or age-of-onset

Variant Prioritization

• Locus prioritization based on variant recurrence within the cohort
• Set allele-frequency cut-offs based on expected mode-of-inheritance

- Dominant: MAF < 0.0005; Recessive MAF < 0.007
• Concordance of multiple in silico prediction tools
• Co-segregation among family members

Variant Validation

• Molecular tumor analysis to determine molecular phenotype of tumor
• Evidence based on cellular models
• Case-control comparison to specify the genotype-phenotype correlation

MAF = Minor Allele Frequency.
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3.2. Variant Prioritization

3.2.1. Locus Prioritization

To identify novel genetic predispositions, WES or WGS data of discovery cohorts need to undergo
a filtering to prioritize potentially pathogenic variants. In general, we observed prioritization based on
either complete screening of WES or WGS data or, more targeted, by focusing on specific genes or regions
that are more likely to be involved in hereditary cancer. The main applied variant prioritization strategies
included linkage (n = 8 studies [41,43,52,55,61,66,73,75]), variants shared among affected relatives or
absence of the variant in unaffected relatives (n = 19 studies [41,43,48,51–53,55,57,60,61,63,64,66–70,74,
76]) and gene function (n = 14 studies [13,47,53,57–59,63–65,71,72,74–76]). Other approaches include
the prioritization of recurrent variants (n = 7 studies [13,39,40,44,50,56,65]) and prioritization based on
expected recessive or dominant mode-of-inheritance (n = 7 studies [52–54,60,62,67,71]). A minority
of the studies primarily focused on deleteriousness of a variant (n = 6 studies [39,40,44,47,49,50]) or
combined germline and tumor analysis (n = 1 studies [47]) (Table S1: Approach for discovery). Gene
discovery studies that led to the identification of pathogenic variants in POLE, POLD1, and NTHL1
were based on the prioritization of variants that were shared among affected family members or that
were recurrent in the study population [43,44], suggesting that discovery cohort selection is most
important for candidate gene discovery.

3.2.2. Allele Frequency Cut-Offs

Additional to these aforementioned strategies, a commonly used approach among discovery
studies is the “rare disease rare variant hypothesis”, meaning that rare phenotypes are caused by
variants that are rare (i.e., have a (very) low MAF) in the general population. Within the 37 candidate
gene discovery studies, the applied MAF cut-off ranged from 0.00–0.20 (Table S1: Applied MAF).
Four studies explicitly adapted their MAF cut-off to presumed dominant or recessively inherited
genetic predispositions in their study populations [40,44,62,71]. These four studies applied more
stringent MAF cut-offs in dominant scenarios (MAF < 0.01–0.001) and looser MAF cut-offs for recessive
inheritance patterns (MAF < 0.03–0.01) [40,44,62,71].

A prominent question in MAF-based filtering is ‘How low can we go?’. In other words, what is
the optimal MAF frequency to identify rare potentially pathogenic variants for follow up? Assuming a
high-penetrant rare disease model, in theory MAFs could be set as low as the expected prevalence of
disease in the general population for dominant inheritance scenarios. The most recently discovered
dominantly inherited polyposis syndrome proof-reading associate polyposis (PPAP), caused by variants
in the exonuclease domain of POLE and POLD1, is discovered only in about 0.5% of the familial
early-onset CRC disease population [77]. ClinVar Class V variants located in the exonuclease domains
of POLE (codons 268-471; NM_006231) and POLD1 (codons 304-517; NM_002691), such as POLE
p.(Leu424Val) and POLD1 p.(Ser478Asn) are absent in the general population [78]. Based on these
observations, we argue that novel dominant hCRC and polyposis syndromes are likely just as rare
in the general population as PPAP and therefore identification of novel dominant high-penetrant
risk genes will allow (very) low variant allele frequency cut-offs. Chubb et al. screened a selected
population of familial early-onset CRC cases, and concluded that about 0.5 percent of this population
carries a pathogenic or likely pathogenic variant in POLE or POLD1. Based on the assumption that
this population of familial early-onset CRC cases could completely be explained by high-penetrant
predispositions and that up to 10% of the CRCs can be explained by rare genetic predispositions [8,77],
we anticipate that novel high-penetrant variants for hCRC and polyposis will have a MAF lower than
0.0005, or will be completely absent in the general population.

For recessive disease scenarios, including compound heterozygous variants, setting a MAF cut-off

is much more difficult as heterozygous variants can be expected in the general population in the
absence of a disease phenotype. For recessive disease genes such as MUTYH and NTHL1, combined
minor allele frequencies up to 0.007 (0.7%) are observed, and population-specific allele frequencies
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can be as high as 0.006 (North-Western European; MUTYH p.(Gly393Asp)) [44,79]. This observation
implies that a MAF cut-off of 0.001, as often applied for dominant diseases, is too stringent. Based on
these calculations, MAF cut-offs as low as 0.007 should be set for variants in recessive disease scenarios.

3.2.3. In Silico Pathogenicity

Not every selected rare variant will have pathogenic –and thus a cancer predisposing– potential.
Therefore, after rare variant selection, the pathogenicity potential of a variant needs assessment.
Twenty-nine out of 37 studies reported the use of one or more in silico tools to predict variant
pathogenicity [24,39–41,43,44,48–50,52–59,61–64,67,68,71–76]. In general, combinations of different
variant scoring tools such as SIFT, PolyPhen-2, and MutationTaster were used (Table S1). Specific criteria
for pathogenic assertion were applied in 21 out of 29 studies, such as prediction for deleteriousness
in a majority of the assessed tools and application of cut-offs for CADD and/or PhyloP scores that
indicate the conservation of a position [80–82]. The performance and concordance of such in silico
tools for pathogenicity greatly varies [80,83]. In line with the observation that most studies make
use of multiple in silico tools, a previous comparison of 25 commonly used algorithms showed that
prediction of five algorithms (SIFT, PolyPhen, CADD, PROVEAN, and MutationTaster) resulted in a
higher concordance compared to other combinations [80]. For example, known pathogenic missense
variants such as MUTYH (NM_012222.2; c.724C > T; p.(Arg242His)) and POLE (NM_006231.2; c.1270C
> G; p.(Leu424Val)) are predicted to be deleterious in all five algorithms. However, a high concordance
of these in silico tools is not a guarantee for the identification of a pathogenic variant, therefore in silico
predictions should facilitate variant prioritization but should not serve as evidence in itself.

3.2.4. Co-Segregation

Next to germline-based filtering strategies and in silico pathogenicity predictions, additional
prioritization methods are applied to select the most likely causative variant. One of the primary types
of evidence is co-segregation of the variant with the affected status throughout a family. Co-segregation
analysis was performed in 24 out of 37 studies (Table S1: Segregation [39–41,43,44,48–53,57,60,61,63,64,
66–69,73–76]). Within the studies, co-segregation of the candidate risk locus was not always concordant
in affected vs. unaffected relatives. Gylfe et al. identified the TWSG1 nonsense variant (c.121C >

T; p.(Gln41 *)) in two families, which segregated with the affected status in one family, but not in
the other [50]. Jansen et al. showed that that all variants that were found in the affected individual
(with CRC at age 14) were also detected in either the unaffected father or the unaffected mother of
the proband [74]. Co-segregation analysis is considered essential for decisions in variant follow up,
especially for discovery of novel high-penetrant risk genes. To illustrate, incomplete co-segregation of
the RAD52 truncating variant (c.590_593dupAACC; p.(Ser199Thrfs*88)), in contrast to the complete
genotype-phenotype segregation of FAF1 missense variant (c.1111G > A; p.(Asp371Asn)) in a family
with CRC, led to the decision to follow up the latter one [76]. Co-segregation analysis of both affected
and unaffected family members will rapidly gain insight for variant follow up. The lack of segregation
in healthy family members can indicate variant pathogenicity as well, taking into consideration the
age of the person and the expected age-of-onset of the disease. Even when co-segregation analysis in
affected family members cannot be performed, testing of unaffected family members may facilitate
variant prioritization.

3.3. Variant Validation

3.3.1. Molecular Tumor Analysis

Somatic molecular events in colorectal tumors were studied in eleven discovery studies (Table S1:
Molecular tumor characteristics [39,40,42–44,47,52,57,62,68,72]). Within these eleven studies, analysis
of tumor mutational events varied from driver gene genotyping of KRAS, BRAF, and/or NRAS [39,42,68],
to analysis of the genome-wide mutational spectrum of the tumor [43,44,57,72]. Driver gene analyses
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are often applied in the context of therapy-stratification and evolutionary studies of the tumor. However,
driver genes were also screened in several candidate gene discovery studies as well. Nine out of these
eleven studies performed driver gene screening, but the vast majority of these nine studies did not find
any predominant substitution in the analyzed driver genes [39,43,44,47,52,68,84]. Gala et al. found
enrichment for BRAF p.(Val600Glu) in sessile serrated adenomas [42]. BRAF p.(Val600Glu) mutations
in tumors are strongly associated with MLH1 promoter methylation in sporadic CRC cases and thus
are a predictor of negative MMR mutation status [85]. Summarizing these study results, driver gene
screening in hCRC and polyposis gene discovery studies may have additional value when screening
is performed on tumors of all discovery cases to further stratify hCRC and polyposis phenotypes,
as complete screening could facilitate the identification of sporadic cases and may provide an extra
tumor characteristic that could stratify patients for follow up screening. Nonetheless, known driver
gene mutations seem not to be discriminative for specific germline predispositions for polyposis, at
least not in adenomatous polyposis.

Based on the established genes discovered for hCRC and polyposis, pathogenic variants in two
main mechanisms can give rise to colorectal tumors. One is the altered activity of a tumorigenic process;
i.e., inactivation of APC and activated WNT signaling, and the tumor suppressive roles of SMAD4 and
BMPR1A in TGF-β signaling. The other main mechanism that predisposes tumor development is a
defect in DNA repair, such as MMR defects in Lynch syndrome, and disruptive base-excision repair
(BER) in adenomatous polyposis. For DNA repair deficiencies in particular, it is known that germline
defects in specific genes give rise to specific molecular tumor phenotypes. The most prominent
molecular phenotype is the observation of microsatellite instability in the tumor due to (germline)
MMR defects. Defects in DNA repair pathways may result in distinct mutational patterns in the
genomes of tumors, now known as mutational signatures [86]. The observation of an increased rate
of C:G > A:T transversions in APC in tumors led to the discovery of MUTYH-associated polyposis
in the early 2000s. MUTYH deficiency, causing 8-OxoG BER pathway redundancy, is now linked to
mutational signatures 18 and 36 [87,88]. Subsequently, in 2015, tumors of NTHL1-associated tumor
syndrome (NATS) patients with germline nonsense mutations in the BER gene NTHL1 showed an
increased rate of C:G > T:A mutations in a unique mutation context, resulting in mutational signature
30 [89]. Polymerase proofreading defects give rise to mutational signatures 10a and 10b, and mismatch
repair defects are associated with mutational signatures 6, 15, 20, and 26 [90,91]. These findings
suggest that mutational patterns, rather than single driver gene events, may facilitate identification and
validation of candidate genes for hCRC and polyposis syndromes (further reading: Grolleman et al.,
2019 [92]).

3.3.2. Functional Characterization of the Variant

Co-segregation of the variant and mutational profiling give a strong indication for pathogenicity,
but these two aspects do not directly confirm the causality of the germline variant to the disease
phenotype. Therefore, additional evidence may include the expression pattern of the affected gene
and functional characterization of the variant. In this review, we consider functional characterization
as the use of in vitro or in vivo assays to determine whether: (i) genetic variants disrupt or enhance
protein function, but more importantly (ii) how an altered protein function may give rise to a certain
phenotype. A combination of these two is likely essential for full functional characterization. Gene
and/or protein expression alone cannot be considered as a validation method, as the presence of gene
product does not determine the pathogenicity of the variant and the effect on down-stream targets.
Overall, functional characterization of variants was limited in the reviewed candidate studies. In total,
17 out of 37 studies used patient-derived material or used human cell lines as an in vitro model to test
variant consequences and functional characterization (Table S1: Candidate gene transcription/protein
expression and Functional characterization [13,39–42,44,49,52,57–60,66–69,76]). However, most studies
provide mainly protein expression data and limited data on assessment of protein function and
downstream interactors [13,40,66,69], while both expression data as well as functional data should
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be in line with the role of the variant in tumorigenesis. For example, we previously showed that
missense variants in LRP6 did not affect expression and localization compared to wildtype LRP6.
However, using a TOPflash assay we observed that these missense variants increased WNT-signaling
activity [13]. In other studies, more in-depth functional analyses in tumorigenic processes included
experiments to analyze the effect of variants on cell migration and proliferation, cell cycle progression,
and apoptosis [52,68,76]. Schulz et al. showed increased activation of the PI3K/AKT and MAPK/ERK
pathways for SEMA4AV78M compared to SEMA4Awt by flowcytometry and immunofluorescence in
HCT116 cells, but not in 293T cells [52]. Bellido et al. showed a potential pathogenicity of BRF1 missense
variants as low viability was observed in a BRF1-dependent growth assay in yeast that harbored these
missense variants [68]. Bonjoch et al. performed various assays including immunofluorescence and
caspase-3 activity assay to show that FAF1 missense variants lead to upregulation of β-catenin and
reduced apoptosis in DLD1 cells [76]. In addition to two-dimensional models, colon epithelial organoid
models may be an interesting alternative to study proliferation, survival and mutational processes
for specific candidate predisposing genes in a three-dimensional setting. It was previously shown by
Drost et al. that an organoid in which NTHL1 was knocked out using CRISPR/Cas9 shows the same
mutational pattern as tumors from NTHL1 deficient individuals [89,93]. Standardized methods have
been developed for the in vitro culture of primary colon organoids, which may facilitate the use of
this model over two-dimensional cultures [94]. Nevertheless, only a selected number of parameters
can be studied with in vitro assays. Therefore, a combination of tests, including in vitro functional
assays as well as tumor sequencing data and/or co-segregation analysis, should point towards a causal
genotype-phenotype relationship (Table 2).

3.3.3. Case-Control Validation

Next to functional impact of a candidate variant, case-control validation is an alternative and
complementary approach to validate the causal relationship between a germline variant and the
hereditary tumor syndrome. The validation is based on a significantly higher recurrence rate of the
hCRC or polyposis syndrome phenotype in cases than controls. During the identification process of
candidate genes, a low MAF in population controls is already used as selection parameter, however in
case-control validations other variants in the same gene are also taken into consideration. Moreover,
case-control studies contribute to the description of the complete phenotypic spectrum of a candidate
gene. Validation cohorts have been used in 23 out of 37 studies, and statistical testing for enrichment
in cases vs. controls was performed in fifteen studies [13,42–44,52,55,56,59,64,65,68,72–75]. Despite
efforts, the lack of sufficient power is frequently mentioned as reason for not finding significant
differences in case-control analysis and not being able to validate newly found risk genes. To illustrate,
Chubb et al. performed a screening of 1,006 cases and healthy 1,609 individuals. Even though the
cohort was specifically targeted to dominant hCRC syndromes by the selection of CRC cases ≤55
years and with at least one first-degree relative with CRC, only the well-established genes for hCRC
and polyposis (APC, MLH1, MSH2) reached significant enrichment in cases versus controls [65]. In
hCRC and polyposis syndromes, the rareness of the newly found syndromes together with their
population-specific allele frequency as e.g., noted for NTHL1 [79], show that the low MAFs of rare
variants make it almost impossible to find significant associations, even in studies with over a thousand
cases. It is calculated that for genetic predispositions with moderate or high-penetrance (OR > 2),
required sample sizes need to reach 10,000 to even 100,000 cases and controls [65,95]. Therefore,
the purpose of case-control validation in future studies may shift from finding significant differences
in cases versus controls, to specification of the phenotype associated with the risk gene. Validation
cohorts may include a phenotypic range of genetic tumor risk syndrome patients to further determine
the genotype-phenotype presentation in these rare disease patients (Table 2).
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4. Missing Heritability Explained by Known or Common Risk Genes

In the era of massive parallel sequencing, whole-exome and whole-genome sequencing of suspected
hCRC and polyposis patients resulted in relatively few widely established novel high-penetrant genes
for hCRC and polyposis syndromes. In the above sections, we gave insights into the applied methods
and discussed considerations for future candidate gene discovery studies. However, next to the
inability to identify novel genetic predispositions possibly due to inconsistencies in study setup, other
scenarios could also contribute to the observed missing heritability in hCRC and polyposis syndromes.
These scenarios include that disease-causing variants might have been missed in known hCRC and
polyposis syndrome genes due to technical limitations or unforeseen inheritance patterns, or that the
hCRC and polyposis phenotypes are the result of multiple variants in low- and moderate penetrant
risk genes.

4.1. Identification of Variants in Known hCRC and Polyposis Risk Genes by Whole-Genome Sequencing

Most routine diagnostic, but also research facilities, focus on the screening of coding regions
of the genome for pathogenic variant identification, either by targeted- or whole-exome sequencing.
However, targeted screening of both the coding and non-coding regions of the genes or WGS could
be of great potential for reduction of missing heritability. Short-read WGS outperforms WES in
detection of variants also in coding regions due to more homogeneous coverage with higher quality
and better variant calling [96,97]. Moreover, WGS of patient cohorts might facilitate discovery of
missed non-coding variants in known hCRC and polyposis genes. In the past, deep-intronic and
promoter variants were described in tumor suppressor genes APC and PTEN, which makes sequencing
of these non-coding regions of particular interest for unresolved hCRC and polyposis patients [98–103].
Long-read sequencing and optical mapping techniques might be valuable as well, as these techniques
are specifically directed to the detection of complex and structural variants, and allow alignment and
variant mapping in regions that used to be uncovered in the past due to their nucleotide composition
(e.g., extreme GC-rich, and multiple short repeats) [104,105]. Complexities of these regions and the
structural variants itself, make that these variants remain understudied in whole exome-based and
whole genome-based techniques, and the inability to detect those might explain part of the observed
missing heritability in hCRC and polyposis syndromes.

4.2. Mosaic and De Novo Variant in Known hCRC and Polyposis Syndrome Genes

Next to dominant and recessive inheritance patterns, other forms of predisposition might also
explain a proportion of the missing heritability in hCRC and polyposis patients. A de novo onset
of a constitutive genetic defect and mosaicism, caused by mutations arisen in (early) embryonic
development, are likely overseen causes in genetically unresolved hCRC and polyposis patients, as
these patients often lack a positive family history. Despite a negative family history, these patients
may display severe polyposis and carcinomas at young age. In example, de novo and mosaicism
rates among FAP patients with suspected sporadic disease range from 4% to 25% [84,106–109].
For identification of novel genes involved in de novo onset of disease, trio-studies could be extremely
valuable, as sequencing both healthy parents and the proband increases the diagnostic yield in
rare-diseases [110]. Trio-sequencing may be chosen in case of a severe polyposis phenotype or CRC at
an exceptionally young age, but in the absence of familial aggregation. For detection of mosaicism,
multiple clonal expansions like polyps should be evaluated to determine shared pathogenic variants,
which subsequently can be evaluated at high sensitivity in leukocyte-derived DNA and normal tissues
to render insight in variant distribution throughout the different tissues in the body.

4.3. Polygenic Risk Scores

The influence of common, low-penetrant risk loci has been studied since the introduction of
genome-wide studies. Genome-wide association studies use the genetic risk information from



Int. J. Mol. Sci. 2020, 21, 8757 13 of 20

the millions of discovered single nucleotide polymorphisms to determine an individual’s genetic
susceptibly for a specific, usually complex, trait. Using this information, the sum of all common,
intermediate and rare variants that are thought to contribute to disease susceptibility. The interactions
within and between these variants form a Polygenic risk score (PRS). PRSs have been studied in
several complex traits as well as several cancers, including breast and prostate cancer [111,112].
Additionally for colorectal cancer, PRSs in combination with family history seem to be feasible for risk
stratification [113]. However, little is known on the additional role of polygenicity in contribution
to monogenic causes of hCRC and polyposis syndromes. A preliminary publication of Fahed et al.
studied whether polygenic risk can account for variation among carriers for monogenic variants that
are predisposed to Lynch syndrome and showed that the odds ratios for colorectal cancer increased
with higher polygenic scores [114]. Research from Schlafly et al. shows a discovery approach using PRS
to prioritize families for high-penetrant rare risk genes. Using this approach in 404 melanoma-prone
families, they found that families carrying putative causal predisposition had a lower PRS [115]. It is
too early for implementation, but both studies show the potential of PRSs as a tool to prioritize families
for discovery cohort inclusion in hCRC and polyposis syndromes gene discovery studies.

5. Conclusions

A fair number of hCRC and polyposis patients are considered to remain genetically unexplained,
which hampers risk assessments for patients in whom no genetically underlying cause is identified.
The estimates of missing heritability are mainly based on twin and family studies, which may be biased
by non-additive genetic effects or incorrect assumption about the shared environment. Nevertheless,
the proportion of unresolved early-onset and/or familial CRC patients, urges the investigation of
additional genetic causes. By collecting all whole exome-based and whole genome-based discovery
studies and listing their study design, we aimed to provide knowledge on why the missing heritability
is not (yet) reduced and provide improvements for future studies. These improvements cover the
setup of high-quality discovery studies by including phenotypically well-defined early-onset CRC
and/or polyposis syndrome patients into perhaps smaller, but more specific cohorts for candidate gene
searches. In this approach, the availability of enough material and patient information should have the
highest priority for inclusion to facilitate detailed characterization of both germline DNA and tumor
material. Once a variant and/or candidate gene is selected, validation needs to be multi-leveled and
elaborate to provide robust and unambiguous evidence for the casual role of the genetic variant.

In conclusion, novel high-penetrant risk genes for hCRC and polyposis syndromes will be rare in
a disease group that is heterogeneous in nature. This heterogeneity needs to be taken into account
in future discovery and validation strategies for the identification of novel genetic predispositions in
hCRC and polyposis syndromes. A stringently selected study population and strict criteria for variant
identification, together with appropriate functional validation, will contribute to a further delineation
of the missing heritability. This complete analysis of this heterogeneous disease group will provide
in-depth genotype-phenotype information, contributing to future diagnostics and lead to tumor- and
patient-specific treatment and surveillance strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/22/8757/s1.
Table S1: Variant discovery and validation characteristics of whole genome and whole exome based candidate
gene discovery studies for hCRC and polyposis.
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AFAP Attenuated familial adenomatous polyposis syndrome
BER Base-excision repair pathway
CRC Colorectal cancer
FAP Familial adenomatous polyposis
FH Family history
hCRC Hereditary colorectal cancer
MAF Minor allele frequency
MAP MutyH-associated polyposis
MMR Mismatch repair
NATS NTHL1-associated tumor syndrome
NGS Next-generation sequencing
PPAP Polymerase proofreading associated polyposis
PRS Polygenic risk score
WES Whole exome sequencing
WGS Whole genome sequencing
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